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1. INTRODUCTION

Recently, experimental surface relaxation data have become
available for @ - from’!/, The first attempt to explain these
data within the framework of an empirical lattice model was pub-
lished by Johnson 7%/.

At present, it is not clear whether interatomic potentials
can be deduced from first principles in the case of transition
metals 73/, Some applications of empirical interaction model in
b.c.c. transition metals indicate that the volume or angle de-
pendent term (describing many-body interaction) + central two-
body potential provide a satisfactory description of interacti-
on in bulk crystals/4£/ and lead also to a reasonable estimate

‘of surface cleavage energies’?/. However, more detailed studies

of surface defects are still at an earlier stage of development.
Since modelling of free surfaces is of a great significance in
many problems, the aim of the present study is to investigate
the possibility of applying an empiric¢al many body interaction
model in this field.

If one two-body (or many body) interatomic forces which obey
the equilibrium condition in a bulk crystal (e.g.) the zero -
stress conditions or including the non-zero initial stresses
arising from the volume dependent term) then generally, there
are unresolved forces at the surface which must be either com—
pensated by external forces or relaxed to obtain a free surface.
Note that in recent works’/10-12/ concerning crack extension si-
mulations, the external forces have been incorrectly used to
compensate unresolved forces at the surface. In paper /27, an ex-
ponentially decreasing function of pressure containing two free
abjustable parameters is supposed near the surface and the pa-
rameters are varied to obtain a reasonable agreement with expe-
rimental data for interplanar spacing near the surface. This
model gives either zero displacements or compression near the
surfacé. In the experiment however, also dilation was observed
in some crystalline directions /1/.

For some lattice defect simulations (such as crack extension),
use of the same type interaction model is tempted in bulk and
near the surface of a crystal. This paper looks at an applica-
tion of an empirical lattice model from this point of view.
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2. MODEL
2.1 Interatomic Interaction

Assuming that interaction between two atoms ! and {° depends
not only on their relative distance r2(f,£’) but also on their
local orientation in the lattice we may expand the potential
function ¥(r2, 6, ) is terms of spherical harmonics:

+1 +4
y(r?, 6,¢) = qSO(rg) +m=§_1<;b1m(r2)Y1m (9,¢)+...+m=2—4¢4m(r2)Y4m (60, +...

The first terms, which satisfy cubic lattice symmetry require-
ments are
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If we introduce unit vectors §1,§g and 33 which represent the

directions of main axes of the cubic crystal [100], [010] and
[001], we can write for the angle dependent function
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@, e
for a cartesian coordinate sytem parallel to the main cubic axes
[100], [010] and [001] . Within the framework of this empirical
model, the total energy per atom, equilibrium conditions and se-
cond order elastic constants in the bulk crystal take the
form /7/
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Note that all quantities which enter the expressions denoted by
subscript are related to the initial reference configuration
without initial stresses — see eq. (2.4).

This empirical model leads to following three important con-
sequences for a Bravais lattice with cubic symmetry:
(1) Y? () = 0 for all i and for each individual atom 4 placed in
the regular lattice position’/? .
(11i) The deviation from the Cauchy relations depends only on the
non—-central part G({) Y() of the potential:

1 o [e] e
Cip =Cyy =2P; = e )é G°(D) 1Yf2(f)r°1(ﬂ)l“2’(ﬂ) —Yn(E)rz(E) rz(t’)}.

0 . (2.5b)
(iii) The contribution of the non spherical term to the total
energy in reference configuration can be expressed by

1 Ezo 6
A R UAOREE AT (2.6)

where Pc is the Cauchy pressure given above. The relation (2.6)
holds independently of the choice of the shape G(®) and the
range of interaction. The proof is given in Appendix. The rela-
tion (2.6) shows, that the nonspherical part G()Y({) of the po-
tential represents a collective type of interaction in the lat-
tice. Its contribution to the total energy of the crystal is po-
sitive for all b.c.c. transition metals since the value Cy15Cyy
is positive for these metals.

Assuming a spherically distributed free electron gas, then
energy density arrising from kinetic energy of free electrons
ig 714/
wl =+A(—Q—-)—5/3

b0

Neglecting other volume dependent terms, we can write for Cauchy
pressure and for its contribution to the cohesive energy per

atom the following relations:
4 ¢ 10 4 9

2PC=012—'C44=—§—A, E =+—5—Pc60.

