


Ferromagnetlc suspensmns (or magnetxc ﬁu:ds) are complex colloldal systems
which are composed . of fine magnetic, particles uniformly dispersed throughout the
carrier liquid [1-3]. In order to prevent the aggregation of colloidal particles some
surface- acting agent is. used which forms the stabilizing coat on the particle surface.
The suspended magnetic particles are- almost ‘spherical in form and their sizes are
usually close the single-domain value which.is about '10...15 nm for the most of the
ferromagnetic materials, The magnetic moment - of a suspended particle is ‘about
10%...10° of Bohr magnetons. Typical magnetic fluid contains magnetite. Fe;Oy
particles. which are suspended in kerosene (or diaster) with oleic acid as.a surfac-
tant. The thickness of the surfactant layer on the particle surface is about 2:..4 nm.
Magnetic fluids can considerably vary in their properties according to the type-of.a
surfactant used and the thickness: of a‘layer it:forms-on.the particle surface; their
properties also depend on the particle sizes and the kind of ferromagnetic material
used to prepare them and so on. For the last time the stable magnetic suspensions
are prepared with the particle number concentration till N ~ 10'%1/cm?® These lig-
uids are successfully used in commeraal dev1ces such as computer dlSCS, sepa.rators '
- of minerals and others. : : » R A »

Most:of the properties of magnetlc suspensions: are: explamed in:terms of: the i
model of noninteracting Brownian particles, having ”frozen-in”" magnetic ‘moments -
(it means that the magnetic moment of the particle is rigidly connected with its body)
[1-3]. In this case, the dependence of the fluid magnetization on the applied magnetivc
field ‘H and temperature T is determined.by the Langevin function as follows

= N O Tc(s>~cth(o—‘— o an

where N is the partxcle number density,. go is the value of magnetzc moment of an
: md1v1dua.l particle. The Langevin function argument ¢ is a dimensionless parameter
which is equal to the ratio of magnetic and thermal energy of a particle: ¢ = ol 1kT.
~ But this model cannot’ explain the.properties of -the magnetic suspension: when
the interactions between: particles become considerble.  The'discrepancy . between
‘the Langevin behavior and:observed phenomena takes place not only in magnetic.
properties but also in optical and rheological ones {4-9]. The most important effect of
the particle interaction. is the aggregate formation [1-14].- The theory of a'magnetic
suspension’ with aggregate particles was-first considered by de Gennes and Pincus
(14] and then by other authors (see for example the review “articles [10, 11] and
also original papers [15-17]). The direct evidence of the existence of-the magnetic
particle aggregates in stable ferromagnetic fluids has recently been given by small
angle neutron scattering technique [17].

It follows from this treatment that in dilute suspension (i.e. at low particle den-
sity) in the absence of external magnetic field only small aggregates are present The




g rmmber'of particles in such an aggregate is less than10. But when the particle density

“increases the aggregate sizes grow as well. Thus, they can form fractal clusters, net-

" work structures, | ’domain’ and so on. Here, only small aggregates will be considered .
" as they usually exist in stable suspensions. :

When the aggregates are sufficiently small in size the suspension of aggregated par-
ticles also may be described by the model of noninteracting Brownian particles. But

in this case, the suspended ’particles’ have more complex structures which, moreover,
s p p .

can be changed under the action of externalfield and heating. It should be noted that

- " although'there are many publications devoted to the aggregated suspension studies,

most of them were performed without taking into account the exact aggregate forms
and ‘mutual alignments of the magnetic moments of the initial partlclcs inside the
-aggregate (in- the’ followmg, initial particles will be called, for convenience; embry-
ones). The main purpose of the present-paper is to study the magnetic and spatial

configurations of aggregates in magnetic fluids and to mvcstlgate thur mﬂucnce on
. . the magnetic properties of a suspension. :

In our consideration the initial suspended partlcles (ernbryons) are proposed to

be uniformly magnetized over their volumes.. But it is.clear that the aggregate of L
these ‘particles is. not uniformly magnetizéd.” In the state of minimum- of magnetic.
~ interaction energy.the embryons can form closed structures (aggregates) with zero:

magnetic moments in the zero field. The absence of the total magnetic moment of

given ensemble of magnetic dipole particles tells us that other (higher) magnetic mul-,
tipole moments have to be used for the description of the magnetic configuration of -
such aggregates. These moments are quadrupole, tor01d'1.1 and other ones [18-20}. It -
can be shown (see below) that the main multipole characteristic of the magnetic con- -
figurations with closed structures is toroidal moment, that has first been'introduced
into electrodynamics in the paper [18]. It follows that the measurement of toroid
polarization .of magnetic: fluid in- external magnetic field and toroid- susceptibility

together with the usual magnetic measurements can give more precise information

about the distribution of magnetic particles in magnetic fluid-and especially about -

the magnetic configurations of aggregates formed .

