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1. Introduction
ANV

Among the corrections necessary to find accurate structure
factors from the diffra9tion measurements, the correction for
thermal diffuse scattering (TDS) plays an important role. The
diffractometer integrates the inelastic processes. If the result
of this integration IT( S 5 S:, S3) is, in the neighbourhood
of the Bragg peek, a monotonous function of the scan parameters

g. , the inelastic contribution can be substracted as a

)
backround. .But the backround subtraction eliminates only a
part of the inelastic scettering if 11-( S, , S, ,5;) is peak
shaped. In fig, 1 1s shown a diffraction peak obtained in a
one-dimensional Scan over the parameter S. The unhatched peak
( IB) is the Bragg scattering and the right hatched peak ( IT)
is the TD scattering. The measured integrated intensity will
be the area in the range (-S,, So ) (the limits of the Bragg
peak) minus the inelastic baclkround represented by the left

hatched rectangle:
@=?B+{P~r“5ﬁ = P (1+) (1)

[fl (s)ds - 2501 (say]. (v)
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Fig. 1. Intensities measured in
/ 3 - a one-dimensionael scan in the
-So 0 So S neihourghood of the Bragg peak.
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Here ffé and V7~ are the Bragg and TDS integral intensities‘
and &  is the TDS correction. The index b mean; backround.
Tt is well known that only the one~phonon coherent scat-—
tering.by low frequency acoustic modes produces a maximum IT(S)
under the Bragg peak (see,e.g-,f1] ). But taking into account
only these modes it is posgsible to calculate the TDS correction

without a priori knowledge of fhe unit cell structure. Only

the elastic constants.are necessary to know.and these can be
found by measuring the sound velocities along some directions
in crystal. There are 3 constants for the cubic crystal, but 21
for the triclinic. But even for cubic crystals the exact calcu-
lation of o{ needs a long computer time because g multiple
integral must be performed. The time is dragtically reduced by
using some approximations, the most important being the omission
of the instrumental resolution, the high temperature of the
sample and the mean velocity approximation [2,3] « The price
which must be payed for, evaluated on some compounds by different
authors, is 1% error in « for the first approximation {41,
0.04% for the second one and £ 5% for the third [5] . In
compensation, the correction ™ can be expressed by a third
order integral which can be made analytically in a rough appro-
ximation (infinite vertical detector aperture [2] ) or reduces to
a double integral numericaly solved [3] s

The theory of the TDS correction initialy developed for

X - rays was extended to the neutron diffraction. Here two
different situations can be distinguished depending on whether
the ratio P between the sound and neutron velocities is smaller
or greater than unity [6,7] . In the first case the TDS correc—
tion 1s identical to that for the x - rey diffraction, but for
~Fs> 1 the quantity o decreases dragtically with increas-
ing P and could be even zero. The profile Ij~(S) in this

case was.written for all the types of one-dimensional scans
used in the angular dispersive (AD) method [8] but no quanti-
tativg analysis was provided up to now for the neutron time-of-
-flight (TOF) diffraction on monocrystals, In TOF were conside-~

red valid@ the conclusions found for the AD method {93 . In fact
this is true only if the ratio ‘g between the flight path

after the sample and the total flight path is very small. Many
diffractometérs fulfil this condition but there are situations
when % is near 1, like it is with the diffractometer for
jirradiated samples in Harwell [10] . In the general case TDS
measured by TOF shows some peculiarities lost in the limiting
case f;)O +« These peculiarities were ignored in the paper of

Cole & Windsor [11] which describes the basis of a program
computing the TDS profile in the TOF diffraction on powders. This
program uses less approximations but is time consuming and does
not work for monocrystals. In the following a TDS correction
formula for the TOF diffraction on monocrystals is found. Working
for any TOF diffractometer this formula contains a function
numericaly computable in a short time and two pa;ameters which
can be determined from the elastic constants or alternatively,

in the refinement process together with the structure parameters.

