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Ferromagnetic ,suspensions (or magnetic fluids) are complex colloidal systems 
which are composed of fine magnetic particles uniformly dispersed throughout:the 
carrier liquid [1-3]. In order to prevent the aggregation of colloidal particles some 
surface-acting agent is used which forms.the stabilizing coat on the particle surface. 
The suspe~ded magnetic. particles are almost spherical in form and their sizes are 
usually close the single-domain value which-is about 10 ... 15 Iim for the most of the 
ferromagnetic materials, The magnetic moment of a suspended particle is · about 
lo4 : •• 105 of ·Bohr magnetons. Typical magnetic fluid contains magnetite Fe30 4 

particles which are suspended in kerosene ( or diaster) with oleic ·acid as a surfac­
tant. The thickness of the surfactant layer on the particle surface is -about 2; . .4 nm. 
Magnetic fluids can considerably vary in their properties according to the type of.a 
surfactant used and the thickness of a layer it-forms on the particle surface; ·their 
properties also depend on the particle _sizes and the kind of ferromagnetic material 
used to prepare them and so on. For the last time :the stable magnetic suspensions 
are prepared with the particle number concentration till N ~ 10181/cm3.These liq­
uids are successfully used in commercial devices such as computer discs, separators 
of minerals and others. 

Most of the properties of magnetic •suspensions. are ·explained· in.· terms of the 
model of noninteracting Brownian particles, having "frozen-in" magnetic ·moments 
(it means that the magnetic moment of the particle is rigidly connected with its body) 
[1-3]. In this case, the dependence of the fluid magnetization on the applied magnetic 
field H and temperature T is determined, by the Langevin function as follows 

ii 
M = µoN .C(l) H; 

1 
.C(O = cth(O- -, e (1.1) 

where N is the particle number density, µ0 is the value ,of magnetic moment of an 
individual particle. The Langevin function argument l is a dimensionless parameter 
which is equal to the ratio of magnetic and thermal energy of a particle: f = µ0 H / kT; 
But this model . cannot explain the properties of the .magnetic suspension when 
the interactions .between particles become considerble. The discrepancy between 
the Langevin behavior and- observed phenomena takes place not only in magnetic 
properties butalso in optical and rheological ones [4-9]. The most important effect of 
the particle interaction is the aggregate formation [1-14]. The theory of a magnetic 
suspension with aggregate particles was· first considered by de Gennes · and Pincus 
[14] and then by other authors (see for example the review articles [10, 11] and 
also original papers [15-17]). The direct evidence of the existence of the magnetic 
particle aggregates in stable ferromagnetic fluids has recently been given by small 
ar>e;le neutron scattering technique [17]. 

· It follows from this treatment that in dilute suspension (i.e. at low particle den­
sity) in the absence of external magnetic field only small aggregates are present. The 
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• 
number of particles in such an aggregate is less than 10. But when the particle density 
increases the aggregate sizes grow as well. Thus, they can form fractal clusters, net­
work structures, 'domain' and so on. Here, only small aggregates will be considered 
as they usually exist in stable suspensions. 

When the aggregates are sufficiently small in size the suspension of aggregated par­
ticles also may be described by the _model of noninteracting Br.ownian particles. But 
in this case, the suspended 'particles' have more complex structures which, moreover, 
can be changed under the action of externalfield and heating. It should be noted ·that 
although there are many publications devoted to the' aggregated suspension studies, 
most of them were performed without taking into account.the exact aggregate forms 
and mutual alignments of the magnetic moments of the initial particles. inside the 

. aggregate (in the following, initial particles will be called, for convenience; embry­
ones ). The main purpose· of the present paper is to study the. magnetic and spatial 
configurations of aggregates in magnetic fluids and to investigate their influence on. 
the magnetic properties of a suspension. 

In our consideration the initial suspended particles ( embryons) are proposed to 
be uniformly magnetized over their volumes .. But it is clear that the aggregate of 
these particles is not uniformly magnetized. In the state of minimum of ~agnetic 
interaction energy the embryons can form closed structures (aggregates) with zero 
magnetfc moments iri the zero field. The absence of the total magnetic moment of 
given ensemble of magnetic dipole particles tells us that other (higher) magnetic mul­
tipole moments have to be used for the description of .the magnetic configuration of 
such aggregates. These moments are quadrupole, toroid.al and other ones [18-20]. It 
can be shown (see below) that the main multipole characteristic of the magnetic con­
figurations with closed structures is toroidal moment that has first been introduced 
into electrodynamics in the paper [18]. It follows that the measurement of toroid 
polarization of magnetic fluid in external magnetic field and toroid susceptibility 
together with the usual magnetic measurements can give more precise information 
about the distribution of magnetic particles in magnetic fluid and especially about 
the magnetic configurations of aggregates formed . 