In the present paper, our consideration is restricted by the 1nodel of rigid aggre-

gates ,i.e., it is proposed that aggregates have fixed space configurations. This model

is discussed in detail in sect.” 2. :The algorithms of numerical. calculation: of mag-"" !
netic and space configurations of aggregates are described in sect. 3 where also some .~
results of computer simulations are given for rigid aggregates with particle number -
7 < 5. These results are used in the next sects. of the paper for counting new mag--
netic characteristic of a suspension - its toroid polarization - as a function of applied

‘magnetic field and temperature. In sect. 4, the treatment is given in the frame of the
‘model of " frosen-in” magnetic dipoles, and in sect. 5, the model of ”movable dipoles”
is.considered.In the, last sect. 6, the principal arrangement of an experimental de-

".vice for measurement of toroid susceptibility is proposed. These measurements are
important for practical applications as a new electromagnetic method for controllmrr
the quahty of magnetrc fluids. ' ' Lo

S 2 Model. of rlgld aggregates

Aggregatron of magnetrc partrcles changes essentxally the magnetlc propertxes of a :
suspension. " Let the number density. of embryons N be some fixed. quantity..- It

Afollows from Eq (1 1) that i in the limit of low applied magnetlc field H the magnetlc ‘

ey

polarization of the suspensron Mis equa.l to I " _
M= xofl;  xo=gN/T, f (2'15 -

where the jnitial magnetic susceptibility of the suspension X is mtroduced We con- :

sider a sunple éxample of the susceptibility va.natlon dué to the aggregation process ST
* Let'us suppose that all embryons in the suspensmn come to'the aggregated state and

that all aggregates are composed only of three embryons In this case, the eﬁ'ectwe( ‘

" number particle density decreases three tlmes N —+N/3. But the magnetic moment‘
" of an ‘aggregate ‘depends on its sort. When the cause of the aggregate formation 1s>’

magnetic forces, it has the hnear (cham) form and the value of 1ts maghetic moment' 7
His equal to 3,u0, i.e., it increases three times as compared wrth one embryon In thrs_f

case, in accordance w1th Eq. (2 1) the 1n1t1al susceptlbrhty would be equal to. o T

x = Buo(Y )/3kT ,uoN/LT o (22):

’ It follows from this equatron that x is increased three tlmes as regards to the suscep-
. t1b111ty of unaggregated particle suspension, (embryomc suspensmn) ,But when the

cause of the aggregate formation is nonmagnetic forces, the aggregate has the form
of; equilateral triangular (when it'is supposed that all embryons are identical) and

" its summarized magnetic moment would be equal.to zero. As a result the magnetic.
- susceptibility of a‘suspension would also be equal to zero. But.in this:case the'ag-. -

gregate has toroidal moment (see below Fig.1 and Tab. ) and it. may be polarized-

"~ by the vortex magnetic field and the suspension as a whole may be descrlbed by new

observable quantities - toroid polarization and toroid susceptlblllty

- The choice of a model of the aggregate depends on the kind of forces predorm—
nating.in the interaction between the particles. The average energy of an embryon
inside the aggregate may be estimated as a sum of four items: the nonmagnetic and*
magnetlc energy of interparticle interactions the values of wh1ch are denoted as U and
U,..; respectively; the energy of embryon s magnetic dipole in apphed magnetic field
which is puoH and the energy of thermal agrtatlon kT, Here only the model of an
aggregate with fixed form is consrdered ie,itis suppOSed that mutual arrangement'

. of the embryons inside a given aggregate is fixed (the model of r1g1d aggregates) This

model is correct when the energy of nonmagnetic attract:ve mteractlon per partlcle"
U is much larger than the other 1tems of the partlcle energy ‘ i

> Um, : g > kT; . 7 >> ,uoH @3

If at the same trme the energy U, is much larger than the other two 1tems :

TS - TwspeH, 0 24




. the mutual alignments of magnetic moments of the embryons can also be considered
as fixed ones, ie., magnetlc moments of embryons are ”frozen -in” into the aggregate
body :

‘We also consxder the model 'of an aggregate of fixed form but w:th a movable

magnetic moments of partlcles (the model of movable dlpoles), ie.,itis supposed here
that magnetic dipoles can move under the action of the applied magnetic field. In"

this case, inequalities (2.3) take place as in the previous case but the inequalities (2.4)
= (or one of them) have to be changed by approxunate equahtles U > kT, U, ~
. pto. H. . . . o

Let us shortly dxscuss other poss:ble models of aggregates i mstead of Eqns .