Of course, these values are too high because of neglecting the
exchange and correlation effects in free electron gas. It fol-
lows from tight binding model .that also d-band electrons contri-
bute to the Cauchy pressure’/?/, The correct magnitude of these
individual contributions is unknown for b.c.c transition me-
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tals /3/. Nevertheless, it is clear that the exchange energy of
free valence electrons 713/ and the term arrising from d-bands
electrons /3:9/ give a negative contribution to the energy, un-
like the non-spherical part of our potential.

In connection with the above mentioned facts, the contribution

E° = {;P 6, 1in our empirical model is possible to interpret
as a contrlbutlon arising from the kinetic energy of non-spheri-
cally distributed valence electrons.

Point defect studies 748/ the estimates of the surface clea-
vage energies/le and also surface relaxation data for a-Fe /!
indicate that except of the volume (density) or angle dependent
terms, the short-range two body forces should be used for b.c.c.
transition metals rather than long-range forces. Restricting the
interaction to the first nearest I and to the second next nearest
IT neighbours in the b.c.c lattice, we can write

=405 + 34, (2.7)
se ~ Ay =0 (2.8)
im~ I m- -’ ‘
Cpy = 2807 + 8ag + 2° La?, (2.9)

27 9,
., o5 1
Cyp = Rayy - — —GY, (2.10)
7 6,

C,, =2ay” + 2o Lgo_ 2 go (2.11)
44 1 o7 00 I 90 11

Here, due to symmetry of the relations (2.3)>(2.6), the follo-
wing notation can be used:

b =d+GY, Y =¢"+GY, ¢ =¢” +G"Y.

It may be seen that instead of the construction of two pair po-
tentials ¢(r2) and G(r®) in (2.3)-(2.6) we can search one effec-
tive interatomic potential (r®) and the two appropriate cons-—
tants G? and G?I obeying the relations (2.7)-(2.11). The intera-
tomic forces and force costants related to the atoms (0,f) are
then given by relations:

0 (0,0 = Ji‘—;’r-(—?i—e-)=2¢’(o,€)ra(o,£) £ Go0,07,0,0), (2.12)
a
: 324(0,0)
(0,0) = m—iel =24°(0,0) 8 4977 (0,0 ) (0,0)r 0, £) + (2.13
Yap org dr (0,038 ,g + 40 ‘a L ( )
+ G (0,0)Y,(0,0).
4

2.2. Interplanar Interaction

Our prellmlnagy numerical calculations and also the results
of other authors show, that the use of a classical two body
potential with one minimum leads to surface relaxation displa-.
cements of op€031te sign than'in experiment. Adding of a volu-
me dependent or angle dependent term (present) does not chan-
ge the situation.

To understand the reasons, it is very helpful to perform the
estimates of surface relaxation within the-framework of the mo-
del of interplanar interactions. In this paper we restrict our
interest to the three basic directions <100>, <110> and <I11>
of b.c.c. lattice. The estimates will be performed within the
framework of a harmonic approximation. In such an approach we
need to know only the first and the second derivatives of the
interplanar potential.

We will use the following notation to distinguish the space
and the interplanar interaction:

x - direction of relaxation, X = x
U; - interplanar potential

<100> , X <110> , X <111>

an
V; £ — - interplanar forces
axi
52
90y .
W; = - interplanar force constants
axi
where i = 1,2,3, denotes the interaction between the first,

the second and the third nearest planes and x; = X1, Xg, Xg...
denotes the corresponding interplanar spacing.

Due to the symmetry of the cubic lattice, the non—-zero unre-
solved forces arise only toward the direction perpendicular
to the surface in the case of the crystalographic directions
<001>, <110>, <I11>. The forces in these directions can be trans-
ferred through pure longitudinal mode of vibration which coxres-—
ponds to the uniaxial strain in the direction perpendicular to
the surface. For this reason, the interplanar interaction can
be simulated by linear chain illustrated in Fig.2. The range of
interplanar interaction is given by the range of interatomic -
(see Fig.1l). That means, if we consider. . the interaction between
the first neighbours I and the second neighbours II in the space
lattice, then we must consider 2 interacting planes in the <00I>
direction, only 1 interacting plane in the <I110> direction and
3 interacting planes in the <Il11> direction.

