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1. INTRODUCTION 

Recently, experimental surface relaxation data have become 
available for a - from 111.. The f r s t attempt to explain theseí 

data within the framework of an empirical lattice model was pub­
lished by Johnson 12/. 

At present, it is not clear whether interatomic potentials 
~:,' can be deduced from first principIes in the case of transition 

metaIs 13/. Some applications of empirical interaction model in 
b.c.c. transition metaIs indicate that the volume or angle de­
pendent term (describing many-body interaction) + central two­
body potential provide a satisfactory description of interacti­h 

" 8 1 on in bulk crystals / 4 - and lead also to a reasonable estimate 
'of surface cleavage energies / 9/. However, more detailed studies 
of surface defects are still at an earlier stage of development. 
Since modelling of free surfaces is of a great significance in 
many problems, the aim of the present study is to investigate 

\ 

i•. the possibility of applying an empiriéal many body interaction 
model in this field. 

If one two-body (or many body) interatomic forces which obey 
the equilibrium condition in a bulk crystal (e.g.) the zero ­
stress conditions or including the non-zero initial stresses 
arising from the volume dependent term) then generally, there 
are unresolved forces at the surface which must be either com­
pensated by externaI forces or relaxed to obtain a free surface. 

i 

t 
Note that i~ recent works/l0-121 concerning crack extension si­
mulations, the externaI forces have been incorrectly used to 
compensate unresolved forces at the Qurface. In paper 12/"an ex­
ponentially decreasing function of pressure containing two freeI, 

f abjustable parameters is supposed near the surface and the pa­

'\ rameters are varied to obtain a reasonable agreement with expe­
rimental data for interplanar spacing near the surface. This 
model gives either zero displacements or compression near the 

I surfacé. In the experiment however, also dilation was observed 
'\ .. in some crystalline directions 11/. 

_. __ ...,._~ I For some lattice defect simulations (such as crack extension),
------,-..~------------

use of the same type interaction model is tempted in bulk and 
near the surface of a crystal. This paper looks at an applica­© 06'be~HHeHHbIH '~CTHTYT RAepHbIX HCCneAOOmlHH ,ny6nn. 1080. 
tion of an empirical lattice model from this poin~ of view. 

'~"heJ!hl1e'tiH~n HHCTm)'T 1 
tia~~!iMX ~U."l":JlO!HlUlJa
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2. MODEL 

2.1 Interatomic lnteraction 

Assuming that interaction between two atoms f and f' depends 
not only ou their relative distance r2(f,~') but also on their 
local orientation in the lattice we may expand the potential 
functíon t/J(r 2 , 0, cP) is terms o f spherical harmonics: 

+1 +4
 
1/;(r2 , O,ep) = 4>0(r 2) + ~. c/J (r 2) Y1 (e,4»+ •••+ ~ c/J (r2 ) Y4 (O,c/J)+ •••
 

m==- 1 1m m rn= -4 4m rn 

The f r s t. terms, which satisfy cub í c lattice symmetry require­í 

ments are 

t/J(r 2, O,c/J) = c/J(r 2) + 0(r2 ) lY4,-4 + Y 4,4 +V 1 Y4,0}= 1;(r2 
) +G(r2) Y(0 ,<;b>.

54 
lf we introduce unit vectors ;1,;2 and ;3 which represent the 
direc~ions of main axe~ of the cubic crystal [\00], [0\0] and 
[001], we can write· for the angle dependent function 

~ ~ 4 ~~ 4 -!' ~ ,4
(8 r ' r(f , f')) + (s 2 • r(f , f')) + (8 3 • r (f , f )) 3 

Y(f. f') = ------- -5 (2. 1) 

r 4(f •e' ) 

or 

r tCf , e') + r ~ ce ,e') + r ~ Cf , f') 3 (2.2)Y(f , f') ---------- -"5 
r 4 (f , e') 

for a cartesian coor-dinate sytem parallel to the main cubic axes 
[100], [010] and [001] . wi t h n the framework of this empiricalí 

model~ the total energy per atom, equilibrium conditions and se­
cond order elastic constants in the bulk crystal take the 
form 171 

f ~ O
 

E 1 - 1/; (f ) -- c/J(e) + ~ 1 O(OY(O'
 