(2 3),. (2 4), one supposes that. Uy, ~ poH, U ~. ‘U, but at the same time U > kT,
“the thermal. agltatlon would not dlsmtegrate the aggregates “but thelr forms eould‘:
change under the action of the applied magnetic ﬁeld In such a strong magnetic, field
the compact’ aggregate transforms into the stretched one, i.e., only chain aggregatesv,;‘

*“ would exist in the suspension. The propertles of the suspenslon ‘with these kind of’
aggregates were studled in detail by other authors [1-11] and therefore we do not”

consider them here. In addltlon, the unclosed chaln aggregates do not show toroid

"moments and they are outside our interests from this point of view too. If mequaht1es ’

(2.3) were changed by the opposite ones the thermal agitation would be sufficiently :

v »1ntenswe to disintegrate the aggregates and we would’ return to the well- Lnown case
_of an unaggregated suspension. ‘
»Now we consider in detail the interaction of the aggregate with nonuniform’ mag— :

netic field and introduce multipole moments which describe its magnetlc conﬁgura— S

tion. Let n be a number of embryons in a given aggregate, i, and 7, be the magnetld
~ moment and the’ position vector of the embryon having number a:~(a =1;- n) It
" is supposed that all moments 3, have equal ‘arid fixed length, i.e., |fMa] = fo:+ The
origin of the coordinate system is chosen in the geometrle center of the aggregate S0
: that the connectlon between Ty takes place : ’

Lo

magnetlc field is equa.l to. ¢

Tn practlce ‘the length sca.le of the ﬁeld space varlatlon L is much larger than
the size of the’ aggregate ) consrdered here. In this case the function H(F') may be
expanded mto the power series over the center of the aggregate. After th’mt the energy
(2.6) can be written in the form :

U—'_(/‘H)_(TG)"'Q;LF:k» (‘) 7)

where the multipole moments of the aggregate magnetic 7, toroid 7 and quadrupol(. ;

Qix are introduced .

- ) R - 1 s . . B - Litr . R
b=, My T = ‘2' Z[rama] th ==z Z(Iatmuk'l'zukmat)*— Z(Tama)&k, (2 8)

Zru = 0 T o (2 5) o

The energy of the aggregate of magnetlc partleles in the nonumform apphed,‘

Z(mnH(rn)) R (26)_;,', o

S

In Eq.(2. 7) the qu'tntxtxes H G 'md F,k are respectwely “the umform part of the-

© field, which is cqual to H = H(7)l7=0, the vortex of the field G =[rotH(")s20 'md«

symmetrrcal tensor of the field gradient Fy = [V,Hk + 71Hi]i=o. -The Maxwell
equation dw(H) = 0 was taken into account when deriving - Eq. (2 7). As it will' be
shown below, most of the aggregates have a comparatively small value of quadrupole—' :
moments (see Tab. ), and therefore, the quadrupole term in" Eq. " (2.7) will not

" be considered below ." Besides that, the magnetic field: mduced by the quadrupole

moment goes to zero as 1/r%; thus, in contrast to the cases of the magnetic and '

toroidal moments, for macroscopic sample of size L this, ﬁeld decreases as l/L and it

is much smaller than the fields of the other two moments. fot
-As it can' be seen from e*{pressxon (2. 7), the aggregate of mﬂgnetxe partxcles may

interact not only with the uniform magnetic field H but also with the vortex field. Tt

follows that the connectlon between the total multlpole rnoments of - the suspension
- magnetic and. toroid ones, denoted ‘by symbols 7\1— 'md T, respectlvelv, and the
applled ﬁelds H and G in the llne'xr apprO\lmatlon L'lll 'be wrltten in the form )

M; —x TH, +xNTGy; ¥T~\,“’HA+,\,LGA, (’9)

where the magnetxc ™ f and toroxdal x7 susceptlblhtles and also the cross susceph-
bilities x“T and ™™ are introduced. All these quantltles in general are the functions -
of temperature the number of embryons and the foxm of aggxctrates Our problem‘

tis to ﬁnd these functlons

3. Numencal snnulatlon of aggreg'\te conﬁguratlon :

To find the magnetlc and toroid susceptibilities of an aggregated suspenswu, one
has to know the space form and-magnetic ‘configuration’ of aggregates. If the con-
ditions (2.3) take place, the main cause of the aggregate formation is nonmagnetic
forces. The potential energy of these forces can be modelled by the Lennard-Jones .

mterpartlcle potentlal [1‘7] as they do in- molecul'u dyn'umc methods [‘73]