In the present paper, our consid.eration is restricted by the model ofrigid aggre­
gates ,i.e., it is proposed that aggregates have fixed space configurations. This model 
is discussed in detail in sect. 2: The algorithms of numerical. calculation of mag-' 
netic and space configurations of aggregates are described in sect. 3 where also some 
results of computer simulations are given for rigid aggregates with particle number 
n :S 5. These results are used.in the next sects. of the paper for counting new mag­
netic characteristic of a suspension - its toroid polarization - as a function of applied 
magnetic field and temperature. In sect. 4, the treatment is given in the frame of the 
model of "frosen-in" magnetic dipoles, and in sect. 5; the model of c"movable dipoles" 
is considered.In the, last sect. 6, the principal arrangement of an experimental de­
vice for measurement of toroid susceptibility is proposed. 'rhese measurements arc 
important for practical applications as a new electromagnetic method for controlling 
the quality of magnetic fluids . 
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2. Model of rigid aggregates. 

Agg;~gation of ~agnetic ~article~ ch~nges essen'tially 'the m~gneti~ properties ~f a 
suspension .. Let th,:; number density of embryons N be some fixed quantity. • It 
follo,;s from Eq;(l.l) that in the iimit. oflow applied m·agnetic field H ~h~ m~gn~tic 
polarization ~f tlie suspension M is equal to · 

M=xoH; Xo = µiN /3kT, (2.i) 

where the initial magnetic susceptibility of the suspension Xo is introduced. We :con­
sider a. sim'ple example of the susceptibility variation due to. the aggr~gation proc~lls ... 
Let us suppose that all embryons in the susp~~sion come to· the aggregated st~te arid: 
that all aggregates are composed only of three embryons . In this. case, the effective , 
number particle density decreases three times : N -,· N /3. But the magnetic moment 
of ari aggregate depends on its sort. When the cause of the aggregate formation is 
magnetic forces, it has the linear ( chain) form and the value of its magnetic moment 
µ is equa( to 3µo, i.e., it inc~ease~ three timyS as compared with one embryon: In thi( 
case, 'in accordance with Eq. (2.1) the i~itial susceptibility would be equal to .. . '' : . ,. .. , " . ' , . 

N . • .. 
X = (3µo) 2

( 3 )/3kT = µ~N/kT. (2.2) .· 

It follows from this equation that x is increased three times. as regards_ tot he s~scep­
tibili ty of unaggregated particle suspension (embryonic suspension) .. But when the 
cause of the aggregate formation is nonmagnet_ic forces, the aggregate has the.form 
of equilateral triangular ( when it is supposed that all embryons are identical) and 
its summarized magnetic moment would be equaLto zero. As a res'ult the magndic 
susceptibility of a suspension would .also be equal to zero .. But in this, case the ag­
gregate has toroidal moment (see below Fig.I and Tab. ) and it may .be polarized, 
by the vortex magnetic field and the suspension as a whole may be described by new 
observable quantities - toroid polarization and toroid susceptibility. · 

The choice of a model of the aggregate depends on the kind of forces predomi­
nating-in the interaction between the particles. The average energy of an embryon 
inside the aggregate may be estimated as a sum of four items : the nonmagnetic and· 
magnetic energy of interparticle interactions the values of which are denoted as U and 
u;,.,· respectively; the energy of embryori's magnetic dipole in applied magnetic field 
which is µ0 H and the energy of thermal agitation kT. Here, only the model of an 
aggregate with fix~d form is corisid~red, i.e., it. is supposed that mt1fual arrangeriienf 
ofthe embryons inside a given aggregate is filCed (the ~ode! ofrigicl aggregates). _This 
model is correct when the energy of nonmagnetic attractive interaction per particle. 
U is much larger than the other items of the particle energy : ·' · · · 

u~Um; U ~ kT; . U ~ µoH, (2.3). 

If at the same time the energy Um is much larger than the other two items· 

Um ~-kT; Um ~-µoH; (2.4) 
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. . . 
the mutual alignments of magnetic· moments· of the einbryons' can also be considered 
as fixed ones, i.e., magnetic moments of embryons are "frozen-in" into the aggregate 
body. . . ·. . . . '.. . 

. We ·also con'sider themoder'of an aggregate of fix~d form but 'with a "movable" . 
magnetic mo~erits of particles (the model of movable dipoles\ i.e., it is suppo;ed here' 
that magnetic dipoles can move under the action of the applied magnetic •field. In · 
this case, inequalities (2.3) take_ place as in the previous case but the inequalities {2.4) 
(or one of them) have to be changed by approximate equalities: Um 2'. kT; Um~ 
µoH.. . . . . . . ,. .. . ·.. .· . . , 

Let. us shortly discuss· other possible· models of aggregates .. If inste~d of Eqn~. 
(2,3), (2.4).~he .supposesthat Um~ µoH,Um ,:./u, but at the same time (J ~ kT,. 
the thermal. ~gitation would not disintegrate the aggregates but their forms could 
chinge under the action of the applied magnetic ·field. In such a strong magnetic .field 
the compact agg~egate traiisforms into the stretched one; i.e., only chain aggregates. 
would exist in the suspension: The propertie; of the suspension ,vith these kind of' 
aggregates w~~e, st~diedin detail by other ~uthor~ [1-11] and therefore \;_,e do not 
consider them here., In addition, the unclosed chain aggregates do not. show toroid 
moments and they.are outside our interests from this point of view too. If ineqtialitie; 
(2.3) were changed by the opposite ones the thermal agitation would be sufficiently 
intensive to .disintegrate the aggregates and we would return to the well-known case 
of an unaggregated suspension. 