2. TDS differential cross-section and the scattering
surface : ’
RaVaVaVa i

In the TOF diffraction the following differential cross-
-~gection [12] is measured:

do L { de, C?(E,,Ee)(.g_t

)@& 32 JZO‘
do " Le g2 g2 Ce

V(e o) 77 (2a)
GGZ(/Eé Ez: V/Ey

Yle, Ee) =Ly ALNE /e —L,)7, (20)

where £, /£, are the energies of the neutron before and after
scattering, Ly L, are the corresponding flight paths, L=LstL;



and Ee is the energy of the neutron elasticaly scattered.
. O
The factor J'(EME&) takes into eccount the energy dependence

. of the incident flux, the absorbtion in sample and air end the
‘o /-
detector efficiency; JL/te/Ec): 4 + The one-phonon cross-section

of the acoustic modes which must be replaced in (2a) is [13] :
ds @’ !Fa 22, 19 @
ARdEZ‘ e o w (L) ’

L{n[w (9)]+4 +% iX[erw (] S8-B-2) (5

&:\(2—(\64 "b\QJ:EZ-EA,

~ ~ (3b,c)

where No and M, are the unit cell volume and mass, FQ’

ig the structure factor, (H/ is the reciprocal vector, K. , K;_ a.;c‘e

the wave vectors of the incident end scattered neutron, ()—(Z) R

W (Z) are the polarization vector and frequency of the mode

(\) ’,\2, ); and N(w), the Bose factor; the mumber S is +1

and -1 for phonon creation and annihilation, respectively.
Firstly we performe the swmmation over 2 in the Brilouin

zone (Z.B. in (3a)) and further the integr;;:ion over Ey

(in practice over L ); as e result one obtains:

d&
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h[w-(25]+(z+()/9_ 4)
/)_Zf\mi/t(lq (1,4+‘(/L/L ,L,_\vz 4(2)

3/a
| 1+¥
where \/ is the sample volume, /L‘ s -L,_ are the unit vectors

. o~ ~
elong }54 and K, , respectively,

i.:_&_H :)::.‘L'Y‘!“H (5)

~ N OV ~ o~

and Ky are the roots of the following equation:

VK%[‘.\’)(KC|K2_S—"-A] -\—zm/‘KWEC\DJ (z): 0. | (6)

The sum over ¥ in (4) means the sum over these roots. We are
interested only in small (4| (then Q@ near H ); in this
~ ns (%4
case the dispersion relation is U'(Z):,cd-{zlz)z < being
~ 7

J

the sound velocity in crystal, a quantity dependent on the
acoustic wave directior; and polarization. Now let us use the

two velocities approximation [6] stating that all the acoustip
waves are pure longitudinel and transversal (valid in fact only
for some directions in crystsl) with phase velocities <, (lon~
gitudinal) and <, (transversal) (. £, # <;) independent of
direction. As & consequence V’% ‘*’J (2 =4€Jz /Z ; on the
other side the sum over J = 1,3 . in (4) reduces to a sum of
two terms, first being proportional to l@ G, (z)l ~ HZcos® £ and
the second one to ‘GU_:.(‘L)I +!@ U\(U\t- HZ s g » where §

is the angle between Q and ¢ . A more drastic approximation
is ¢ =, (full isotr0py) and in this case the sum over 3
disappears. However, following Willis [6] , & weaker approxi-
mation is prefered. In this epproximation ,'c' #«, but C&Szg
and S'»'sz are feplaced by their averaged values 1/3 and

2/3, respectively. Other quantities in (4) also can be approxi- '
mated; thus, by virtue of small energy transfer K, & K, and
consequently EF"—‘-’A. . At last, for high temperature tU/KsT«d
which implies W(w) -j__ex?(f{m/un‘\')—qj ~ KT/ hW>L , then
we can neglect (iﬂ) /2 » In general this is valid for T>Tb
(T Debye)-, but for the low frequency acoustic waves it is valid

also for T(T e The differential cross-éection becomes:

1e

Ez%’ !.‘, __:, Z—ZZZQ ’4+F»J8I'5L + (4- E)‘*z]g’I
(#)

where we have denoted:



-g = Lz /L ) }3&' :,cd-m/'tfkeo =‘C‘I‘/Va (Ba;b)

Here KEO is Kg which fulfils exactly the Bragg condition
for the mean Bragg angle GE , and ’V}, is the corresponding
neutron velocity, -

For the further calculations, the scattering surface given

by the equations (5) and (6) must be investigated, Convenient

handling can be done with
< (®y- Ke\/“e / ‘él‘—(“(e"‘eo)/’(eo (9a,b)

in place of K, » Kg « In the neighbourhood of the Bragg peak
\3 LA ; % is also small; indeed, with (8a) and (9a),
12 _ .
‘f’/ ..‘g/(*‘f'f) and since W« 4 , it results X/t &4
and ¥ &L { . As a consequence -4 = /2 /
Yot = ("% )y 21)~-2%/5

and the equation (6) becomeas:
L=kt x/p3. (10)