The correct transition from space interatomic to interplanar

. interaction must fulfill the equilibrium condition of mechanical

stability in the reference unrelaxed equldlstant configuration
of the infihite chain. '
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- Pig.1. Short-ranged interaction in b.c.c. lattice.

If we consider homogeneous uniaxial deformation of a finite
chain, then the change of energy 1s given by the relation

uN _ulN-(N =D Vidge) + (N -2) Vy(2d e) + (N - 3) Vg (3dge) + ...
F = DW @002 + N -2 Wy 2002 4 (N-3)Wy (3,12 5 . |,

The conditions of minimal energy in the underformed configura-
tions are

wrpy N N 2 N N

a(Ua:Uo) =0, 9 (I;cz-Uo) s for ¢= 0.

The first condition is fulfilled for a large N if

Vi +2Vp +3V3 4+ ...=0. (2.14)
The second condition is fulfilled for a large N if

AU/N = 3 a8 (0 4 aWy + W +..) = Lol 2q (2.15)

Here, dg denotes the equidistant interplanar spacing in the
referénce system for a given crystalographic direction <hkf>,
CShEE> 55 the elastic constant deteérmining the velocity of
longitudinal waves in this direction (pGE = Cihkb) and AUN
is the strain energy per atom.

6
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The individual interplanar potentials U, the forces V; and
the force constants Wy can be constructed by linear combinations
of the correspondig interatomic quantities in a given direction:

Vi - 5 23,8950, ¢ ),

W% . 3 oo (0, £) (2.16)

= a a y "I
t 7 g PaB Pay Yy i

. . . . . <hk £>
where a,g are directional cosines for the direction XasX .
The direction <001> - see Fig.l,
1,4,5,8 13

<001> R <001> DO

U1 = EE xll(O,L’l), Uy = %‘. ¢ (0, !32), U3 =0.

1
Equilibrium condition: V'
Unresolved forces: if the free surface is placed to the point O,
- see Fig.l, then unresolved forces on individual planes 0,1,
2,..., per atom are given by the sum of missing interactions:

F0<001>= FO,1°) + F(, 2") = V<1001>+ V_2<001>

<001>+ 2V2<?001>= 0.

F<001>= FQ, 1%) - V<001>
1 14
The direction <110>
<110> 8.7.9,12 <110>
;= X 0.0y, U, =o.
1
g . . .. 10>
Eguilibrium condition: V1<1 ®_ 0.
Unresolved forces: FSHO0O: g,
The direction <111>
14,7 0,12,13
1 o <i11> [nind]
Uit TS w00, ot TS o, by,
s fe
<11r> 8 <A11>
3
. . .. <111> <111> <111>
Equilibrium condition: Vi +2V, L7 +3Vg =0,

Unresolved forces:

<i11> ,, <111> <111> <111>

FO -—V1 +V2 +V3 ’

’

<1i1> <111> <i11>
F1 = V2 + V3

<1i1> <111>
F2 v 8

The interplanar forces and force constants can be determined from
(2.16) taking the sum over the same atoms as for the correspond- .
ing interplanar potentials U .



2.3. Unified Description of Interatomic
and Interplanar Interaction

The equations (2.8)-(2.11) concerning interatomic intera?t
ons and the forces and force constants for the interplanar in
teraction (2.16) can be re-writen in a form more suitable for
the construction of the empirical potential:

9G2, - 8GS = 90, (Cy5-C,y)/2 = 9P 0, (2.
(J?Ll’.._?.__.+§§._}.gi>)+(i‘!’___£.l—cf)=0. (2.
oy v3 9 2 Oty v e
2 32 3
LY L 2 2 16y = JaCh . - (2
dr a 1 3
0% _ L% 32 lgey.lyc, -0y, (2.
arlzl a dry 3 a 2 -
VOO o A4 oy A4 2.
arn arll
<001> _ 4 9 232 140 (2
Wl = 23012 a (8rn 9 a 1/
<001> a 1 _W/ .82 1o (2.
W =5(Cy1~Cp) + —( &7: 5 3 1)
Vi<11().> -0, (2.
W1<110>=%(011+012+2C44)' (2.
g<u>_ V3 V<“1>=\/3ﬂ-— Ve V3 ?L,(z
1 2 arn 2 arn 2 l'II
3 3(/1 32 1 o (2
gur _ads 2 %Y 2 G0,
12 9 I
1 2 aru .
3 oY 32 1
Q1 a - (ot == —GT ), (2.
W, = 5(C1; -Cyp) =28(Cyp - Cyy) + x, 9 a ) @
<1 3 1 0% _ 32 1ge, (2.
Wg ™" =580 a(arn 9 & 1

Note that the dashed terms in (2.18) have been added only on
base of symmetry considerations.
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face relaxation data, we may describe both surface effects and

bulk properties (2.17)-(2.20) of the crystal by means of one
effective potential

_ 2 o
‘//e“ =¢( )+G€Y(68,¢€)
which has many body character through the angle dependent part
GpYy.