B (L S R 5)

fwhc.re Vo and o are the parameters determlmng the deptll of the potentlal (3 1), its
* minimum and its position. The known methods of the molecular dynaniie, (23] was

‘used to find possible space conﬁgur'xtlons of the aggregates whicli are shown on Fig.1

for the case when the number of embryons is equal or less than 5 The bmdmg ener g\

of the embryons E is given in-Tab.. in units of V. SRS - S
“Magnetic parameters of a ggregatcs of a given form were found by usmg the l\nowu ‘

’ methods of micromagnetizm [24] which were modified for our case.” The energy of
‘ magnetxe mterpartlele d:pole dxpole interaction can be wrltten in the form

me xk(rab)rnbk - Z’nm l ‘ X ’ ‘ . N (32) . ‘

a<b

where the notatron is mtrodueed

ik(i") = (1?6 — 3zizy)[r% D7) = Hi + emGrrry o (33)
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.- Table . Magnetic parameters of aggregates showing'on = Fig.1"
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The minimum of this. energy which is considered as a function of the magnetivcr L
moments {ri,} gives the magnetic conﬁguratron of the aggregate. After that the
magnetic parameters of aggregates can be found by Eq. (2.8). The procedure of -

finding the energy minimum is reduced to sqlvmg the Landau&foshitkz equation L

: Tﬁ [ma[m,,;? ]], .

where the parameter /\ is some eﬁ‘ectwe frxctxon coefﬁcxent The 1mt1al magnetm state =

[(which is described by the set of: vectors ma(O) at the moment t = 0) was found by
the dlagonahzatxon of some matrix (this, procedure is given in our work’ (25)).

Some results of these computations are given in‘Tab... The value of the magnetxc L
moment pq of an embryon was taken as’ ;2 unit for the magnetic moment of the -

,aggregate ¢, and the toroidal T and the: quadrupole Q moments are given in Tab.

in ‘units of pgrg.- The quadrupole tenzor in the prmc1pal coordmate system was‘

Gt

(3 o)

;‘f‘\ -

Fig. -1.The possible forms of non- magnetzc aggregates wzth numbers of particles
n <5, Aggregates (for gzven n_) are numbered by symbols n—ain order ofthe;r bondzng,,
energy decreasmg ‘ ‘ : ‘
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Fig. 2. Magnetzc M and toroidal T moments of aggregate suspension (far model af>

"frozen” aggregates ) versus non-dimensional applied ﬁeldsf and( The process of
.. particles coagulation is taken into account. The curves 1,2,3 arc.given for the val-
. ues of time tfty equal to 0.1, 1 and 5 respectzvely (here tois a Smoluchavsku time

of half coagulated suspenszon) The dependences of initial magnetic x) and toroidal
xT susceptibilities on time t/to are shown on the left. hand of the ﬁgures (a) and (b).
On the same figures saturated magnetic (M,(t) = limM(€,t),6 — oo) and toroidal
(T, (ty = imT((,t),¢ — co) moments are shown versus tfto. It can be seen from the
figures that the magnetic parametres (XM, M,) decrease and toroidal ones (XmT) in-

_crease in the course of time.



presented in the form ,

e o iyg o o o
Qik = Q 1: -0 -—1-— n 0 P i (3.5)
: 0 0 2

o Qua"druo‘ole moment Q and asymmetry p_arameter":i; are given.in “Tab. The angle
a (in degrees) between the vectors [ and 7 is also given in the table. e

Al

4. Polarlzatlon of s suspensmn in apphed magnetlc ﬁeld
Model of ”frozen-ln” dlpoles

" The aggregates suspended in magnetlc ﬂuld are in the Browman rnotlon and
therefore the observable quantities have to be calculated by averagmg thelr rmcro-,

.- scopic analogs with respect to the thermal fluctuation. In the case of rigid aggregatcs
* with frozen-in magnetic dipoles, only the rotational Brownian motion is nnportant
Since the aggregate rotates as a whole and its magnetic conﬁguratlon does not change
under the action of the magnetlc field, the internal energy of the aggregate ‘may be
considered as a constant’ quantlty and it does not contribute to the dlstrlbutlon func-
tion over the orientation angles, of the aggregate Therefore, th1s function - has the

, followmg form e , :

(9) Cea:p[(ef)—l— ng)] (4 1)

where Eq (2. 7) was used for the energy in'the exponent (quadrupole term is omrmtcdv y

here) and the followmg notation for the dnnenswnless fields is introduced

£= uH/kT

In Eq (4. 1) symbols €and 7 denote unit vectors wh1ch are parallel to the l\nownb;l
* magnetic and toroid moments of the aggregate, respectlvely The constant C' is .

determmed by the normallzatlon condition "~

o

Here, the’ symbol Q denotes the set of the Euler:an ‘angles’ 9, and W ‘The vectors

of the’ apphed fields G and H are fixed i in the laboratory frame of' reference and :
the vectors' € and’ i are ﬁxed in the intrinsic' frame of the’ aggregate Thus, the
components of the’ umt vectors 7 and & dépend’‘on ‘the Eulerian angles detcrrnmmg'

the orlentatlon “of one frame of reference relat1ve to the other.”

