90-345

Объединенный институт ядерных исследований дубна

H20

E14-90-345

1990

W.Hammer¹, SI.Sterlinski², V.M.Nazarov, Z.Bober³

EXPERIMENTAL FINDINGS ON SELF-RECOVERY AND IMPROVEMENT

OF REPRESENTATIVE PARAMETERS

OF SOME SEMICONDUCTOR DEVICES

AS IRRADIATED IN FAST NEUTRON FLUX

Submitted to "Nuclear Instruments and Methods"

¹Institute for Nuclear Studies, Swierk-Otwock, Poland

²Institute of Nuclear Chemistry and Technology, Warsaw, Poland

³Institute of Nuclear Physics, Cracow, Poland

The "self-recovery" term applied to the improvement of electric characteristics of the devices under test (DUT) at a room temperature in situations where the effects of other factors are not taken into consideration. The settling time for a parameter after the irradiation has been completed depends upon the type of the DUT and may vary from several minutes to weeks. Thus, the first test of the parameter is to be performed as soon as possible after the irradiation process has been completed. Such a condition makes difficult the testing of the self-recovery effects for these DUTs which are strongly activated in the neutron flux, e.g. low and medium power transistors in metal packages, and integrated circuits in the packages of TO-99 and TO-100 type, etc.

The term of the "improvement of electrical characteristics" of the DUT designates the process resulting from the irradiation, which leads to a change in the electrical characteristics in the positive direction. The experimental investigation of the improvement of characteristics requires two measurements at least: the first one before the irradiation process is started and the second one after correspondingly long time from the termination of the irradiation process to reach the saturation state of the self-recovery process.

The self-recovery effect for the long-base diodes (known also as PDN) irradiated in the fast neutron flux has been quite well known in dosimetry laboratories. One of the experimentators (W.H.) noticed this effect when a Si(Li) detector was used for measuring the fast-neutron fluence in a 14 MeV fast neutron generator¹⁾. The self-

Воъсябитый институт RACHRIAL HECRESORABS **GHEJHOTEHA**

recovery effect should not be mistaken with the known procedure of recovery from the radiation damages in semiconductor detectors by soaking them at a high temperature or by means of redrift treat-ment²⁻⁴⁾.

The effect of improvement of electric characteristics resulting from irradiation of semiconductor devices is covered by the respective references but this applies only to small doses. The references available to us do not cover large neutron fluences.

For our experiments there were employed two fast neutron sources: the 14 MeV neutron generator (NA-2) and at IBR-2 Pulse Reactor (Channel Kl) at the Joint Institute for Nuclear Research in Dubna (USSR)⁵⁾. The neutron output from the NA-2 Generator was about $10^{10} \text{ n} \cdot \text{s}^{-1}$. The fast neutron flux density at the IBR-2 reactor (Channel Kl) was $1.4 \times 10^{12} \text{ n} \cdot \text{cm}^{-2} \text{s}^{-1}$ (E_n > 0.5 MeV, average energy -1.3 MeV).

Table 1

List of devices in which the effects of self-recovery (SR) and/or improvement of electrical characteristics (IEC) were observed while testing radiation damage in semiconductor devices

Type of device	14 MeV neut	tron generato	or Reac	Reactor IBR-2		
	SR	IEC	SR	IEC		
Si(Li) detectors	+	-	-	-		
7404 TTL		+	+	+		
7473 TTL	n.m.	n.m.	h.a.	. +		
7493 TTL	n.m.	n.m.	h.a.	+		

"+" Effect observed at least for one device; "-" effect not observed; n.m. = not measurable with the use of our neutron generator due to excessively low neutron flux; h.a. = not measured due to high activity of the device irradiated. The investigation of irradiation defects included 15 types of semiconductor devices. The tests of self-recovery effects and/or improvement of characteristics could be performed for four types (see table 1).

<u>Si(Li) Detectors</u>. The energy resolution FWHM (full width at half maximum) was tested for the line β -625 Cs and \propto - 5.5 MeV resulting from the reaction (n, \propto) of ²⁸Si incorporated the detector. The measurement results obtained for the 14 MeV neutron generator are presented in table 2. Owing to the small density of neutron flux the irradiation process had to last for four months. The detectors were used to measure the fluence¹⁾.

<u>Table 2</u>

Self-recovery of Si(Li) detectors irradiated on the 14 MeV neutron generator (t_c - cooling line)

Detector 1	Fluence		FWHM (keV)			
(volume) $n \cdot cm^{-2}$		/β - 625 keV		∝- 5.5 MeV		
	•	t _c = 0	t _c = 2 weeks	t _c = 0	t _c = 2	weeks
1	0	15.7		192		
(0.48 cm ³)	3.10 ⁹	25.0	17.2	290	210	
	2.2·10 ¹⁰	35.0	28.5	410	240	
	5•10 ¹⁰	41.0	30.0	n.m. ¹⁾	290	
2						
(0.27 cm^3)	· 0	16.7		200		
- 	4·10 ⁹	30.2	20.8	310	220	
	4.5.10 ¹⁰	38.0	31.0	n.m.	280	

1) Not measurable.