After relaxation the unresolved forces at the surface must
vanish. Density change and the pressure S5;; near the surface
can be determined after relaxation from the new configuration
positions frl of individual atoms and from the relation

1 L4,
_2—6-0_ % 2¢I'(Ek,f)l‘l(fk,f)rm(fk,ﬂ) +

(2.21) - (2.21) it follows that if the quantities

o and G? are chosen in such a way that they obey the sur-

Sim (gk) =
(2.30)

+ G% Yi (gk'g) rm (zk,g)'

Here, Sim (fx) represents the pressure at the neighbourhood.of
the atom f; lying on the k—th plane near the surface. Because
the relaxation displacements disappear very quickly /1,187 yith

increasing distance from the surface, we can arrange both 8§ =0
near the surface.

3. RELAXATION

In this paper two procedures have been used to obtain surface
relaxation data. The first procedure is based on the above men-
tioned model of linear chain and the second one on molecular
dynamic simulations which have been performed on EC 1061 in JINR,

Dubna.

3.1. Method of Linear Chain

The relaxed system of N.plane 0,1,2,...N-1 modelled by linear
chain - see Fig.2, will have a new configuration Xg,» Xy, Xg... XN=1
which differs the original equidistant reference configuration
in infinite crystal. The total potential energy Urkxi) of the
linear chain may be expanded in terms of displacement § = x, -x{.

Within the framework of harmonic approximation, the coef-
ficients in Taylor series are just interplanar forces V,; and in-

terplanar force constants Wi given above. From the requirements

haUN/ax1=() which represent the condition of minimum UMN(x;) in

the new configuration {x,}, we obtain a system of N-linear al-
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Fig.2. Model of linear chain .

gebraic equations for the displacement §4,84,..., 8y _; of indi-
vidual plane. For a large N, the solution leads to the continued
fraction. The solution procedure is described more precisely
n’18/. As a result it was found that the convergence of soluti-
on is very fast with respect to N. A reasonable estimate for the
planar displacement can be obtained even for a small value of N.
Let us discuss the relaxation in the directions <001>, <110>
and <111>.

The most simple case is the <110> direction. There are zero-un-

resolved forces on each individual plane and thus, all displa-
cements are zero also.

The direction <001>.
Taking N=5, it means the plane 0,1,2,3,4 in Fig.2, then it fol-
lows from symmetry considerations that &4 =-8g, 83 =-8; ,8, =0.
The displacements 8,,6 can be evaluated from the system of equ-

ations
Wi W, , ~Wy 8¢ Fo -Ve
“Wy, o oW+ Wy) 5,/ \Fy) \+vy /)~ (3.1

The necessary conditions of stability in the new configuration
is

Vo(d1-89) >0, (3.2)
where
8y -8y = Vg(W +3Wy)/DET. (3.3)

It is obvious that the condition (3.2) can be fulfilled either
if Vg >0 and (8; -85) > 0 or if V, <0 and (61-8y) < 0. It

follows from experlment/l/ that relative displacement & = 8y - -
-9 -0.02 & for a-iron. That means, the requirement

adl ‘<0 (3(4)
8:11

concerning the potential ¢(r?) should be fulfilled.
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The direction <I11>.
Taking N=7, it-.means the planes 0,1,2,3,4,5,6 in Fig.2, then
0g =-8¢, 85==81,84 =-8g, 83 =0. The displacements 85,5
and 02 can be evaluated from

W, +Wo +Wg , Wy, -Wy %o\ Foy

-Wy AW, + W, ,

Wyt Ws 51)
~ Wy, W+ Wg, oW, +3W, + W,/ \,

Vi+Vo+ Vg
Fy )= Vo + Vg
Fy ) Yy
The relative displacements between the nearest plane are