The mean values of the dens1t1es of the magnetic’ and’ toroid 'moments of suspen-

s1on are found by usmg the dxstrlbutxon funct:on 1n tlle fol]owmg way

M= N<,u> ,uN/é‘W(Q)dQ

.’~ -rG/LT v (@2

/W(Q)dQ:l.l N (4§3),

FeN<r>e rN/nW(Q)dQ (44

In the case of low ficld (or what'is the same - in the casc of high temperatures), vhen
the conditions ¢ € 1, ¢ <« 1 take p]acc the distribution function is equal to

W(Q) 8,(1+(eo+<n<)) )

Taking mto account the valucs of the mtcgrals

/EdQ:/ﬁ‘dQ:O;

— /e exd() = —_~/n npd€) = 55,,, o )
it can be found from Eqs (4.4) and (4.5) that o

1 1
——_-ﬁ/c,nkdﬂ = E(é’ﬁ)&h

e 1 - - | ) ‘ o -
= g (Er iy 7= SN+ (@), (4.7)

’ L}
Comparmg these expressions w1th Eq (2. §) the susccptlbrlltlcs of the s suspension can

be found (thc definition of tlle ﬁclds C and { llas to be used for this transfornntxon) T

' M H IV ; 21\’ -' s o \ : . .
M= T MT M T o
Xie S gEom Nae = grptei =i = 3I.T(e") (4.8) .

Note that in this approum'\tlou the cross susceptibilities are equal to zero when the
rn'lgnetlc and toroid moments of the aggregate are perpendicular to each other.

‘In the general case, when the fields # and G arc not low and have any mutual
orlcntatxons the integrals in Eq.(4. 4) may be expressed through the so - called gen-
eralized Bcssel functions [26]. 'We do not give lLere the correspondmg cumbersome

- general e*(press1ons and restrict ourselves to some particular cases. When the ficlds

H and G are the parallcl ones, the distribution fumtxon (4 1) lms thc f01 m :

’V(Q) =,m81’1)(5'u£u), PR C X

-where the vectors & and &o are introduced

Lo v o flecwc|

€ = m o = 3 (4.10)

© After s:mplc caleulations (¢f. [27]) thc magnct:c and toroid mowents of the suspension

can be found in the form

]\[*/JN(EEO)L({O)hO, —'r]\(ucu)/.',({o /lo, . N (4.11).

: where £(E) is the Langevm functlon wlnch is given by E(l (1 1) ho i is a unit \'octo'r o
.- along the field fo »

. The case, when the magnctl( and toroidal moments of the aggregate are parallel: -
i w " o
to ea(_ll other (77 = ¢€), is also rather sunplc “The magnetic and toroidal moments of



the suspension have the same form as in Eq (4.11), where yet one has to substitute
that B ‘ T

Gmizd  Gmf4l (@1
The case when one of the fields Eor C is low is also relatively simple.

All formulas derived in the previous calculations take into account only one sort
of aggregatés. Indeed, in the suspension there are ‘many kinds of aggregates with
different number of embryons The distribution function of the number of embryons
‘in aggregate varies in time (i.e., the suspension turns ‘older). It was shown in sect.
3 that there are several ethbrmm forms of aggregates with a given number of
_embryons which differ from each other in the bonding energy and in the magnetic

~ parametrs (see Fig.1 and Tab. ). Let E,, be the bonding energy of an aggregate of
a—th sort, having n embryons and fina and T, be its magnetic and toroidal moments.
It follows from the previous treatment that the contribution of aggregates of this sort *
in the magnetization and toroxd moment of the suspension is equal to

Mﬂa = ﬂam(EﬂﬂJ Cﬂﬂ) ana)u Tna = Nnat(EmHCnav ana)7 (4 13)

where N,.,, is the number of aggregates of a glven smt per unit. volume, ay, is an
angle between the vectors €,, and #i,,. To find average values over the aggregates of
different sorts a but with a glven part1cle number n the dxstrlbutlon function can be

used N, _E
R No exp{— ,,,,ﬂ}

- ‘ o = ——————E P E',.aﬂ} (4 14)

where N, is the partlcle number densxty of the aggregates w1th a given n, ﬂ is the o

quantity reciprocal to kT . o

The value N, depends on t1me To find this dependence the Smoluchovski model
~can be used. This model assumes that the Jaggregation process is similar to the,
polymerlzatlon chemical reaction X, + X, = A,,H with some glven time parameter
to (this quantity has the meaning of a time interval when half of the particles have
vcoagulated) The dependence of N on time has the form