Now we consider in detail the interaction of the aggregate with nonuniform mag~ 
netic field arid introduce multipole moments which describe its magnetic configura~ 
tion. Let n be a number of embryons in·a given aggregate·,m. ·andi'. be the magnetic· 
moment and the.position vector of the embryori having number a ( a = l; ... ; n). It 
is supposed that all moments mn have equahuid fixed length, i.e., Im.I = µ0 ; The 
origin of the coordinate system is chosen in the geometric center of the aggregate so 
that the connection between r. takes place 

I:r.=0. (2.5) 
a 

• The. energy of the aggregate of magnetic. particles in the nonuniform applied 
magnetic field-is equal to 

u =· - I:(m.l'l(r.)) . . (2.G) 
a 

In practi~~- the length scale of the field space variation .L is much larger than 
the size of the aggregate l con~idered,here. In this case the function H(r) may be 
expanded into the power series over the_ center ~f the aggregate. After that th;·cncrgy 
(2.6) can be written.in the form . . . . . . 

u = -(j1H).- (fG) - Q;kF';k, (2.7) 

where the multipole moments of the aggregate - magnetic jl, toroid f and quadrupole 
Q;k are introduced . 

- "" -µ = ~ m.; 
a 

-
1 "I- - l T = 2 ~ r0 m 0 ;_ 

a 
Qik = ~ I:(x.;m.k+x.kmad-~I:(r.m.)6;k, (2.8) 

a · a 
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In Eq.(2.7) the quantitie~ ff, G and' F;k are respectively' the uniform part of the· 
field,. \vhich is ~qua! to H = H(r)l,=o, the vortex of the field G = [rotH(r)],=o and 
symmetrical 'tensor of the field gradient F;k ~ [v7;Hk + VkH.J,=o• The MaxweH 
equation div(H) = 0 was taken into account when d~riving Eq.(2.7). As it will be 
shown below, most of the aggregates have a comparatively small value of quadrupole 
moments (see Tab. ), and therefore, the quadrupole term iff Eq. (2.7) will not 
be considered below . Besides that, the magnetic field induced by the quadrupole 
moment goes to zero as 1/r4; thus, in contrast to the case~ of the magnetic and 
toroidal moments, for m~croscopic sample of size L thisifield decreases as 1/ L and it 
is much smaller than· the fields of the other fivo moments. · · 

As it can be seen. from expression (2. 7), the aggregate of magnetic particl~s may 
interact not o~ly with .the uniform -~agnet.ic field jJ but also with the vortex field. It 
follows that the conn'ection between _the total multi pol~ ·moments of· the suspension 
- magnetic and toroid ~nes, denoted :by symbols _/\f- and f, .;espectively, and the 
applied fields· H and Gin tlie linear approximation can· be written in the form 

M; == xftHk +'x;Yrak; T; = xT/1 Hk + x!,,Gk, (2.9) 

where the magnetic xM · and toroidal xT s~sceptibilities and al~o-U{e cross suscepti­
bilities xl\fT and XTA~ are introduced. All these quantities in general are the functions 
of temperature, the nuu'iber of embryons and the fo1·~ -of aggregates. Ou~ problem 
is to find these functions. · 

3. Ntimerical simulation of aggregate configu~ation 
To find the magnetic and toroid susceptibilities ofmi aggregated suspension, one 

has to know the space form and.magnetic configuration of aggregates. If the con­
ditions (2.3) take place, the main cause of the aggregate formation is nonmagnetic 
forces. The potential energy of these forces can be modelled by the Lennard-Jones 
interparticle potential (12], as they do in-molecula~- dynamic methods [23] : . 

· r · 1· · · ' 
V=V0[(~)12 -:-2(~n (3.1) 

. · . r r . 

where Vo and r0 are the parameters determining tl1e depth of tl;e potential (3.1 ), its 
mini~um and its position. The known methods of the molecular dynamic, [23] was 
us~d to find possible space configurations of the aggregates which are shown on Fig.I 
for the case when the number of embryons is equal or less than 5. The binding energy 
of the embryons E is given in Tab.. in units of V0 • 

• Magnetic parameters of aggregates of a given form were found by using the known 
methods of micromagnetizm (24] which were modified for our case. The energy of 
magnetic interparticle dipole-dipole interaction can be written in· the form 

., .,.Um= I:m0 ;A;k(r'.b)m~k _: I:m0 ;D;(1":,). 
' . a<b . 