Thus for phonon creation ¥>0 and conversely, %<0 for

phonon annihilation, To write down - (5), let us denote by 440

’
‘Lz,o the unit vectors along the mean incident and diffracted
b .

eams, by :910 the unit vector perpendicular to ,(,Lzo in the

diffraction =4 i
plane (see fig. 2) and ,gZO =420X Tz0 .« Feglecting

Fig. 2, The dlagram of the scat- A
. tering measured by the TOF dif- & (
fraction. In a given direction

(§) end at the same TOF can be

measured (if there are) an elas— : 44 T \F
tic process and inelastic proces— - // t
8es with the wave-vector trana- L /'\2/.
fers Qe:ﬂ'r ¢ and, respectively, 0 202
-Q.i = ﬁ + (L_{"’(phonon creation), }.__-——4/ = :
—(\’?L:ﬁ + ?i:z. (phonon emnihilation),  (@[feX2 JI— M ke “j
B A Keo ¥ l
6

T

the instrumental resolution (what allows us to write f,:({:,o. )

and denotlng by ¥ N 8 the a.ngular divergences of j'z with

‘respect to ’(’Zo in and perpendicular to the diffraction plane,

(5) becomes:

Z_Keo'_(*+‘& 3&/‘-§)L20+K'7_'20+gngo"(-E-\/g)Lw], (1)

By equalizing Z from (10) and (11) one obtains:

(9F-1/p*Yx -2 Mx + >N - 0, (12)
where the following notations are used:
2
= 20 —eosTO) g - T (13a)
2 2. b \ 2 2
N =4y an'ey, + (¢ +46n206)%+ B (135)

qo -2ttty | S= §nw, Sttt G

TFor a given 3 the equation (12) represents, depending on the
value of Fs . & rotational hyperboloid of two sheets or a rotatio-

nal- ellipsoid. The particular F; values
F“) (/v P(?—)= 4/|V?[ ) (4 be "5(4)< F(t)) (15a,b)

define three regions for F . In the first region (O</3 <'/$U) )
the equation (12) has one positive and one negative root for

any Y and g » The scattering surface is a hyperboloid of tv.ao
sheet_s, one inside the Ewald sphere ( ¥> 0 -~ phonon creation)
and the second one outside ( ¥< O - phonon annihilation). In
the second region ([5(”<[3 < F(z) ) the roots ¥, ¥,of (12)
exist for any S , but only for ¥ ¢ 8‘4 and &“) YZ where

%, ¥ are:

4

sy sn18 (1-BTY) ;\/(;sioh)M“egaﬁa-;s?f)xz] (16)
A2 T 2,2
) A= [3 7)

For b\< b’i both solutions 3{-4 , *7_ are positive, and on the

by



contrary, are negative for K" f . Like in the first region
the scattering surface is a hyperbolold of two sheets, inside
and outside the Ewald sphere, but the angle of the asymptotic
cone is acute and the rotation axis is inclined enough to give
rise to a forbidden region in §, where no TDS occurs, In the
third region ( > (7')) the equation (i12) has roots only for
KL,\ RN 5\2_ ana  §7 g 4 :F{MHGB ‘az([ﬁz))z—/i) . The roots
have the sign of M; the scattering surface is an ellipsoid
ingide or outside the Ewald sphere, In fig. 3 are displayed the
scattering surfaces for the three regions of F and two values
g> 0 ; for 3 <0 they pass into the configuration obtained by
inverting the figure with respect to the origin.

The main difference (concerning TDS) between the TOF and
AD method is the existence of three distinct regions of /3
in the former, comparatively with two regions in thé latter.
If 'g is not very small, the location and extension of these
regions are 93 dependent., Remarkable also is the angle in
the scattering plane (' d = 0) between the rotation axis of the
scattering surface and the normal to the Ewald sphere (approxi~

mated in fig. 3 by the plane #* = 0):
A =05 w»d,:? [-2%% /(vZ_gl_“ 4//32)_]. A7)

If ’g-;o thenY)—;nj_ » 5> 0 x-ao and/3 /B(l)
hence the second region disappears and TDS differentiel cross-
-pection measured by TOF becomes identicel with that measured
by the AD method. A