33 ,
5,3, :.‘./2_5.”_ %i(w1+3w2+2w3)(w2+w3) ¢ WyW 4 I/DET, (3.5)

51-52 = Y& 9 {w 4 Wy + Wg)(2W, +4Wg+ BW ) — (W, + Wip) I/DET,
ar (3.6)

the stability condition in the first approximation is
' >0,

50(V1+V2 +V3) 4 51'(V2+V3) +82V3

and it can be re-writen as

\/3 (l, (81 —52)>0 (37)
9y 111>

The relative displacement 810 has been only determined in the

experiment 711/ for the direction <111 >:

11> <111>
5fé =(01 -80 ) = —0.1315 in a-Te.

It follows ‘from the relations (3.5),(3.6) and (3.7) that we may
comply with both stability condition and experimental observa-
tion 1f the relation (3.4) is fulfilled.

3.2. Molecular Dynamic Simulations

In this method a cluster of M atoms with a given boundary
conditions is considered. The atoms interact via a prescribed
potential ¢. The problem is to integrate the equations of moti-
on
mé, (f) = % Y (15,0)
for each individual atom £, startlnpofrom the initial conditi-
ons for displacements 84, t =0) = 8,() and for the veloci-

ties 8q(f , t =0) = 05(f). Adding a damping term into the equa-
tions of motion
md, (£) + C.5,(0) = §'¢a(2’,2) (3.8)

we may obtain static solution of the problem using a suitable
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A + A + A + A 2+ A
+ A+ A + A + A+
A+ A + A + A + A
+ A + A + A + A +
A + A + A + A + A ,
+ A+ A+ A+ A+ X3 1001}
A+ A+ A+ A+ A
+ A + A 4+ A + A +
A+ A + A+ A + A
+ A+ A + A + A+ _
A + A + A + A + A X, (110]
+ A + A + A + A +
A+ A + A + A + A
+ A + A + A + A +
A+ A + A + A + A
+ A+ A + A + A +
A+ A + A + A + A
+ A + A+ A+ A+
A + A + A + A + A
Fig.3. Cluster for molecular dynamic simulations.

value of damping. (This is the so-called method of dynamical re-
laxation). In this paper central difference method is used for
numerical integration and the damping term is chosen as

C=am « =2f,wr,

where a is the damping coefficient, &, weighting factor and w,
the angular frequency of r —th mode vibration.

We have performed the numerical simulations of <001> surface
relaxation in @ - Fe with a claster illustrated in Fig.3. The
atoms denoted by + lie in the plane (110), identical with the
plane of paper. The atoms denoted by A represent in a fact two
layer of atoms lying below and above the plane of paper. For
example, it is the atom 5 and 6 in Fig.l, projected on the plane
(110). The boundaries in the directions <001> were free of ex-—
ternal forces. At the boundaries <I110> and <110>, the mirror for-
ces have been applied to simulate an infinite dimensions in the-
se directions.

The number N of the (001) plane in the cluster was changed
and damping coefficient @ has been chosen in dependence on this
number. The time integration step At = 0.1-1013 gsec was used in
all presented calculations. The initial level of unresolved for-
ces at the (001) surface was about 10 N. The model was conside-

12

red to have converged when resultant force on individual atoms
was about 10 ‘% N.

3.3. Numerical Results

We have performed the numerical calculations with three va-
rious interatomic potentials for a - Fe. .
(A) Central pair potential ¥ =¢(r) = -d)® (cg+cyr + cor?) .
The parameters of the potential have following values: a=2.86h/ A
d = 1.358, ¢, = 0.4326586-10% J/m?} -0.29155-101% J/m3
Co = 0.4116859 102! J/m?. They have been determined from the re-
lations (2.8)-(2.10) taking G®=GP = 0 and Ciy= 2.43-10'" N/m?
and Cpp = 1.38-10!! N/m®. The dynamical relaxation has been per-
formed for the following number of (001) plane:
(i) N = 5. The value 8;g=(8; ~Jg ) <00L> = +0.098 was obtained
after 30ty time integration step (denoted by NSTEP in Fig.?—7)
using damping coefficient ayy = 0.609-10'% sec™! for the first
mode @1 of vibration. The potential energy of the cluster was
in initial configuration E, = -0.1675.10°%8 J and in final re-
laxed configuration E = -0.1680.10718 J,
(ii) N = 19. The value 5T§1> = +0.089A was obtained after about
60ty time integration step using ay,. = 0.2436.101% sec™! for