1 f f:. <i 1 t~O 

(2.3):= ~ = L ,
2 e 2 f 

o 1 f ~o ° ° 1
f~o 

S=--~1/;r=- I. 2 (c/J' + O'Y ) r o r o + O° Y,or ° (2.4)
f o i m 11m'ím 28 f 1 m 20

00 

\ If C 11 = [1111] 0, C 12 = ~1212]0, C 44 = ~- ([ 1122] o + [ 12L21 O) , (2.5a)

2
 

. \ 

wher~ 

f ~ o 
I ílmnl o ~ 4 (<;6" + O"· Y) r° [0. rO r? + G o. Y o r o r of o 1 J rn n lj m n 

2 

:' 

and 

cf>' == ( at) o , O' == ( ao ) o' c/J n == (j 2'c/J 9 ) o , O" == ( à~ 2) o , 
2ar 2 ar 2 a(r ) ~ a(r ) 

2 
Y ° ( ay) Y° ( à Y )

1 = -- o' iJ = ------- O ar i ar i ar j 

Note that all quantities which ente~ the expressions denoted by 
subscript are related to the initial reference configuration 
wi thout initial stresses - see eq. (2.4). 

This empirical model leads to following three important con­
sequences for a Bravais lattice with cubic symmetry: 
(i) Y? (f) = O for all i and for each individual atom f placed in 

1 ' I
the regular lattice position/7 

(ii) The deviation from the Cauchy relations depends only on the 
non-central part O (f) Y (f) of the potential: 

C12 -C 44 =2P = _1_ 2 0°(0 lY12(f)ro1<e)r~(O -Y~l(Or~(Or~(f)}. c 
40O f , ( 2 • 5b ) 

(iii) The contribution of the non spherical term to the total 
energy in reference configuration can be expressed by 

'1 f~o 6 
E; = 2" 1 0(0 y(n = + SP 0 0 ' (2.6)c 

where Pc is the Cauchy pressure given above. The relation (2.6) 
holds independently of the choice of the shape 0(r2 ) and the 
range of interaction. The proof is given in Appendix. The rela­
tion (2.6) shows, that the nonspherical part O(f)Y(f) of the po­
tential represents a collective type of interaçtion in the lat ­
tice. lts contribution to the total energy of the crystal is po­
sitive for all b.c.c~ transition metals since the value C12-C4 4 
is positive for these metals. 

Assuming a spherically distributed free electron gas, then 
energy density arrising from kinetic energy of free electrons 
is /141 

e o - 513 
úJ =+A(-) . 

°0 
Neglecting other volume dependent terms, we can write for Cauchy 
pressure and for its contribution to the cohesive energy per 
atom the following relations: 

. f f 10 f 9 
2P c = C12 - C 44 = '"9A • E = + -5Pc °O • 

Of course, these values are toa high because of neglecting the 
exchange and correlation effects in free electron gas. It fol­

ílows from t gh t binding model .that also d-band electrons contri ­
bute to the Cauchy pressure / 9 / . The correct magnitude of these 
individual contributions is unknown for b.c.c transition me­

3 



tals /3/. Nevertheless, it is clear that the exchan~e energy of 
free valence electrons /13/ and the term arrising from d-bands 
electrons /3,9/ give a negative contribution to the ene r gy , un­
like the non-spherical part of our potential. 

In connection with the above mentioned facts, the contribution 

E ~ == + -} Pc eo in our empirical mode I is possible to interpret 
as a contribution arising from the kinetic ene~gy of non-spheri­
cally distributed valence electrons. 

Point defect studies /4-6/, the estimates of the surface clea­
vage energies/ 16 / and also surface relaxation data for a-Fe/ 1/ 

indicate that except of the volume (density) or angle dependent 
terms, the short-range two body forces should be used for b.c.c. 
transition metals rather than long-range forces. Restricting the 
interaction to the first nearest I and to the second next nearest 
11 neighbours in the b.c.c lattice, we can write 

(2.7)E 1 = 4t/J I + 3 t/J II ' 

(2.8)S fm == : (t/J; + t/J il ) °, 
2 

6 
1 ° 

C11 == 2a t/J~" + Ba t/J ii + - -GI , (2.9) 
27 eo 

0 12 2a t/Jí' 2 5 

-
1 G O 

I (2.10)
27 eo 

4 
O = .1. " + 2 1 G ° - 2 G° (2. I 1) 2a 'fi -- - -­44 I 27 eo I eo 11 

Here,'due to symmetry of the relations (2.3)~(2.6), the follo­
wing notation can be used: 

t/J == cP + GY, lj;" = cP' + G' Y , t/J"= cP" +G"Y. 