(3.2) 

' '.).:,, .· .. 
where the notation is introduced 

A;~(i'} = (r2
c5;k - 3x;xk)/r5

; 
1 

D;(i') = H, + :tiklGk:z·,, (3.~) 
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• Table . Magnetic parameters of aggregates showing on J,:ig'.l 

n-a I E/Vo µ I T I 0 I Q I T] 

3-1 -3 0 • ... 1,73 0 
3-2 ~2,03 · 3 0 0 
4-1 -6 0 2 - 0 
4-2 -5,07 0 2;73 · ·0,18 · I 1 
4-4 -4,48 0 2,8. O"• 
4°5. 0 4,08 •: 3,04 1,39 90 · 0,32 I 0,58 
4-6 ~3,32 1,98 . ·o. •~ I '> 0,74 · 0,68 · 
4-7 -3,07 4' 0 0 
5-1 -9;10 ' 1,59 2,68 86 0,10 1 

I 5-2 -8,48 1,2 2,86 90 . 0;55 1 
5~3 -8,20 0,7 3,0 130 0,20.· 1 
5-4 -7,18 0,57 3,79 90 0,15 1 
5~5 :5 56 . , 4,24···. · · ·3.87 90 0,93 1 
5-6 06,25 2,12 · · 2,55 90 0,49 0,6 
5-7 · 0 6,21 ·, 0,013 0 0 
5-8 -6,19 3,11 2,88 60 0,29 I ~,15 5-9 -6,16 1,62 2,03 90 0,60 
5-10 .-5,56. o. 4,21 0 
5-11 -4,10 5 0 0 

The minimum of this energy which is considered as a function of the magnetic 
moments {ma} gives the magnetic configuration of the aggregate. After that the 
magnetic parameters of aggregates can be ·found by Eq. (2.8). The procedure of 
finding the energy minimu~ is reduced to solving the Landau-Lifshitz equation 

: 1 ... · au . 
ma= I[ma[ma am~!!, (3.4) 

where the para~eter >. is some effective fricti~n coefficient .. Th~ initial mag~etic state 
(which is described by the set of:vectors ma(0) at the mome~t t = 0) was found by 
the diagonaiiza:tion of some matrix (this.prpcedurejsgiven in o~r work'[25]). •. 

Some results of these· computations are .iiveri in Tab.. The value ,of the magnetic 
moment µ0 of an embryon was taken a;:a· unit for the magnetic moment of the 
aggregateµ , and the toroidal r an:d the'qi°i.adrupole Q·moments are given in Tab. 
in units of µ 0r0 • The quadrupole tenzor in the principal coordinate system was 
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~ 5-9 () 
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0-0-o-o--O 

5-10 . . 

Fig. 1. The possibleforms of "non-magnetic" aggregates with numbers of particles 
n :S 5. Aggregates (for given n) are numbered by symbols ri-a in order ojtheir bonding 
energy decreasing. · · 

:~ 
_J ... 

UI , M 

08j ,... . Jf.. . 1./.0,2. 
J I.II , 0 ... 

ut 
L>I 

:1 ~ .... .... uaJ. -· 44j - ....... , ....... .. p . ., 
11M ~'nT 

0 -r?f,,,;~· 
10"' , 0 -• 1 0 . ,o .. ,o-• ., 

Fig. 2.Magnetic M and toroidal f moments of aggregate suspension ( for model of 
"frozen" aggregates ) versus non~dimensional applied fields ( and ( . The process. of 
particles coagulation is taken into account The curves 1,2,9 are given for the val­
ues of time t/t0 equal to 0.1, 1 and 5 respectively (here t0 is a Smoluchovskii time 
of half coagulated suspension). The dependences of initial magnetic x~ and toroid~/ 
X5 susceptibilities on ti~e t/t0 are shown on the left. hand of the figures (a) and (b). 
On the same figures saturated magnetic (M,(t) = limM((; t),( ~ oo) and toro.idal 
(T,(t) = limT( (, t), ( -+ oo) moments are shown versus t/t0 • It can be seen from the 
figures that the magnetic para.metres (x~, M.) decrease and toroidal ones (X5, T,) in­
crease in the course of time. · 
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presented in the form 

',•' (-1+11 
Qi/,= Q .. ~ 

0 
-l-11 

0 
~ )·· 
2 

(3.5) 

Quadrupole moment Q and asymmetry paramete; .11 are given in ·Tab. The angle 
a (in degrees) between th~ vectorsµ arid r is also given iri the table. . 