Ccq =

06 L

@(r)
(10™) : > r(10°m)
-05 ; ﬂp >0
- arﬂ
) il
-10 L

Fig.4. Central pair potential ¥(r) =(t -d)2(cy+c 1 +c,1%)

for a - Fe,
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7 10 20 30 40 50 NSTEP
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Fig.5. Results of dynamical relaxation in the direction
<001> with the potential () <llustrated in Fig.4.

the highest mode wyax of vibration. The value ay,=0.1354-1010 sec1
fore the lowest mode does not lead to the stationary solution -
see Fig.5. It may be seen that the convergence of solution with
respect to N is very fast, the solutions for N=5 and N=19 lie
close to each other. The potential energy has changed from E, =

= -0.7377.1071® o E = - 0.7382.10718 7,

Comparison with the model of linear chain

If we evaluate the value o¢ /oty =3¢/ for the central pair
potential ¢(r), the relative di'spieicement 819 in the direction
<0Ql> can be obtained from the equations (3.3) and (2.21-2.23):
8?801>= +0.088K for N=5. This estimate is in a very good agree-—
ment with the aboVe given simulation results but does not agree
with observed value 51%)01): -0.02 K. The reason is the positive

value of a¢/arn for the used potential - see Fig.4.

(B) Noncentral potential ¢ = ¢(r) + G(r) Y(6, é)

Here ¢(r) is the Morse potential DB(BeTzar-% 'y and G(r) =

=c(r —ro)e"r To The parameters D, B, a and {,r, are given
for a~- Fe in/8/ . This type of interatomic potential obeys all
equations (2.7)-(2.11).
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(A%) |
010 L
i N=5 XyiN
005L
- 1p 2p 39 4‘O NSTEP
-002| EXPERIMENT

Fig.6. Results of dynamical relaration in the direction
<001> with non-central petential Y(, 6,4) = DBl Be =0T _
-2 ]+ C(r ~r ) e MY (0, ¢).

N=5. The value ngop = +0.06 was obtained by the method of
dynamic relaxation using ay;y = 0.609-101% sec ™! - see Fig.6.
For this potential, the second derivative dy/dry; is again posi-
tive - see /8/ and that is a reason of the discrepance with ex-
periment /Y. Thus, adding of non-spherical term does not improve
the situation when it leads to a positive value dy/dry of the
total potential.

(c) Oscillating potential ¥ = d;.(l') + G%Y(()! , ¢g )

_ Here, the oscillating part of the potential has been taken as
¢ = (:4‘(r—b)4 - Co(r —b)2 +Cq. The parameters of the po-
tential have been fitted using the equation (2.8) of zero initi-
al pressure and using the equation for bulk modulus B= (Cqy; +

+ 2C12 )/3 which is obtained by linear combination of (2.9) and
(2.10). The parameter b was chosen nearly at the middle point
between the first and the second neighbours in b.c.c. lattice.
The numerical values of the parameters are: ¢, =0.1832:10% J/m*,
€g = 0.2195-10%2 J/m2, b= 2.679PA. The depth ¢, of the poten-
tial can be chosen either according to vacancy formation energy
or according to surface cleavage energy. This value does not af-
fect the relaxation - see eq.(2.17)-(2.29). With the above gi-
ven potential, following calculations have been performed:
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after relaxation.
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R where the value of
G° has been taken
as G§f= o, G} = f,- As may be seen from Fig.7, the value
83901> = -0.0336 A was obtained using a = 0.0600 1018 gec 1.
The potential energy has changed from E, = -0.7496 10 718 o
= -0.7593-10718 3.
(iii) N=19 and ¥ = ¢(@® + GY(0p, #p)» where G} = 0 and Gfj =
=p, 6, . The value 3?80B>= -0.0357 A was obtained using damping
coefficient ayax = 0.2436-1015 sec~!, The potential energy has
changed from E = -0.4163.10717 to E = -0.4173-10 17 3.
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4. CONCLUSIONS

The presented models of interatomic space interaction and
interplanar interaction in the crystalographic directions <001>,
<110> and <111> show that it is possible to describe success-—
fully, both bulk properties and surface relaxation data in a-iron
if the second derivative of interatomic potential at the place
of the second nearest neighbours in b.c.c. lattice is negative.