It may be seen that instead of the construction of two pair po­
tentials ~~2) and G~2) in (2.3)-(2.6) we can search one effec­
tive interatomic potential t/J~2) and the two appropriate cons­
tants G~ and G~I obeying the relations (2.7)-(2. lI). The intera­
tomic forces and force costants related to the atoms (O,e) are 
then given by relations: 

t/Ja(O,f) = ,at/J(o.!.!J=2t/J'(O,flr + GO(O,f)Ya(O,f) ,a(O,e) (2. 12)ar a 

, a2t/J(O o
t/J (O,e) ____'_ ==2t/J'(O,e)a Q +4t/J"(O,e)r (O,e)r "/0, e) + (2.13)

af3 ar ar at: a /i'
a f3 

+ GO (O,f) Y
a{3(O,e). 

4 

2.2. Interplanar Interaction 

Our preliminar~ numerical calculations and also the results 
of other authors 17/ show, that the use of a classical two body 
potential with one minimum leads to surface relaxation displa-. 
cements of op~osite sign than'in' experimento Adding of a volu­
me dependent! 7/ or angle dependent term (present) does not chan­
ge the situation. 

To understand the reasons, it is very helpful to perform the 
estimates of surface relaxation within the·framework of the mo­
del of interplanar interactions. In this paper we restrict our 
interest to the three basic directions <100>, <110> and ~III> 

of b.c.c. lattice. The estimates will be performed within the 
framework of a harmonic approximation. In such an approach we 
need to know only the first and the second derivatives of the 
interplanar potential. 

We will use the following notation to distinguish t~e space 
and the interplanar interaction:
 
x - direc tion of relaxation, x = x <100> , x <110> , x <111 >
 
Ui - interplanar potential
 

aUi 
Vi = -- - interplanar f or c e s­

ax i 

a2ui
W. = - interplanar force constants 

1 ax2 
i 

where i ~ 1,2,3, ... denotes the interaction between the first, 
the second and the third nearest planes and xi == xl. x2' xs ... 
denotes the corresponding interplanar spacing. 

Due to the symmetry of the cubic lattice, the non-zero unre­
solved forces arise only toward the direction perpendicular 
to the surface in the case of the crystalographic directions 
<001>, <I lO>, <lI I>. The forces in these directions can be trans­
ferred through' pure longitudinal IDode of vibration which co~res­
ponds to the uniaxial strain in the direction perpendicular to 
the surface. For this reason, the interplanar interaction can 
be simulated by linear chain illustrated in Fig.2. The range of 
interplanar interaction is given by the range of interatomic ­
(see Fig. I). That means, if we consider.the interaction between 
the first neighbours I and the second neighbours 11 in the space 
lattice, then we must consider 2 interacting planes in the <001> 
direction, only I interacting plane in the <110> direction and 
3 \nteracting planes in the <I lI> direction. 

The correct transition from space interatomic to interplanar 
interaction must fulfill the equilibrium condition of mechanical 
stability in the reference unrelaxed equidistant confi~uration 

of the infinite chain. 

:~ 
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X 
3-X<OO1> 

X<110> 
14 

2.. 7' I • 

x1=f1OO>	 

;>«111> 

11 9 

X2af010> 

Fig.1. ShoPt-ranged interaction in b.c.c. lattice. 

lf we consider homogeneous uniaxial deformation of a finite
 
chain, then the change of energy is given by the relation
 

U N - U ~ = (N - 1) VI(d Od + (N - 2) V2 (2d oe ) + (N - 3) V3 (3d Od + ..... 

+ ~ l(N-l)W 1(d od 2 + (N-2)W2(2dod2+(N-3)W3(3dod2+ ... I-

The conditions of minin1al energy in the underforrned configura­
tions are 

a(u N_ U~) 
= 0, > O , for (= o.a( 

The first condition is fulfilled for a large N if 

V1 + 2V2 + 3V3 + ... = O. (2. 14) 
The	 second condition is fulfilled for a large N if 
AU IN 1 2 2 ( 1 <hkf> 2 
Ll c:: ~ doe W1 + 4W2 + 9W3 + ... ) ="]" CL (e o . ( 2. 15) 