4. Polarizatioh ~f ·suspensi~n in applied magnetic field. 
Model of "frozen-in" dipoles 

' The aggregates susp~nded in ~agne,tic fluid are in the .Bro\Vnian II1otion and . 
therefor~ the observable quantities have fo be calculated by ~veraging their m:icro­
scopic analogs with respect to the thermal fluctuation. In the case of rigid aggreg~tcs 
with frozen-in magnetic dipoles, only the rotational Brownian motion is important. 
Since the aggregate rotates as a whole and its magnetic configuration does riot change 
under the action. of the·magnetii: field, the internal energy of the' aggregate may be 
considered as a constant'quantity and it does not contribute to the distribution fun:c:: 
tion over the orientation angles :of the aggregate. Therefor~, this function has the 
foilowing form··· · · 

M:(nL= Cexp[(e[) + (i'i()], (4.1) 

where Eq. (2'. 7,) ,,;,as used f~~ the energy in. the exporient ( qtiadrupole'term i~.o~united 
here)'and the following notation for the dimensionless fields is introduced · 

(= µH/kT; ( = rG/kT .. (4.2) 

In Eq. (4.1), symbols eand n denote unit vectors which are parallel to the kn'own. 
magnetic and toroid moments of the aggregate, respectively.· The constant C is 
determined by.the'normalization·condition . 

jw~_n)an =.} .(4.3) 

Here, the symbol n denotes the set of the Eulerian angles· 0, cp and 1/J; The vectors 
of the applied fields G and jj are fixed in tlie labbratory' frame of refe~erice, and 
th,e vectors e Md ii are fixed in th~ intrinsic frame of the aggregate. Thus, the 
components of the ·unit vectors ii and e depend' on· the Eulerian angles determining 
the orientation ofone f~ame of referen~e relative to the ~ther. · .. . . .. . . 

: • The mean values of the densities of the magrietic and'toroid moments of suspen-
' sion are found by using the distribution fimdiori in ·the following way : . 

. ,. ' . '_, . . . ' ' 

M = N < i1 >=µNJ eW(n)an; T = N < r >= rN f 1iW.(n)d!l: (4.4) 
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In the case of low field ( or what is the same - in the case of high temperatures), \\'hen 
the conditions ( « 1, ( « 1 take place, the distribution function is equal to 

1 ' - -
W(n) ~ S;r2 (1 + (e'E) +(ii()). 

Taking into account the values of the integrals 

j edf! = j i'idf! = O; -
1-f e nkdn = ~( eii)h · . 8;r2 • 3 '.' 

1 / · 1 / 1 -2 e;ekdn = -2 n;nkdn = -O;k, S;r S;r 3 
it can be found from Eqs. ( 4.4) and ( 4.5) that 

. - 1 - _. 
M = 311N(( + (cii)(); 

• 

- 1 - -T = -rN(( + (ei'i)e). 
3 

(4.5) 

(-1.6) 

(4.7) 

Comparing these expressions with Eq. (2.8) the susceptibilities of the suspension can 
be found ( the definition of the fields ( and [ has to be used for this transformation) : 

{t2N C • 
M _ -- Vik, 

Xik - 3kT 
r 2N. ; 

T - .. --bik, 
X;k - 3l.:T ,MT - ,1';\/ - T/tN -- . 

.\,k - .\;k - 31.,T (en)b;k. (4:s) 

Note that in this approximation the cross susceptibilities are equal to zero when the 
magnetic and toroid moments of the aggregate are perpendicular to each other . 

In the general case, when the fields H and G arc i1ot low and haw any mutual 
orientations, the integrals in Eq.( 4.4) may be expressed through the so - called ·gen­
eralized Bessel functions· [26]. \Ve do not give here the corresponding cumbersome 
general expressions and restrict ourseh-es to so111e particular cases. \\'hen the fields 
ff and G are the parallel ones, the distribution fuuditm ( 4.1) has the form 

1 _; 
W(f!)= 9 ·I( )cJ'JJ(GJ(u), -rr ,, 1 lo , 

. where the vectors ea and & are introduced 

e2 + (1'i . 
ea= I ee + (ii I' 

~=[I (c + (1'i I 
e 

(-1.9) 

(4.10) 

After simple calculations ( cf. [27]) the magnetic and toroid n1Cm1cnts of the suspcusiciu 
0 can be found in the form 

1i1 = 11N(eeo).C(fo)ho; T = rN(iieo)C(fo)ho, (-1.11) 

where .C(() is th;Langevin function which is given by Eq. (1.1 ), h
0 

is a unit vector 
along the field'&.; 

The case, when the magnetic and !.oroidal moments of the aggregate are parallel 
to each other. (1'i = e), is also rather simple. The magnetic aud toroidal moments of 
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the suspension have the same form as in Eq. (4.11), where yet one has t_o substitute 
that -

eo=n=e; &={+t ( 4.12} 

The case when one of the fields { or ( is low is also relatively simple. 
All formulas derived in the previous calculations take into account only one sort 

cif aggregates. Indeed, in the suspension there are many kinds of aggregates with 
different number of embryons . The distribution function of the number of embryons 
in aggregate varies in time (i.e., the suspension turns older). It was shown in sect. 
3 that there are several equilibrium forms of aggregates with a given number of 
embryons which differ from each other in the bonding energy and in the magnetic 
parametrs (see Fig.l and Tab. ). Let Ena be the bonding energy of an aggregate of 
a-th sort, having n embryons and µna and Tna be its magnetic and toroidal moments. 