Three various types of interatomic potentials have been tes-
ted using non linear molecular dynamic simulations and the mo-

i6

del of linear chain. The numerical results indicate that with
oscillating potential obeying the condition d¢/dry< 0, a reaso-
nable agreement with the surface relaxation data in a- Fe can be
achieved if an appropriate values of non-spherically term

G} Y(fp,4¢) arc taken into account. The work will be continued
in this field.

The author thanks Dr.V.K.Fedjanin, G.M.Gavrilenko, I.Mertig
and N.M.Plakida for valuable discussions.

Appendix

The second derivatives Yy in eq.(2.5) are given’/7/ by the

relation
1.2,3 16

12,3
4 T a4 24 4 3
Y, ==-—8; £ t, + =0 2 T = —TI;T 0y -
ij ' I kT Ty K : i'k9j
(A1)
1 3 12

Taking into account (A.1), (2.2) and performing partial summa-
tion over the first I, second II, third III, etc., neighbours
in the lattice, the relations (2.5) and (2.3) turn out

2 .4 .4, .4 302
1 po. ¢ g Tg#lTe+lg  °T1,
(Cyp —Cyqe) 20, ='§§G1~i 5 ~ l‘2)
(A2)
2 \
43 rdergerd 3r3
+ G 2 ( - ) e b
I I 12 r 4 2
4, 4 p 4 ph, gt R
I{+Ig+rlg 3 o itfg v fs 3 }
E;:%icgz(————r——-~-—-———)+cu 5 (g )+ d,
1
(A3)

where r =r(f) and r; =r, () for i = 1,2 and 3. It is easy to
verify that in every centrosymmetric cubic lattice the relation

4. ;4 4 2
rﬁ+r3 + r; 3, 3 4§ rferge g _ 3 ) (A4)
(et 2 ) = 2L ( ) :
A T 4 5 10 g r® rd r

holds independently on the range of interaction fy=0y, €y, frp-..
It is obvious from (A4) that (A3) can be written using (A2) as:

1 3 _
ES =5 z‘iG(Z)Y(Z):—l-a-(clz—c44)200_ p 6.

oo

o .
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MaxoBa A. E14-86-681
NloBepxXHOCTHAA peJlaKCalusa B a —xeje3se

B pafoTe mpeiaraeTrcs sMOMpHYecKas MOOellb B3auMoJeicTBUA
B 0.I[.K. pemeTKe xejle3a, KOTOpas IO3BOJiseT ONHCHBATH [OBEPXHOCT-]
Hble SABJIEHHA M OJHOBDEMEeHHO ABJIeHHA BHYTPH KpHCTaula. B ciydae
xeJjie3a @ IO0KasaHo, 4YTO OjIA COIJlacHs C 3KcHepHMeHTANbHBIMH OAaHHBI~
MM O TTOBEpXHOCTHOH perakcalHH HeoOXOOuUMO IPHMEeHHTH 3ddeKTHBHbBI
HOTeHIHAJl B3auMOOeHCTBHA, OoOnagawmyi OTPHIATEeJIBHOH TNpOH3BOOHOMH
B MecTe BTOpHX Onmkadmux cocegeil o0.1.K. pemeTKH. YHCIIeHHHIEe pe-—
3YyJIBTATH OBUIM TIOJIyYEeHb B paMKax MOOEeNIHM JIMHEHHOH LEeNOo4YKH M HejlH-
HEeHHOH MOJIeKYJIAPHON OUHAMHUKH.

Pa6oTra BeimonHeHa B JlabopaTopuu TeopeTuueckoil ¢pusuku OUAH.

Coobienne O6bequHeHHOro WHCTHTYTa AMEPHbIX HccneqoBaHui. JlyGHa 1986

rear chain and non-linear molecular dynamic simulations.

Machova A. E14-86-681
Surface Relaxation in a-Iron

An empirical model of interaction in b.c.c. lattice is sug~
gested. The model allows one to describe both surface effects
and bulk properties of the crystal. It is shown that to obtain
an agreement with surface relaxation data in a - Fe, the effec-
tive interatomic potential with a negative derivative at the
place of the second nearest neighbours is required. Some numeri-
cal results have been obtained for @ — Fe using the model of 1i-

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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