Here, do denotes the equidistant interplanar spacing in the 
reference system for a given crystalographic direction <hkE>, 
C'i hk f 

> is the elastic constant determining the velocity of 
longitudinal waves in this direction (pel = Ci:hkf » and ÔU;N 
is the strain energy per atom. 
6 

The individual interplanar potentials Ui, the forces Vi and 
the force constants Wi can be constructed by linear combinations 
of the eorrespondig 'interatomic quantities in a given direction: 

V~ =	 ~ aa{3WI3(O,.f i ),
 
fi
 

(2.16)
Waa = 2,	 a r.J a WQ (O, f i' ) , 

i fi	 ats a-y fJY 

d .	 . I . f or d . 1rect1on. Xa= X<hk f>where aal3 are 1rect10na COS1nes the • 
The direction <001> - see Fig. 1, 

<001> 1,4,5,6 <001> 13 <001>
 
U 1 = 2, 1/1(0, f 1 ) , U2 = s t/J(O, E ), U =0.


2 3f 1 ~
 
uu, . d i V.<OOl> 2V<OOl> O
EqU1 1 r i um con r t i on : 1 + 2 =.
 

Unresolved forces: if the free surface is placed to the point O,
 
- see Fig.1, then unresolved forces on individual planes 0,1,
 
2, ... , per atom are given by the sum of missing interactions:
 

F~OOl>= F(O, 1') + F(O,2') = Vi001\ V;OOl> 

F <001> = F(l, 1') V<001> 
1 2 

The direction <110> 
<110> 6,7.9,12 .<110> 

li::U 1 =2, t/J(O, f ) , U 2 O.
 
fI
 

. I . b . d í V <110>
EgU1 1 r1um con 1t1on: 1 = O.
 
Unresolved forces: F <110>= O.
 
The direction <111> °
 

<111>	 1,4:,7 <111> 0,12,13 
UI::	 I W(O, f 1) , U'2 = I 1/1 (O, E2 ),
 

f 1 f 2
 

<111> 6 <111>
 
U 3 = I t/J (O, f 3 ) , U 4 = O •
 

f3
 
... .. V<l11> 2V<111> V<111>
Equ í Lí.b r i.um cond i t i cn: 1 + 2' + 3 3 = O. 

Unresolved forces: 

F <111>_ V <111> V<111> V <111> 
0-1 +2 + 3 ' 

F '<l 11>_ V <111> V·<lll> 
1 - 2 + 3 ' 

F <111>_ V <111> 
2 - 3 ' 

The interplanar forces and force constants can be determined f!om 
(2.16) taking the sum over the same atoms as for the correspond­
ing interplanar potentials Ui' 

7 



2.3.	 Unified Description of Interatomic
 
and Interplanar Interaction
 

The equations (2.8)-(2. I I) concerning interatomic interacti ­
ons and the forces and force constants for the interplanar in­
teraction (2.16) can be re-writen in a form more suitable for 
the construction of the empirical potential: 

(2.17)90 11- SGI = 900 (C 12 - C 44) /2 = 9P c O o ' 

(at/J	 _2_ + ~ -:'0°) + (!.Y!.- 32 .!...a 0) = O , (2. 18)
"9 a Iar I J3 9 a I ar11 

n 1 àt/J 2 32 1 ° 3	 (2. 19)(a _ _(. _ + _ - GI) = -aC12
 
arf a ~..)3 9 a 2
 

a~	 _~(_al/J_ _ 32_ ...!:-Gr) == .1.. a (C11 - C 12) (2.20) 
. a 9 a 2 .ár 2 a rllII 

V <001> aljJV;OOl> == _ 2.!.L 2 ==+- (2.21 ) 
ar 11 ar II 

<001>	 _ 2 C 4 ( .at/J 32 1 o 0) (2.22)W 1 -a 12 - - - - - - - y , , a arn 9 a 

·<00 1>	 _ a (C C) 1 (al/J 32 1 G° ) (2.23)W 2 - F 11 - 12 + - --- - - - I' ,
a ar II 9 a 

V <l1~> - O	 (2.24)
1 -, 

<110> a	 (2.25)W1 == - (C 11 + C 12 + 2C 44 ) . 
2 

V <111> = _ v3 _ .!.L V <111> = V3-~ • V <111> = -~ at/J 12. 26) 
1 2 aru' 2 ar11 3 2 arII 

W<1l1> = ~C _ .!.(.1L _~ ..!:-OO) (2.27) 
1 2 12 a a 9 a I ' f U 

<1 11> a	 3 iJt/J 32 1 ° W = 2(C 11 -C 12) -2a(C I 2 -C 4 4 ) + a(~- -- -OI)' (2.28)
2	 ul 9 a 

II 

W<11~1> = -ª- a C _.l. (.2L _~ .l. G o ).	 ( 2 • 29) 
3 2 12 a ar 9 a I

II 
Note that the dashed terms in (2.18) have been added only on the 
base of syrnmetry considerations. 