(t/to)"_

No(t) = Nom-;y

(415)

where Ny is the initial density of unaggregated embryons Puttlng (4.14),(4.15) into

(4.13) the moments M(t) and T(t) can be avaluated in accounting for distribution

of aggregates over thelr forms and sizes
M(t) = Z M,m;"
na

These calculations were made numerically taking into consideration all aggregates
given in the Tab. ° Figure 2 shows the magnetization of the suspens1on and its
toroid moment versus the fields E and ( respectively for different tlme moments. It
is clear from Fig. .2 that the saturation magnetization decreases"in” tlme and the

saturated toroid moment increases. Since in the initial stage mainly two-particle ag-

gregates are formed in the suspension, the susceptibility curve x3 has the hump.

10

f‘(t):ZT‘M. - ;i"’(4.16)"j
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5. Model of movable dipoles . 1'. .

In the previous section, we have considered the model when the magnetic moments
of embryons are frozen-in into the aggregate body. In this case, the influence of the
applied fields onthe Brownian rotational diffusion of aggregates is ‘maximal. The
other limiting case takes place when the magnetic moments of embryons are not -
connected with each other and may. be independently oriented by the applied fields
(the limit of superparamagnetic aggregates). In this case, the magnetic field does not
influence the rotational Brownian diffusion at all and it is impossible to investigate the
aggregative structure of suspension'by means of the magnetic measurements. This
latter case is not 1nterest1ng for us because it is equlvalent to the case of 1ndependent
particles. : S .

Here, we consider the 1mmed1ate case when the magnetxc moments of embryons
can move under the actlon of the.applied field and at the same time 1nterract with
each other. To find the average 'values of moments one has to use the distribution -
function of the form . ‘ : S .

dW(ml, ,rﬁn,Q) Cerp{ U(ml, ,m,.,Q)}dml dmndQ (5 1)_‘

where -—U(ml, mﬂ,Q) is the magnetic interaction energy of the embryons with
each-other and with external fields.” Integrating over the vectors i, one has to

. take into account that these vectors have the fixed length. The utilization of such a

complicated distribution function is rather difficult for analytical culculations and for
numerical computations and therefore some approximate methods have to be used. -
*When the intrinsic fields on'the magnetic moments of embryons are much larger
than the applied fields, the alterations of the moments are rather small and they
can be taken into account with the aid of magnetic and toroid polarizabilities of the
aggregate in consideration. These quantities are 1ntroduced in accordance w1th the
equatlons : - s S - ‘ AT
=2+ kT H, + £V Gy =10+ n,k Hk + n,kG’k, S (5. 2) o
where /.l‘ and 7 are “the values of p; and 7; in the case “of absence of the apphed
fields and polarlzablllty tensors &g depend on the aggregate space conﬁguratlon
The principal axes of these tensors are rigidly attached to the aggregate body. In
this case the energy of the aggregate in the external field U '-—(pH ) - ('rG’) with
the use of Eq.(5.2) can be written in the form ‘
U ='-—-(ﬁ0H) — (‘I-"OG) - K;kH,'Hk -- K,-kGéGk —_ K.LH.G,‘, ' : K,k = n,k + Kk?. (5 3)
Note that the traces of tensors, which are in front of the combmatxons H;Hy, GG,
and H;Gy, can be omitted in this expression as they do’ not depend on the orientation

angles of the aggregate. ,
In the case of low fields, the distribution functlon can be wrltten in the form-

W(Q) = C(1 — U/kT). Putting into this expresslon the’ energy from Eq (5.3) ; and x
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integrating over the onentatlon angles, one can firid the mean values of magnetic and
ormd moments of the suspension

. o L AL
M _—T{[uo + "ctk(5"ctkH2 + ( Ky + Tdn‘k)(HG)]H_*.
. L ) .
+[(#oro)+ TR ,k(mk+2n MHGY

T = —

: N 6 T" o
T” 3—7{[(}‘07’0)4'( n,kn',‘ H2+( f»f,:“f»:’,: T iknik)(ﬂG)]H.;.

i+ g KRR — A EG). (5.4)

‘It was assumed in these calculatlons that the tensors «7i" and xJ* ‘are symmetrical.
: Moreover, for the simplicity it was assumed that the vectors H and G are parallel to
each other and we restrict ourselves only to the first oder of smallness w1th respcct

to the field G.