_ It follows from the previous treatment that the contribution of aggregates of this sort' 
in the magnetization and toroid moment of the suspension is equal to 

, C) 

Mna = Nnam(l., la, Gna)i Tna = Nnat(la,G.a,0'na), (4.13) 

where Nna is the number_ of aggregates of a given sort per unit volume, Ona is an 
angle between the vectors e:ia and Tina· To find average values over the aggregates of 
different sorts a but with a given particle number n the distribution function can be 
used 

N _ Nnexp{-Ena/3} 
. na - La exp{-En~/3}, ( 4.14) 

where Nn is the particle _number density of the aggregates with a given n, /3 is the 
quantity reciprocal to kT. 

The value Nn depends on tim_e. To find this dependence the Smoluchovski model 
canbe used. This model assumes that the aggregation process is similar to the 
polymerization chemical reaction X 1 + Xn = Xn+I with some given time parameter 
t0 (this quantity has the meaning of a time interval when halfof the particles have 

_ coagulated).' The dependence of Nn on time has the form 

(t/tor-l 
Nn(t) = No 1 + (t/to)n+l, (4.15) 

where No is the initial density of unaggregated embryons. Putting ( 4.14),( 4.15) into 
(4.13) the moments M(t) and T(t) can be avaluated in accounting for distribution 
of aggregates over their forms and sizes -

M(t) = E Mnai T(t) = Efna• (4.16) 
na na 

These calculations were made numerically taking·into consideration all aggregates 
given in the Tab. Figure 2 shows the magnetization of the suspension and its 
toroid moment versus the fields ( and (respectively for different iim~ moments. It 
is clear from Fig. 2 that the saturation magnetization decreases''in' time and the 
saturated toroid moment increases. Since in the. initial stage mainly two-particle ag­
gregates are formed in the suspension, the susceptibility curve xr has the hump. 
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5. Model of movable dipoles 

In the previous section, we have considered the model when the magnetic moments 
of embryons are frozen-in into the aggregate body. In this case, the influence of the 
applied fields on- the Brownian rotational diffusion of aggregates is maximal. The 
other limiting case takes pl~ce when the magnetic moments of embryons are not . 
connected with each other and may be independently oriented by the applied fields 
( the limit of superparamagnetic aggregates): In this case,· the' magnetic field does not. 
influence the rotational Brownian diffusion at all and it is impossible to investigate the 
aggregative structt;_re of suspension -by means of the magnetic measurements. This 
latter case is not interesting for us because it is equivalent to the case of independent 
particles. - ' 

Here, we consider the immediate case when the magnetic moments of embryons 
can. move under the action of the, applied field and at the same time interract with 
each other. To find the average values of momen.ts, one has to, use 'th~ distribution 
function of the form · -· ' 

dW(m1, ••• , inn, il) = C exp{-U(m1, ... , iii~, il)}dm1 ••• dmndil; (5.1) 

where -U(m1 , ••• , mn, il) is the magnetic interaction energy of the embryons with 
each- other and. with external fields. Integrating over the vectors ma' one has to 
take into account that these vectors have the fixed length. The' utilization of such a 
complicated distribution function is rather difficult for analytical culculations and for 
numerical computations and therefore some approximate methods have to be used; 

When the intrinsic fields on the magnetic mom.ents of embryons are much larger 
than the applied fields, the alterations of the moments are rather small and they 
can be _taken into account with the aid of magnetic and toroid polarizabilities of the_ 
aggregate in consideration. These quantities are introduced in accordance with the 
eq1;1ations 

µ; = µ? + K'/tHk + 1,,'fi/Gk; r; = r;° + K.[;:'Hk + K;kGki (5.2) 

where µ? and r;° are the val~es of µ; and r; in the case of absence of the_ applied 
fields and polarizability tensors Kik depend on the aggregate space configuratio~. 
The· principal axes of these tensors are rigidly attached to 'the aggreg~te body. In 
this case the energy of the aggregate in the extern~! field U = -(µH) _:, ( iG) with 
the use of Eq.(5.2) can be ,written frithe form 

u =·-(if H) - ( i°G) - K'/tH;Hk.:.. K;kGiGk - K;kHiGk; Kik = K'/t-r + "'ki. (5.3) · 
' , 

Note that the traces of tensors, which are in front of the combinations H;Hk, G;Gk 
and H;Gk, can be omitted in this expression as they do not depend on the orientation 
angles of the aggregate. . 