7404 TTL-Compatible Integrated Circuits. There were eight 7404 integrated circuits (i.e., 6x8 = 48 NOT gates) irradiated in the neutron generator, while 16 integrated circuits (96 NOT gates)

2

3

Fig.1. The improvement of electrical characteristics $(I_{out}(0))$ for 7404 TTL-compatible Integrated Circuits irradiated at neutron generator (a) and reactor IBR-2 (b) versus fast neutron fluence $(E_n > 0.5 \text{ MeV}$ for the reactor flux). The values of $I_{out}^{\times}(0)$ were measured after 2 week cooling time.

were irradiated at the IBR-2 reactor. The output current $I_{out(0)}$ from the NOT gate at its logic "0" state was the tested parameter. The termination of the self-recovery process was observed after 24-hour cooling from the termination of irradiation process on

4

Table 3. The improvement of electrical characteristics (limit frequency f_T) for 7473 and 7493 TTL-compatible integrated circuits irradiated at the reactor IBR-2 versus fast neutron fluence ($E_n > 0.5$ MeV). The cooling time amounted to above 2 months

Fluence n/cm ²	f _T (MHz) for 7473 IC	f _T (MHz) for 7493 IC
0	20.2	19.0
1.4x10 ¹³	22.2	20.4
1.4×10 ¹⁴	14.2	16.4
2.8x10 ¹⁴	8.0	8.8

the neutron generator and 50-minute cooling from the termination of irradiation process at the reactor. The self-recovery effect was observed in all the gates that had been irradiated in the neutron generator and the reactor provided that their excited activity allowed for measuring the $I_{out(0)}$. The values of growth in the self-recovery effect (increase in the current $I_{out(0)}$) were estimated as 15% and 10% for the NOT gates irradiated in the neutron generator and the reactor, respectively. The I out(0) improvement was observed in 30 gates for the 48 tested gates which were irradiated at the neutron generator, but only in 12 gates for the 96 tested gates which were irradiated at the reactor. It was noticed that the improvement in the I out(0) output characteristics of the gates which had been irradiated on the neutron generator occurred mainly in that portion of the gates for which the $I_{out(0)}$ output parameter had been lower (before irradiation) than the average value of the $I_{out(0)}$ for the total population under test. Figure 1 shows the average percentage value of the improvement in the ratio of $I_{out(0)}^{*}/I_{out(0)}$ vs. fast neutron fluency for the samples irradiated in the neutron generator and the reactor(I out(0)

and $I_{out(0)}^{R}$ are the equivalents of the readings for the currents before and after the irradiation process, respectively).

<u>7473 and 7493 TTL-Compatible Integrated Circuits.</u> There were eight 7473 integrated circuits and eight 7493 integrated circuits irradiated at the IBR-2 reactor. Owing to the high activity (of Au mainly) excited in these devices it was impossible to measure the selfrecovery effect. The limit frequency (f_T) for both IC types was measured by means of the electronic counter and oscilloscope.

The improvement of the limit frequency for 7473 integrated circuits was estimated as 8% and 18.8% (from 20.2 MHz up to 24 MHz) for the average value and maxiumum one, respectively. The suitable figures for 7493 integrated circuits were equal to 6% and 13% (from 19 MHz to 21.6 MHz). The results are represented in table 3. The improvement effect was not observed for some devices under test (20% and 37% for 7473 and 7493 integrated circuits, respectively). In a few instances the limit frequency of the tested devices became worse.

References

1. W.Hammer, A.Blaszczak-Stepniak and E.Angustyniak, Isotopenpraxis 24 (1988) 74.

2. M.Jaskola and K.Nybø, Nucl.Instr.Meth. 44 (1966) 141.

 L.Glowacka, M.Jaskóła, R.Sochacka, M.Wielunski and J.Dalmas, ibid, 216 (1983) 303.

4. J.Llacer and H.W.Kraner, ibid, 98 (1972) 467.

5. W.M.Nazarov, S.S.Pavlov, W.F.Pieresedov and M.W.Frontaseva, International Workshop "Modern Trends in Activation Analysis in JINR", USSR, Dubna, 26-28 June 1988, p.6.

> Received by Publishing Department on May 22, 1990.

Экспериментальные результаты измерения саморегенерации и улучшения основных параметров некоторых полупроводниковых приборов после облучения потоком быстрых нейтронов

Исследовались полупроводниковые приборы /детекторы Si-Li, диоды, транзисторы и микросхемы/ после облучения в ядерном реакторе при интегральном потоке до 2,8·10¹⁴ н·см⁻² /Е_n > 0,5 МэВ/ и нейтронном генераторе при интегральном потоке до 1013 н.см-2. При измерении радиационных повреждений у детекторов Si-Li и некоторых микросхем были обнаружены эффекты саморегенерации и улучшения их электрических характеристик.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1990

Hammer W. et al. Experimental Findings on Self-Recovery and Improvement of Representative Parameters of Some Semiconductor Devices as Irradiated in Fast Neutron Flux

Semiconductor devices /Si-Li detectors, diodes, transistors and integrated circuits/ were irradiated at a nuclear reactor up to $2.8 \cdot 10^{14} \text{ n} \cdot \text{cm}^{-2} / \text{E}_n > 0.5 \text{ MeV}/\text{ and}$ a 14 MeV neutron generator up to 10¹³ n.cm⁻². While testing radiation damage it was seen that some Si-Li detectors and integrated circuits showed the effects of selfrecovery and improvement of electrical characteristics.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1990

E14-90-345

E14-90-345

Хаммер В. и др.