8 

From eq. (2.21) - (2.21) it follows that if the quantities 

(~) and G~ are chosen in such a way that they obey the sur­ar l l O 

face relaxation data, we may describe both surface effects and
 
bulk propertíes (2.17)-(2.20) of the crystal by means of one
 
effectiv€ potential
 

l/Jerr	 = t/I (r 2) + G eY(Of ' efJ f ) 

which has many body character through the angle dependent part
 
GfYf'
 

After relaxation the unresolved forces at the surface must
 
vanish. Density change and the pressure Sim near the surface
 
can be determined after relaxation from the new configuration
 
positions lrml of individual atoms and from the relatio~
 

f *f k
 
Sim (f k) = 2~0 f 2t/1"(f k,i)ri «, f) rm(fk·f) +
 

(2.30) 

+ Gf Yi (f k ,f ) r m (f k' f) . 

Her€, Sim(f k ) represents the pressure at the neighbourhood of 
the atom fk lying on the k-th plane near the surface. Because 
the relaxation displacements disappear very qu ckLy /1,18/ wi thí 

increasing distance from the svrface, we can arrange both S~m~O 

near	 the surface. 

3. RELAXATION 

In this paper two procedures have been used to obtain surface 
relaxation data. The first procedure 1S based on the above men­
tioned model of linear chain and the second one on molecular 
dynamic simulations which have been performed on EC 1061 in JINR, 
'Dubna. 

3.1.	 Method of Linear Chain 

The relaxed system of N.plane 0,1,2, ... N-I modelled by linear 
chain - see Fig.2, will have a new conf í gura t í.on X o• xl' X2 " ' X N - l 

which differs the original equidistant reference configuration 
in infinite crystal. The total potential energy UN(Xi) of the 
linear chain may be expanded in terms of displacement 8i = xi -xi. 

Within t~e framework of harmonic approximation, the coef­
ficients in Taylor series are just interplanar forces Vi and in­
terplanar force constants W. given above. From the requirements _au N/aXi == O which represent 

1 
the condition of minimum UN(xi) in 

the new configuration {xi I, we obtain a system of N-linear al ­

9 



x2 

x3 

do 

+x<hkl>5' 4' 3' 2' l' O 1 2 3 4 5 
FiCJ· 2. ".fede L Df linear chai.n , 

ge bra i c equations for the d i s p Lac emen t 00' °1 ' ••• , °N _ 1 of indi­
vidual plane. For a large N, the solution leads to the continued 
fraction. The solution procedure is described more precisely 
in/ 18/. As a result it was found that the convergence of soluti ­
on is very fast with respect to N. A reasonable estimate for thc 
planar displacement can be obtained even for a small value of N. 

Let us discuss the relaxation in the directions <001>, <I lO> 
and<III>. 

The most si~ple case is the <110> direction. There are zero-un­
resolved forces on each individual ~lane and thus, alI displa­
cements are zero also. 

The direction<OOI>. 
Taking N=5, it means the plane 0,1,2,3,4 in Fi~.2, then it fo1­
lows from symmetry considerations that °4 =-00 ' 03 = -01 ,02 = O. 
The d í sp l aqeme n t s ° 0 ,0 r c an be evaluated from the system o f e qu­
ations 

W1"+ ·w2 , - W1 \ 
0 

0 )=(FO )=(-V2) . 
( - W1 ' 2(W 1 + 'W 2 ) ) ( 01 FI +V2 

(3. I) 

The necessary conditions of stability in the new confi~uration 

18 

V2 (o 1 - O ) > O , (3.2)õ 

where 

01-00 =V2(W1+3W2)!DET, (3.3) 

It is obvious that the condition (3.2) can be fulfilled either 
if Ve > O and (° 1 > O or if V2 <O and (°1-°0) < O. It-° 0) 
follows from experiment /1/ that relative displacement 010 = 01 - ­
- 00 = -0.02 Â for a-iron. That means, t'he requirement 

dt/J ' -- <O (3.4) 
ar II , 
concerning the potential t/J(r 2) should be fulfilled. 