In the case of low fields, the distribution function can be written in the form 
W(il) = C(l.:.. U/kT). Putting il)-to this expression the energy fro'm Eq.(5.3) _and 
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integrating over the orientation angles, one can firid the mean values of magnetic and 
t<?roid moments of the suspension 

-··N· 2 4 2 3 1. ---· 
M = 

3
kTflµo + Kik(5,,:ikH + (5,,:ikT + 

10
K;k)(HG))H+ 

+((µoro) + llo"ik(Kik + 2,,:[f' )H2]G}; 

T- · N {((- -) (4 m TmH2 (1· Tm mT. 6 m T)(H_G_)JH-= 3kT µoro + 5K;k"ik + 5~ik n.;k + 5n.;k"ik + 

+[ 2 + 1 m(3 Tm mT 4 _r .m)H2]G-} To 10 K;k n.;k K;k - n.;kn.ik · (5.4) 

It was assum.ed in these calculations that the tensors n.?.t and K[f are symmetrical. 
Moreover, for the simpficity it was assumed t:hat the vectors iJ and Gare parallel to 
each ~ther and we restrict ourselves only to the first oder of smallness with respect 
to the field G. 

.. The most important qualitative result which follows from these formulae is non­
linear (quadratic) dependence of magnetization M on the magnetic field for the low 
fields (the initial si:tsceptibility has linear dependence on the field when µ 0 = 0). It 
is just the dependence which. is observed experimentally for the aggregated suspen­
•sions [1-4]. Certainly, to answer the question which cause of this effect is the most 
important .~ the spread of particle sizes or the aggregate -polarization considered here 
- the additional measurements of toroid s~sceptibility are needed. It is ob~ious that 

, unaggregated particles, which are uniformly magnetized, do not contribute to this 
~an~ . 

When .the applied fields are not low, the magnetic and toroid moment~ can .be 
calculated with the help of the distribution function. (5.1 ). But in this case the mul­
tidimentional integrals have to be calculated which produce considerable difficulties. 
Instead of that; the following appoximate method can be used. We suppose that the 
aggregate is at rest and the fields iJ and G rotate randomly over it. The values of 
the fields and the angles of their mutual orientation ate the given quantities. In this 
case, the dist~ibution function will depend on the Eulerian· angles determining the 
orientation of the frame of referenc~ connected with the vectors· iJ and G relatively 
to the aggregate. The numerical procedure can be used to find the orientation of 
magnetic moments of the embryons for given field orientations. For any n one can 
calculate the values Um(n, H, G), µ(f2, H, G) and r(r2, H, G) This procedure is de­
scribed in. the sec. 3. After that, the averaging wit_h respect to n can be performed 
with the help of a distribution function of the form 

dW(f2) = C exp{-Um(n, H, G)/kT}df2. (5.5) 

The numerical calculation of this kind .was made for the aggregate which con­
sists of four particles ih a square shape. Figure· 3 shows the average magnetic aud 
toroid moments versus the fields t and ( for different temperatures. The same fig­
ure shows the analogous curves for the rigid aggregate with frozen-in moments and 
superparamagnetic agrregate. 
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The tangent of the inclination angle of the curves on their initial int~n;al is propm:­
tional to the initial susceptibilities xt1 and xJ. The value xt1 is not dependent on the 
temperatu;e (at the same time for the unaggregated suspension it was x~1 ~ 1/kT) 
and toroid susceptibility x{ is reciprocal to the temperature. A behaviour of that 
type follows from the "antiferromagnetic" structure of square aggregates, as it has 
been proposed in works [4-5]. We will consider this dependence elsewhere. 
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Fig. 3. Magnetic M and toroidal f moments of the. suspenifion of four-particles aggre­
gates (square in form.ones} (model of mpving dipoles} against non-dimensional fields 
t and ( for different values of undimensional tempcrature'/3 == V 0 /k1'. (it ,is equal .to 
0.1, 0.5,. 1 and 5 for the curves ,1, 2, 3 and 4 on the fig. (a} and to a: 1; 4 Jo;. the curt>es 
1,.2 ow.the fig.(b)). The Langevin Junction is also shqwn on the figu;·es,(thc curves.5 
(on the fig.a} and 3 (fig.b}} /01· comparison . .This function describes the limit cases of 
super-paramagnetic .aggregates (fig.a} and rigid aggregatc,5 (on the fig b/ · 

.'.'\ 

6. Measurement of tor?i4, susceptibility of a suspe11silJ~l 

In this part. we discuss shortly the principle scheme of device for me_asuremcnts 
oftorciid susceptibility. as the last.one is.rather ne\\;•physic11l qtiantity. Note first, 
that fo; nieasuring of mag1~etic susceptibility the magnetization of a sample. has to 
be varied in' time (this variation can be produced, for example, by 't.he additional 
"measuring" alternative magnetic field,· rotation or vibration of the sample and sb 
on); In _this case the EMF is induced in the receiver _coil. 

The measurement of toroid susceptibility_ can be done by the similnr way. The 
static toroid moment r d~es not induce around itsdf neither dcctriral, nor mag1~ctic 
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field but only the field of vector potential 
. . ' 

.4 = 317(-rr) - rr2 
rs (G.l) 

Let us suppose that moment r is varied in time (i.e.r = r(t)). Consequently, the 
alternative field of vestor potential A( t) aroses ar~mnd sample. This field, in its tum, 

ieads to the appearance of electrical field E = -A/c. Taking into account Eq. ((i.1), 
one can derive that : 

cr5 · 
E= 3r(ii7) - ir2 

(6.2). 

