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I. Introduction
[ 3

Studies of particle scattering by the time-periodic potent1al of a 51mple shape
are of great theoretical and experimental interest. ; :

Of special note are such experimental results as ultracold neutron scattering
by a vibrating film [1] and the interference of thermal neutrons passing through
an oscillating magnetic field [2]. Lo

Important theoretical results correspond ﬁrst of all, to the analysis, carried
out using rather simple models, of a rich circle of phenomena taking place in the
scattering by the time-periodic potential. In [3, 4] one-dimentional scattering of a
spinless particle by the (u0+ Uy cos"Qt) 6(z) potential is considered, wheré ¢ is the
time, Q is the frequency, r is the coordinate and §(z) is the Dirac delta-function.
In [5] the similar problem is considered for the rectangular potential oscillating in
time as (Ug + U, cos Qt). But even these rather simple problems cannot be solved
exactly. Each of them equivalent to an infinite set of equations. The authors
use different approximations to solve this set of equations and consequently their
results differ. It is stated in [3] that if up < O the total reflection of neutrons with
the fixed energy E takes place when the frequency is @ = Qo(E). It is asserted
in [4] that in the indicated point a resonant reflection occurs but it is not total.
In [5] resonant phenomena are not considered-at all. As we shall see below there
are various interesting phenomena existing in the scattering by the time-periodic
potential. The authors of [3, 4, 5] neglected these phenomena. as their results are
presented in a rather compllcated form.

So it is important to consider exactly soluble models and analyse in detail
the arising phenomena. For example, in [6] neutron scattering by moving trans-
versely diffraction grating is considered and some new-interesting phenomena are
discovered. In the present paper we will also consider the exactly soluble model:
one-dimentional neutron scattermg by a thm film contanmg a rotatmg magnetic

field.
2. Formulatiqn of the Problem

Let us consider neutron beam scattering by a thin film. The film consists of two
layers. The first layer is a ~ 107% ¢m thick. It is composed of substance with the
negative pseudo-potential —U, U > 0, U ~ 1077 ev. The i 1mag1nary part of the
pseudo-potential is always negative. We denote it as =V, V>0, V~1074U ~
107 ev. The second layer is b ~ 107 em thick: It is of a ferromagnetic kind, so
its pseudo-potential is Uy > 0, U, ~ 1077 ¢v. Heénce, Ua ~ Uyb ~ 10712 ev - cm.
We consider that W = Ua — Uib > 0, W ~ 1073 '¢v - em. Let —V; be an
imaginary part of the ferromagnetic pseudo-potential, V3 > 0, V; ~ 10~ ev. Let
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W, =Va+ Vb, W, >0, Wy~ 107*W ~ 10717 ev - cm. The ferromagnetic layer -

is magnetized. The magnetic field H is about 10® — 10* Gs. The magnetic field
vector is rotating in the plane of the film with the frequency § ~ 107 sec™!.

The component & of the neutron wave vector, which is orthogonal to the film,
satisfies the relation: k << (a+ b))}, 50 E = ﬁ2k2/2m << 107% ev, where h is

the Planck constant, m is the neutron mass. The neutron motion parallel to the

film does not matter. So the described situation can be realized using ultracold
neutrons or thermal neutrons moving of a small angle to the film. Under specified
conditions the action of the film on heutrons can be described by the delta—functlon
potential. - SIS o

Let us 1ntroduce coordlnates Z1, T2, T3 = z; T and z are directed along the
film. Let us choose the z3 axis as a magnetic field quantization axis. The neutron
is described by a two-component wave function ¥(z,t) = {\I/+(:t t), U_(z, t)} (we
have separated a neutron motion along the film). Under mentloned conditions the
Schrodlnger equa.tlon for the neutron has the form:

ovy K 5'W . oy .
= g Ll s+ w)e e}, Q)

where ;l. is the neutron magnetic moment. .
Let us note that the set of equations (1) is also correct if W < 0. The latter
situation can be realized using the film consisting of one ferromagnetic layer.
The time dependence in (1) can be separated:

th

Uy(z,t) = thu(z) exp{~ ztE/h} U_(a,t) = (x)exp{ zt(E hQ)/h}

(1) can be rewritten in the form:

By =-— fm d;f: 6@ (W + W) + pH b }
(E - 10)y- = _h—d "’" ~ 6z ){(W+ iW.)y- + pr¢+} . 3)

3. Bound States

'Thouglllour main aim is to describe scattering, in the present section we will
investigate the problem of neutron bound states in the film potential. It will be
important for the. analy31s of rezults of the solution of the scattering problem. .

As the ﬁlm potentla.l includes an imaginary part, any normalizable wave func-
tion is damped with time. So we defined bound states as normalizable solutions of
the’ elgenva.lue problem (3) with the complex E, SE < 0. Since we wouldlike to get

norma.hzable solutlons then §RE’ < 0,andso E=—¢—ihl', >0, >0, =T .

denotes the bound state lifetime. In this case the solution of (3) has the form:
Py = Asx exp{—rci|:t|}, where

Ky = \/(2'm/h2) (e+ihT) , ko= \Rzm‘/hz)(e +hQ+iRT) , Ruy > 0. (4

Inserting the described solution into (3) gives the equation for € and I':

2 ‘ 2

(2 (e 4 inr) —w —iw. }{ &(e+hﬂ+zhl‘) W iW.} - () = 0.

m

| (5)
The equation (5) can be represented as an algebraic equation of the forth-degree
for (e + ihT). So its solution has a very complicated form. But this equation has
a simple solution for two important cases.

.a) W = W, =0, i. e. scattering takes place only in a rotating magnetic field.
As damping is lack in thls case, ' = 0. As ¢ > 0, we have the only equation in
this case:

€= \/ hQ/2) 'y {m(pr) /(2h2)} —hQ/2. (6)
'b) H = 0. In this case, £ W >0 (W >> W.), the following solution exists:
e=co= (mW?)/(28?) , ' =To= (mWW,)/(2h3) LY A0, 9o =0. (7)
EW >0, (mWw?) /(252) > K2, there is also the second solution:
e=e; =e0—hQ, T=To, P+ =0, »_#0. ' (8)
These two solutions correspond to two neutron polarizationslwhich are independ
if H =0. : :

4. Solution of the Scattering Problem

Now let us consider the scattering problem, i.c. the set of equations (3) with the
corresponding boundary condition and fixed E > 0. Let us introduce dimentionless
values:

u+zv—- W+zW \/ 2m Eh2 ~,qu\/ 2m Eh

w=(4Q)/E, z==2 (2mE) /. ©)
Now vvte _can rewrite (3) in the form;
o z/)+ =‘,,—:»d;¢2+ - 6(2){(u + iv)l/’+ + fl/)—} ,
(1 - w)pomm Tl s (e )9 + foi} - (10)



In our case v ~ 1, u > 0; v ~ 107, v > 0; w ~ 1. We consider f < 1 and
f~10" or f2 ~ 107",

Two different cases exist for (10): w > 1 and w < 1 (thay be w < 0).

a)w > 1,i.e. AQ.> E. In this case the neutron kinetic energy is so small, that
the neutron spin cannot flip by scattering. The solution of (10) is given by:

P (2) =" +(a~1)e",if2<0; =ae”,ifz>0;
$-(2) = Pexp{ Ve Tlal} BRNCE)
where :
2(u +iv —2vw —1)
'(22' +u +,iv) (u + v v—‘2\/c:;_—j) —
e T (12)
(2i+u+zv)(u+zv~2m) -

Let us introduce transition T} and reflection R, coeflicients for the scattering
without spin-flip. Let us also introduce transition 7_ and reflection R_ coeflicients
for the scattering thh spm-ﬁxp Asw > 1, then Ty = |af?, Ry = |la—1}%, T_ =
R_=0.