. The most important qualitative result which follows from these formulae is non- -~ ’

¢ linear (quadratic) dependence of magnetization M on the magnetic field for the low
fields (the initial susceptlblhty has linear dependence on the field when x° = 0). It
is just the ‘dependence which is observed experimentally for the aggregated. suspen-
~sions [1-4].- Certainly, to answer the question which cause of this effect is the most”
: 1mportant the spread of particle sizes or the aggregate polarization considered here

- = the additional measurements of toroid susceptibility are needed. 1t is obvious that
~unaggregated particles, which are umformly magnetized, do not contribute to this
quantity. -

‘When the apphed ﬁelds are not low the ma.gnetlc and toroid moments can be -

calculated with the help of the distribution function,(5.1). But in this case the mul-
tidimentional integrals have to be calculated which produce considerable difficulties.
Instead of that; the followmg appoximate method can be used. We suppose that the.
aggregate is at rest and the fields H and G rotate randomly over it. The values of
the fields and the angles of their mutual orientation are the given quantities. In this
case, the distribution function will depend on the Eulerian’ angles determining the
_orientation of the frame of reference connected with the vectors H and G relatively
to the aggregate. The numerical procedure can be used to find the orientation of
- 'magnetic moments of the embryons for given field orientations. For any § one can
calculate the values Un(Q, H, G), (9, H, G) and 7($2, H,G) This procedure is de-
.. scribed in the sec. 3. After that, the averaging with respect to Q can be perforrned
w:th the help of a distribution function of the form .

Law@)=cC exp{~Un( H, @)/ KT} dQ. ‘ (5.5)

.The numerical calculation of this kind was made for the aggregate which con-
sists of four particles ih a square shape. Figure'3 shows the average magnetic-and :
toroid moments versus the fields ¢ and ¢ for different temperatures. The same fig-
" ure shows the analogous curves for the rigid aggregate with frozen-in moments and
'_superparamagnetlc a.grregate
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tional to the initial susceptibilities xp

The ta.ngent of the inclination angle of the curves on thelt mmal interval is propor—
M and xT. The value x}! is not dependent on the
temperature (at the same tlmc for the unaggregated suspension it was xd ~ 1/kT)
and toroid susceptibility x4 is reciprocal to the temperature. A behaviour of -that
type follows from the "antiferromagnetic” structure of square aggregates, as it has
been proposed in works. [4- 5] We will consider this dependence elsewhere.

7.__

]
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Flg 3 Magnetzc M and tmozdnl ’I moment.s of Ihe .suspenszon offour-purtzcles aggre-
‘gates (square in form ones) (model of moving dzpoles) against non- dzmenswnal fields
¢ and ( for different values of undzmenszonal temperature' B, = VO/LI’ (it is equal to
0.1,.0.5, 1 and 5 for the curves 1,2, 3 and 4 on the fig.(a) and to 0.1; 4 for. the curves ‘
1,.2 on:the fig.(b)).. The Langevm functzon is also shown: on-the fgmes (the curves 5
(on the f'g a) and 9 (fig.b)). for comparison. This funciion describes the limat: cases of ,

: super-pammagnehc aggregates (fg a) and r1gld aggugntes (on lhe fg b)

6 Measurement of tor01d susceptlblllty of a suspenslon

In thls part we dlSCUSS shortly the pr1nc1ple scheme of dcvxcc for umasurunents'

" of ‘toroid susceptlblhty as the last, one is rather new ‘physical quantity. . Note first,

that” for mez\surmg of magnetic. susu,ptxb)hty th(, m.\gmtlmtmn of a sample “has to
be varied i m "time (this variation can’ be ploduud for example, by the. nd(htxoual
"measuring” alternative maguetic field,- rotation o' vibration of the sample .md S0
on) In this case the'EMF is induced in the 1((01\ er coil.

Th(, mca.surement of toroxd susccphblhts mn bc (lone bv the smulm w.n Thc
static toroid moment 7 does not induce around itself neither clectrical, nor wagnetic

13



. ﬁeld but only the field of vector potentlal

i= 3r (‘rf') = 7r?

3

‘Let us suppose that moment 7 is varied in time (i.e.7 = 7(t)). Consequently, the

alternative field of vector-potential A(t) aroses around sample. This field, in its turn,

leads to the appearance of electrical field E = —A/c. Taking into account Eq. (6.1),

--one can’ derive that : :
‘ E~_ 37"'(T1)-—Tr

crs.