As can be seen from this expression, the oscillatin!1j' toroid moment r creates exactly 
the same electrical field as electrical dipole p = -r/c. Assuming that the magnetic 
fluid is placed between the parallel plates of an electrical capacitor and summarizing 
the fi~lds which are created by all toroid moments in tl;e v~lume of the fluid, it is 
easy to find the potential difference 6'-P.. at the capacitor : · · · · 

t:,'-P. = 471" I f I d/ c, (6.3) 

where f is toroid moment pe; unit volume of the fluid (toroidness), dis the distance 
between the capacitor plates. The observable value 6'-P. can be expressed through· 
the susceptibilities XT anci'x™ in.using the Eq. (2.9). .. . . .. . . 

As shown in . Fig 4.a and 4.b, the toroid induction coil (for the measurement 
of XT) and the cylindrical coil (for measurement of XTM) can be used for agitati~n of 
the oscillation of toroid polarization. Note that these devices are fully reversible, i.e. 
if alternating current is passed through the capacitor, than EMF will be induced in 
the coil (in this case the EMF will be proportional to xT in toroidal coil and EMF 
will be proportional to XMT iri cylindrical one). · · 

Toroid susceptibility of magnetic fluid may be also found from its contribution to 
the effective electrical permittivity of a suspensiori. · Let us suppose· that the alternat­
ing potential differ~nce 6'-P. ~ e-iwt is applied to the capacitor plates (Fig. 4.c ). In this 
case the displacement currents induce the vortex field on the sample. The value of the 
vorticity G is equal to G = i-otff = -iwt:0E0/c (here E0 is an electrical field inside the 
capacitor when the sample is absent, t:0 - is the electrical permittivity of the magnetic 
fluid, if th~ tor~id polarization of the fluid is not taken into account). In accordance 
with the Eq.(2:9) the toroid polarization of a 'suspension f = xTG = -iwc:0xTE0 /c 

. _aroses under the action of the vortex field'.. As it. ~as shown ~bov~ the vaiue -TIC 
is equi~ent to the electrical polarization P = -T/c = w2t:0xTE0 /c2

• Putting thi~ 
expression into the formula 'jj = t:0E0 + 41r P we can ~rite the flux density in. the' 
form jj = t:E0 , where the effective permittivity is introduced·· · 

t: = t:o(l + 41rw2xT /c2
) •. (6.4) 

It follows from this expression that the effective permittivity t: depends on the fre­
quency w, Le., the dispertion of the permittivity takes place. It .has to be taken into . . . . 
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account that the value xT itself depends on the frequency. In the simplest approxi­
mation it may be proposed 'that·it is equal·to XT = x5/(I - iwr,,), where relaxation 
time ~~ is iritrciduced. . . .. · · 

In deriving J;:q.(6.4) the phas~ difference between the ~urrent in the capacitor'. and 
the potential° difference on its plates'. was· no_t taken into account .. · Let us ·write the 
interaction energy of magnetic fluid with the vortex field in the form 

U = -(TG)V = _;.XT E2V/c2, · (6.5) 

!J.\j 

~3' 

b) 

~I 
. 

. . ·. . c) 

Fig. 4. The cylindeMhaped sample 'with m~gneti~ fluid 1 i; 'i~sert~d, either. into the 
toroidal induction"coil (fig.a) or int~ cylindrical coil (figN to t~ke m:~q,~u~ments of 
toroid•susceptibilities xT• and x™ respectively .. When an alternating ·current is passed 
through the coil the magnetic field is produced o·n the sample (eithe; the vorte~ one 
·(fig.a) or uniform one. (fig.b)), As a result.the oscillation of toroid p~l~riiation takes 
place and the potential difference arises across the capadtor 3. Toroid contribution to 
this voltage can be determined from the_Eq. (6.3) .. The capacito/filleiby aggregated 
magnetic fluid and it's equivalent electrical circuit ar~ shown on. the fig. C an<!, fig. d, 

<respectively. •· · · · 
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where,V is the volume of the-fluid between .th~ capa2itor plates (Fig. 4.c): The 
electrical field E in the plane capacitor with the ·c~pacitance C is co~nect'ed to the 
charge q on· the capacitor plates by the equation E.= q/Cd. As the;c~r;ent i~ th~ 
electrical circuit ;is equal to J = 4 .and the capacifaiice 'is given by· 'the expression 
C = t::S/41rd, Eq. (6.5) maybe· written in th~ form, '·· · · · •' • · · 

U = _:_LTJ2 /2c2; LT,=;= 81TXT /t::C, (6.6) 

. where the effective capacity inductance LT is intrnduced. The origin of this quantity 
is the_consequance of the toroid susceptibility.existence .. The equivalent electrical 
circuit of such a "capacitor" is sho~ri 0~. ·-· Fig. ·4.c: It reflects the manifestation 

of magnetic properties of a suspension. .' 
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