Let us also introduce the damping coefficient A=1-Ty —Ry=T-—-R_, 0<
A<1. Ifv=0 (ie. W.=0), then A =0. In our case, when w > 1, A is given

efpwe=es)
oo ) - P e

(in (13) we have neglected the terms ~ v?).
b) w < 1. In this case we should substitute the expression P_(2)

o =

(13)

Bexp{iv/1T —wlz|} for 1_(z) in (11). We also should replace the expression (12)

for a, # by the substitution: /w —1 — —iy/1 —w. The transition and reflection
coefficients are given by: Ry = |af?, Ty = [1—al?, R_ =T. =1~ w|fl*.

" 5. Analysis of the Solution 7

Now we will discuss the most interesting phenomena taking place in the de-
scribed scattering.

a) Let us neglect damping. Then it follows from (12) that when u = 2w
then @ =0, Ty =0, Ry =1, i.e. the total reflection of neutrons from the ﬁlm
occurs in this point. This situation can be realized if u > 0, i.e. if W > 0: the
film potential must be attractive. The total reflection condition may be rewritten
in the form: ’ :

hQ = E+ (mW?)/(28?) = E — (&) , - (14)

where —&g was introduced in (7); it is the value for the bound state energy in the
film without an external rotating magnetic field, o

- We can put forward the followmg 1nterpreta.t10n of the descnbed phenomena :
the resonant reflection takes place when the energy of one quantum of the rotating
magnetic field is equal to the difference of the neutron energy and the energy of
the bound state (see (14)). In this case the rotating field brings the neutron into
the bound state, and the neutron occupies this state for a rather long time: ‘The
resonance has to be- strongly pronounced when the magnetic field is'small (i.e.
when f is small) since in this case the localized neutron occuples the bound state
longer. : S
We. can advaice. the followmg a.rgument in favour of this mterpretatxon As
follows from (11), the square of the norm of ¥_(z) is equal to |8]?/v/w —1." This
value describes the probability of the bound state population. It follows froxn (12)
that usually (ifu ~ 1, w ~ 1): |B]> ~ f2. But when the total reflection condition is -
true, then |B]® ~ f~2, i.e. |8]? increases in the resonant region as f=* ~ 10? — 10*.

When u ~ 1, w ~-1, the resonant width éw ~ f2, i.e. 6Q/Q~ f%, 6E/E ~ f2.
If 6E/E ~ 107" in the neutron beam, the resonance is observable if f? ~ 107",

b) Now let us take into account the small damping v and consider the damping
coefficient A. As follows from (13), usually (when u ~ 1, w ~'1): A ~ v. But
when the total reflection condition is true, then A ~ vf=2, ie. A-increases in
the resonant region-as f~2. So the resonant reflection is followed by ‘the resonant
neutron damping in the film. The damping is connected with a long stay of
neutrons in a bound state, i.e. in the region of the film damping potential.

c) The presence of damping leads to a weak percolation of neutrons through .

the film even in the resonant point. As follows from (12), Ty = (v/ f2) in the
resonant point. If f2 ~ 107, then Ty ~ 1076, If f ~ 107!, then T} ~ 1074,

d) Now let us consider the following fact which looks lxke a paradox in the frame
of our interpretation of the resonant reflection. The condition (14) describes the
resonance between the neutron energy and the bound state energy in the film
without an external magnetic field. But the ‘magnetic field changes the value of
the bound state energy, as follows, for example, from (6). So the condition (14)
describes the exact resonance with the level, which does not really exist in the
system: the film in a magnetic field behaves as if it remembered what properties
it had without a magnetic field!

Comparing (6), (12).and (13), one can see the following: While the shift of the
bound level by a magnetic field is small, the resonant point is fixed, the resonant
width is small and the resonant damping is large. When the bound level shift by a
magnetic field becomes large, the resonant width becomes large and the resonant
damping becomes small, but the resonant point-remains fixed. The latter fact is
extraordinary unusual. It demonstra.tes new type of the resonant behaviour of the
quantum system.