With the roots %1 , ;!:2_ once found, it is now possible -
to sum over © and & in (7). As € is just the sign of %,,,
the sum heas, in fact, only two terms. In the region (1) of ﬂ ‘
the result will be proportional to N™2. But Ko, A is just the
modulé of fhe vector Z with the end on the Ewald sphere

x
&
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(cen be seen makKing x = 0 in (11)). Thus for 'F( ’3( the TDS

differential cross-section measured by TOF is similar to the

cross-section measured' in AD method for ‘3(4 « The structure
of N suggests us to define the orthogonal coordinates ( AL, )
N, S ) in place of (‘& & S ) for to determine a point in the

neighbourhood of a lattice node:

M= z%sinlﬁg [ =t F Yy a2l (18a,b)



. . : ; 2 . )
In these new coordinates the TDS differential cross-section is: . _
: 2 J
R R ' D(_U_chol‘_‘f_ VL%.LZ';}_'\P(FJ/Q/;;“O/VO/A;).(ZZ)
"ﬁ ' l pl H %l —27 Foluv 8)s (19 (@q) Mc —,
z .
dwﬂ-' Ne Me 2 Keo JH J ) Here the following notations wére used:

where "

. .2 - ?

F.S[u‘v,};): A/[\ﬁ“-f\ﬂ‘pg?-) for FJ < /5(“ (20a) "o A, = Z%oﬁqv: 6g = 2&n 6, A/\o /’leo (23)

!
i Uy :
- (hu- T A : L, :
Eoand) - P 2‘”,)_,5_) - for p, >F’U)' (20D) ! = zf Twdw — 20, T (wo) (24)
i fj UV (W +\71 s) I P 77_)(,]; v){rv- V)_) 4 (JS(]
The values W, , V, ere obtained by (18b) from K‘H 2 3 | I fs N ‘" (u v S) (25)
the constants 2,_ y 22 corresponding to the second and the 53 0)
In the first region of , is given exclusively by the
third regi : -
e re o:fa)re2 (v, <v<, ) > ] detector's window. Using (20a) for F., the integral over
2 = < =0 = - A R .
=4 (V< ) 2 ! Bt ( 7 Mz) (20¢) 3 in (25) can be performed and the result is:
2, :%:ah(vu.) (’\715'\!‘51\/‘,_) y 2, =0 (r\l‘<’\l]/v—>/v-2)_(20d) ’ ~U&\) ,_de [ Xo+ud98+m ﬁo_udg%] (26)
L] = ppp———— .
! (5 ¢ Virrss M e

3, TDS correction for monocrystals . ’ !
AN U AN A

H This integral can be performed only numericaly. For WU—>Q
For the T0F diffraction on monocrystals the paremeter S I(‘Eu)—> o= , but this singularity is an integrable one.

In the region (2) and (3) of F the profile’ I(“) hes

of the commonly used one-dimensional scan is the time-of-flight

of :
or the wavelength AA& - Let usgdenote by 2 AAO the range discontinuity points for derivatives., They are those points
; ’ tector
the A’\e scen end by (7’{; )2 °) the aperture of the detec where the geometry of 2 changes., For example, in the region
with rectangular window. The three-dimensional window ’

, (2) one or other or the two sheets of the hyperboloid can be

. k.
2'(5/‘0/ to/go) is teken so large to see wholy the Bragg pes seen by the detector's window; in the region (3) the ellipsoid
Ignoring the resolution, the TDS profile for this scan is:

T_(ehe)= [0 4808 dZ ah ¢, ),
&(’5’\6: S\

where the integration domaln oz is the intersection (common

can be seen totally or partially, 'I‘hixs, two discontinuity

points are obtained equalizing X"\ and &\Z with f &Lo H

() o /(AP ety o7 (272)
B-addo /(=R oy =2 1)

In addition, for the region (3) there is the point

(21)

area) between the detector window and the definition domein of (27v)

the integrand, In the region (2) and (3) of [S the latter

depends on the scan parameter. Introducing (21) in (16) and

- ¢ P 7 e

- (p2n2? _ _pt (27¢)
A b e () ¥o g 06 /1a-pTy]
taking account of (9b), (18) a..nd of Jg =V ‘FH\ /‘eo /Z‘VC hy 9& »
one obtains: : ~ obtained by equalizing (h‘ﬁ‘fz) /2 witnh £ b*o ; alvays U <u, <d, -

10 n

— e AT
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The integral over ‘I!r\)‘ in (25) can also be made analytically

if the integrand (20b) is preliminary rationalised. The result

. of integration can be expressed by means of the following primitives

brag,c RS, )= g [dt(Rest) /(AL +28E+C)