As can be seen from this expression, the osc1llat1ng toroid moment 7 creates e‘(actly; ;
the same electrical field as electrical dipole § = —7/c. Assumlng that the magnetic.

fluid is placed between the parallel plates of an electrical capacitor and summarizing

‘ the fields which are created by all toroid moments in'the volume of tle fluid, 1t 1s_

easy to ﬁnd the potentxal difference A<,a at the capacitor :

Ae an |Tldfe, 7 (6.3)

where T is toroid moment per, unit. volume of the fluid (toroidness), d is the dist’anyce\ '
between the capacxtor plates The observable value Acp can_ be exprcssed through‘

the susceptibilities x7 and XTM iniusing the Eq. (2. 9).

““As shown in: * Fig 4:a and 4.b, the toroid induction coil (for the measurement
of x7) and the cylindrical coil (for measurement of x™) can be used for agltatlon of
the oscillation of toroid polarization. Note that these devices are fully reversible, i.c.
if alternating current-is passed through the capacitor, than EMF will be induced in'

- the coil (in-this case the EMF will be proport10nal to x “in tor01dal coil and EMF

will be proportional to X7 in cylindrical one)

+ Toroid susceptibility of magnetic fluid may be_ also found from its contribution to

the effective electrical permltt1v1ty of a suspension. - Let. us suppose that the alternat-
ing potential difference Ap ~ et s applied to the capacitor plates (Fig. 4. c). In this
case the dlsplacement currents induce the vortex field on the sample. The value of the
vorticity G is equal to G = rotH = —zweoEo/c (here E, is an electrical field inside the
capacitor when the sample is absent £o — is the electrical permittivity of the magnetic
fluid, if the toroxd polarization of the fluid i is not taken into account) In accordance
with the Eq (2. 9) the toroxd polarlzatlon of a suspensmn T = XTG —‘—zweoxTEo/c

. aroses under the’ actlon of the vortex ‘feld.” As it was shown above the value ——T/c o

is equxva.lent to the electrical polarlzatxon P= —T/c =w zr:oxTEo/c2 Puttlng thls_;
expression mto the formula D = e-:oEo + 4rP we canwrite the flux densxty in. thet

form D = z-:Eo, where the effectlve permltt1v1ty is 1ntroduced

e-—eo(l + 4w xT/cz) : (64)

It follows from this expression that the effectlve permltt1v1ty € depends on the fre-
quency w, i. e, the dlspertlon of the permlttlwty takes place It has to be taken into

14

6.1)

| '(6.‘2;) ‘

-

account that the value xT 1tself depends on the frequency In the 51mplest approxx- .
matlon it may ‘be proposed that 1t is equal to x Xo /(1 - szp), where relaxatlon:

“time 7, is introduced.

“In deriving Eq (6.4) the pha.se dlfference between the current in the capacxtor and,’ o
the potential difference on its plates was not taken into account. :Let ‘us wrxte the

1nteract10n energy of magnetlc ﬂuld with the vortex ﬁeld in the form :

U= —(TG)V = -—XTE2 /c JE - (6.5)

g ‘Fxg 4 The cyhnder—shaped sampIe wzth magnetzc ﬁuzd 1 is mserted ezther into the

- toroidal induction -coil (ﬁg a) or mto cylindrical coil (fig. b) to take measurements of

| toroid susceptibilities xT-and xTM ! respectively. . When an, alternatmg current is passed -

- through the coil the magnetic field is produced. on the sample (ezther the vortez one

~“(fig.a) or uniform-one.(fig.b)).- As a result the oscillation of toroid polanzatwn takes ™
* place and the potentzal difference arises across the capacztor 3. Tomzd contnbutzon to,

" 'this voltage can be determined fromithe Eq. (6.3). .The capacztor ﬁlled by aggregated '

magnetic ﬁuzd and it’s equwalent eIectncaI czrcuzt are shown on the ﬁg c and fig. d,-

:irespectively. -

.. 16



V where V is: the volume of the ﬂurd between the capacxtor plates (Fxg 4. c) The

electrical fleld E in the plane capacitor with the capacitance C is connected to the .

charge g on the capacitor plates by the equation E.= - ¢/Cd. As the current in the

: electncal circuit fis equal to J.=¢ and the capacrtance is grven by the expressron

= 6.5'/47rd Eq..(6.5) may. be wntten in the form . PR
V U==-Lepf2ds - In= 8ry /eC . (6.6)

where the effectlve capacity inductance Lris 1ntroduced The orrgrn of this quantrt)i
is the consequance of the toroid susceptrbrhty ex1stence The equivalent electrica
circuit of such a "capacitor” is shown on. Frg 4 c. It reﬁects the mamfestatron

of magnetlc propertles of a suspens;on e .

& -
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