¢) Now let us consider another interesting point. We neglect damping again.
It follows from (12), that if v = 0 and u (u -~ 2\/L:J_j) = fz,’then a=1 T, =
1, Ry = 0, i.e. the filmis absolutely transparent in this point. This total trans-
parency condition can be rewritten in the ,form: »
, mW? pHbBN 2 : o
hQ—;E+-—2{2—{1—(—v—V—> } , W > pHb. (15)
The points of total reflection and total’transparency are close. If oni? use dimen-
tionless units (9), the distance between these two points is ~ f2 (when u ~ 1, w~
b f) Tﬁe presence of damping leads to a weak reflection of neutrons from the film
even in the point (15). Asfollows from (12),’in this point Ry ~ vi(ul+ fA)/ I
§2 ~ 107!, then By ~ 1076, If f ~ 107", then Ry ~ 1074, ‘ o
g) Now let us consider scattering when E — +0. As follows from (9), (12), 1A1l1

the vicinity of this point:
| if/2]m(W +iW. — \/2h°Q/m) ”
2.
(W +iW.) (W +iW. = V2129 /m) — (nHb)
i.e. the film is opa(iﬁe when E — +0. ‘ ‘ . .
" If we neglect damping (i.e. put Wi = 0in (16)), the point exists where the:
denomination of Q iﬁs‘eq(lal to zero. It comes when:
' mW?2(_ - ,qu)Z}Z ,
= ——1-{ , W>uHb, 17
e 2h2‘{1(W EEEn
i.e: when the total transparency condition (15) is true for E = 0. In this case.the
film is transparent at the zero energy, or (if we take into account small damping)

up to very small energy. , . .
h) Now let us consider the vicinity of the point w = 1. In this region:

VQNQ‘\/‘—E‘, Q=

A L4yl 16ufi(u? ~ f2) _' -
T ~ 2__22.4.2+ " _22\/‘w l,w>1,
(u? = f2)* +4u [(uz—f)+4u] ,
) 2 2 £2 . .
T, =~ 4u — 32u’f \/lfw,w<1;

(W= PP 4 (2 — oy g g’

T B U G O M
RSO R T PR EUT E

’ IR i i R - i C it 0 — 1.
R, =~ (u? — 2 + 4u? [(uz—f2)2+4u2]2\/1 w,w<l;

L .4t I
R.=T-=0,w>1; R_=T_%m\/l—w,wj<vl. (18)

6

We have neglected damping in (18), so Ry +T4 + R. +T- = 1. Whenw < 1 (i.e.
when E > h{), a new scattering channel which corresponds to spin-flip scattering,
opens up. It is known [7] that in the standard stationary scattering theory the
opening of new scattering channels leads to a non-analytical behaviour of cross-
sections in old channels. This non-analytical behaviour takes place in the point
where these new scattering channels open up. It is connected with the fact that
the scattering matrix is unitary. . .

A scattering matrix for the general case of systems with the timé~p¢fi¢dic
Hamiltonian is constructed in [8]. It is shown there that the scattering matrix in
the time-periodic case is also unitary. Accordinglto this fact, the coefficients R,
and T, are non-analytical in the point w = 1, as one can see from (18).

So the non-analytical behaviour of cross-sections in old channels in-the point
of opening of new channels occurs both in time-periodic scattering and in time-
independent scattering.

6. Conclusion

We see that the exact solution of the problem for neutron scattering by a thin
film which contains a rotating magnetic field, has led us to the discovery of some
new phenomena. The most interesting of these phenomena are: the existence
of points of total reflection and of total transparency of the film; an anomalous
damping in the total reflection point; an unusual behaviour of the total reflection
point as a function of a bound state energy; a non-analytical behaviour of transition
and reflection coefficients in the point of opening of spin-flip scattering channels.

It seems that the exact solution of problems for neutron scattering by films

' - with finite thickness and compound films containing a rotating magnetic field

holds much promise. New qualitative effects may be found out by these solutions.

In addition, these solutions will make it possible to raise a problem of quantitative

calculation for real experiments.
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