U RAC-SAA %VFﬁerJZ\fﬂE—B't +ic
2l -b  WE-nyEagt tVE

(28)
4 RAC - S/R &t -
V2 dﬂ—c +R {j\,rz ‘NFC +8
where we denoted: ) ~
Ao uwi48%hayt ) B U}
-(29)

R=nu-gw, , S=7U-4’V}

The TDS profile in the regions (2) and (3) then is (only forW 70X

‘_“}u)—tr(uw I, (W)

AN %IAI“) Hopi >0 25
= Il &} p-t <o

for OSugyy
for u,<ud o {30a)

for ), <ugoe

I(leu) =) L&' HS'LV)*‘\) Jgeg < F’I\?Z'ﬁ.
D,(w)

Ta
[ )= \F%]— jd‘& br-2,c,-r,s t)]

e~ > < Bl“(x“ (30b)
o4 - &‘44,5*0 ) |47‘ \36:2‘-3;0 "f n>x~o
\J A=
-bz(\k) -
T,1)- —\,L: s dlc -t ks -2 t)]

Wo + oo 4 gz/__ - (30‘0)
07_‘\’6%1-&0 P %fl% &‘" bk1<—”‘c
2 o

12

- e

b M [MM‘L“&ELJ‘/Z] (00

7.\-]1__A

In contrast with IU\(\,L) the profile I“)(“) is finite
for W=0,
Blu)
162y < 2pean géxé(ArsC_R )]
\)}5 -4 o T

% 0 ir ¥ 8

for Ogu<®

T=
{ \\‘L\(*o Y

oo i 87— \(31a)
6,-¥o . ; TZZ{\I_LZ+ % if <~ ¥
x*o*!hl 2ol 2 ~8o- %) S
™ =0

D (w)=wain (S, u/VEmiot ) if osusu;

L - PV elgs DV T takuce

D iad= WVM& bo. '(m)‘
{(& ud’af}g %\ghq\ - B (V)K‘ ucﬁ‘lge &i“ﬂ\ 1I/L'g
B 924 Vet

Like in the region (1), the integrals over {$ in (30) and (31)

are computed numericaly.

The typical profilee‘; for the three regions of [3 are
displayed in fige. 4; they were computed using the same values
for {‘5 as in fig. 3. Both 1(7—3 ]'_(3) are zero for u>u,
and 1(3‘ is constant for UW<{U, . In general I is inde-

pendent of U  for Wg U, , where
U, = Wi {uq, So\) |3ZV)7~1 ) (32)

Mathematicaly this can be shown by replacing the integration

{
varisble & in (31a) by ud /\[Fz,jz,, . For WU, the ellipsoid
(scattering surface in reg., (3)) is wholy seen in the detector's

. 3
window. I( ) is constant because the ellipsoid volume tend to

13




zero when W0 , but the cross~section tends to infinity

(3)

evident that the TDS correction is zero if Uy SU4 + For /SZ,F(U

with the same rate. Since the profile I is constant, it is

this condition cannot be realized since L(l' is very small;

but U, increases monotonicaly with (S , and if
Uo <u,,([s-°°) =P)|IL59E LA (33)
the function is zero for ), where:

'

Fw e \SH 3.2 \[\7 Hrtw%“ﬁ(“ =P { (340
p= 715‘0/%— ] "j}% ) tT-Ka/Uo\b-JVI7 dyga (34b,¢)

If the condition (33) is not fulfilled Fb): vo

The ;function P  from (22) is computed by numerical
integration; a two-dimensional gaussian grid of 225 points
ensures a good accuracy for any region of B°, with a small
expediture of time, For illustration, the factor P versus /3
is displayed in the fig. 5 for a given Bragg angle, detector

window and scan range and for different values ofg .
The averaged velocities <, <, from (22) can be calcu-~
lated in principle from the elastic constants. Alternatively,
these velocities can be considered as free parameters in the
structure refinement process. This can be done only if the factor
¥ is computed a priori as a function of two variables /3 and
W, . Indeed, for a data set measured at a given Bragg angle,
the detector aperture and the range of scan necessary to see

wholy the Bragg peak are (neglecting the contribution to reso-

lution of the sample dimensions and detector thickness):

N ’
{g = 5 G_a:: +(1Y),;‘L ' SO = 3 G_&: 4"17: Hu?95
- L
o =bdwm B \| §2/T, 2 /. dylgg : (35¢)

14

(35a,b)

o ——C s

- Fig. 4. The TDS profile I (w)
35( measured in the one-~dimensional
TOF scan for the detector aper-
ture y = 0.035, 8¢ = 0.060.

a, b, ¢ mean the first, 'second
and third region of f3 . The va~
lues of § 63 and & are the
seme as in fig, 2, The arrows
show the points U, end U4, ,

30

~T

1
005

Pige. 5. The factor Y versus f3 P
for Gp = 75°, Uy= 0.05, ¥p =

= 0,05, = 0.07 and seven valu-
es for f .

¥
08

07
08

05
Fig. 6. The factor kp versuaﬁ
for § = 0.05, By = 50°, y =

= 0.05, 30 0. 07 a.nd five values
for L, .

04
03
02

0.1

s A
Here 7,“ is the mosaic divergence of the sample (r@(.i , (\_S“z
are the dispergions of the angular distributions in the incidt;nt
beam (in and perpendicular to the diffraction plane)(\:is the

dispersion of its time distribution and is the TOF for

leo
the Bragg maximum, If the incident beam is formed by a neutron

guide, Bg. a3,

arrange to measure all the peaks (at a given 93 ) with

have a weak dependence on }\ but we can

constant X*o ’ XO o In general W,

cannot be taken constant

15



in>\

computed a priori with both /3 and U,

‘(except for (\m ~ A\ ), therefore the factor Y must be
variables. Hence it is
obtained & two dimensional table (an exemple is given in fig. 6)
from which the values of b needed in the minimiza'bion process
are extracted by interpolation.

It is a pleasure to acknowledge helpfull discussions with

my collegﬁe A.M.Balagurove
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[lonpana na Tennosoe auddrystoe paccesrue B 1udpaKTOMeTPUK
no MOTORY DpeMeHH IposeTa

E14-87-180

C ucnone3oBauueM TPAAHUUMOHHBIX MPHOIHIKEHHIT BHIYHCIEHDLI MOMPADKK HA TeIsio-
noe auddysHoe paccesmne (TAP) mna cnyuaa mudpaKiuimu HeATPOHOB NO METONY BpeMeHM
nponera (MBIT) na MoHokpucrauiax. Bxnan TP B cnyvae axcnepumenta o MBII 6yner
OTJIMYATBCA OT CIIy4as YTJIO-TUCIEepCHBHOTO MeToAa u3MepeHMA AMGPPAKIILT HelTpPoHOB,
4TO MOXeT ObITh OOBLACHEHO C MOMOIUBI0 PACCMOTpPEHHMA MMOBEPXHOCTH pacCesHHA, B cny-
yae MBII noBepxHOCTEL paccesiHWA ¥MeeT pa3/IMuHble TeOMETPHMH B Tpex ofnacTfax oTHO-
LIeHHIt MeXAy CKOPOCTBIO 3ByKa B KPHCTaJIJIe M CKOPOCTBIO HEHTPOHA; B YIIIO-NHCIIEPCHB-
HOM MeTolle MMEIOTCA TOJILKO JBe TakMe obGnactu. PaanHuue mexcny OBYMA MeToAaMH
u3MepeHua Audpaxkuuy HeHTPOHOB HCue3aeT, KOrJa NpOJETHOE pacCTOAHWME B Ciyyae
MBIT Mexny ob6pa3uoM ¥ AeTeKTOPOM MHOI'O MeHblle [OJIHOTO MPOJIETHOTO PACCTOAHMA.

PaGora seinonHeHa B Jlaboparopui HeitTpotHo#i dusuxn OUAH.

ﬂpenpmﬁ' O6BeRuHEHHOro KHCTHTYTA ANlepHBIX Hecnenopanui. [lyGua 1987

Popa N.C.

Correction for Thermal Diffuse Scattering
in the Time of Flight Neutron Diffraction

E14-87-180

Using traditional approximations, the correction for thermal diffuse scattering in the
neutron time-of-flight diffraction on monocrystals is calculated. This scattering measured
by the time-of-flight method differs from that measured by the angular dispersive diffrac-
tion method and this can be explained with the aid of the scattering surface. In time-of-
flight the scattering surface has different geometries in three regions of the ratio between
the sound velocity in crystal and the neutron velocity; in the angular dispersive method
there are only two such regions. The difference between the two methods disappears if
the flight path after sample is very small comparatively with the total flight path.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.
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