The direction <111>. 
Taking ~=7, it~means the planes 0,1,2,3,4,5,6 in Fig.2, then 
8e = - ôo' 8 5 = - 8 1 , 8 4 = - °2' 8 3 = O. T he d i s p l ac emen t s 8 O ' Ô 1 
and 82 can be evaluated from 

W1 + W2 + W3' - W1 ' - W2 (F O\ (V 1 + V2 + V3 ) )(00\ 

- W1 ' 2W 1 + W2' - W 1 + W3 s1 ) = F 1 ) ::: V2 + V3 
( 

- W ' -w 1 + W3 ' 2W 1 + 3W 2 + W2 °2 F2 V3il. 2 

The relative displacements between the nearcst plane areII 
J3 difJ II

8 1 - ° 0 = - --I(W1+3W2+2W3)(W2+W3) +W2 W 3 /DET, (3.5) 
2 ar 

8 1 - 0 2 =? ~1(Wl-t W2 +W 3 )(2W1 +4W 2 + 3W s) -(W 1+W2) I!DET , 
ar (3.6) 

the stability condition in tl1e first approximation is 

s (V 1 + V2 + V3) -t 01 (V 2 + V 3) + 02 V 3 > O , O .
 
and it can be re-writen as
 

- al/JV3 -- (o 1 - o2 ) > O. (3. 7) 
arn '. ô<lll> 1 . d'The relatlve dlsplacement 10 has heen on y determIne In the 

e xp e r i men t /11/ for t he direction < 111 >: 
<111> <111> o 

010 =(01 -00) = -0.13 A in a-Fe.
 
It follows 'f r orn the relations (3.5), (3.6) and (3.7) that we may
 
comp1y with both stability condition and experimental observa­

tion if the relation (3.4) is fulfilled.
 

3.2. Molecular Dynamic Simulations 

In this method a cluster of M atoms with a given boundary 
conditions is considered. The atoms interact via a prescribed 
potential tjJ. The problem is to integra te the equations of moti­
on 

m0(1 (f) == l .t. (f / f ) 
f' 'P a ' 

1
 
for each individual atom f. startingofro~ the initial conditi ­

ons f or displacements 0a(f, t ::: O) = 0a (E) and for the veloci­

ties 8a U , t = O) = (Ja(O. Adding a damping term into the equa­

tions of motion
 

m8 (f) + C. õ a (f) = I t/J (e / , e) (3.8) 
a f/ a 

we may obtain static solution of the problem using a suitab~e 

-, 
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--~~ -~~- ~ ~~~~-

A + A. + A. + A+ â 
+ ê + A + li + IA + 
A + A + Â + IA + A 
+ IA. + IA + A + IA + 
A + li + A + A + A 
+ A. + Â+A+A+ 
A + â +/J.+â+A 
+ A. + A +' A + A + 
A' + A. + A. + A + .A 
+ A + A. + & + li + 
A + A + A + A + A 
+ A + A + A + • + 
A + A + A + A + IA 
+ A + A+Â+Ii+ 
A + A + A + A + A 
+ A + A + A + A + 
Ao + A + A + A + A 
+ li + A + A + li + 
A + IA + A + li + A 

red to have converged when resultant force on individual atoms 
was about 10-12 N. 

3.3. Numerical Results 

xí [0011 
~.Je have performed the numerical calculations with three va­

rious interatomic potentials for a - Fe. 
(A) Central pair potential t/J =. c/J(r) = (f - d)2 (c.o+ c1r + c2 r 2

) 

The parameters of the potential have following values: a=2.8ó~AI d = 1.35a, Co = 0.4326586.10 2 J/m21 cl = -0.29155,10 12 J/m 3 

I	 c2 = 0.41 16859 1021 J /m 4. They have been determined from the re­
lations (2.8)-(2.10) taking G~= G~I = O and C u = 2.43'10 11 N/m2x; [110} and 1.38·10 11 N/m 2 . The dynamical relaxation has been per­~ I C12 = 

-I	 formed for the following number of (001) plane: 
(i) N = 5. The value 810=(8 1 -8 0 )<001> = +0.09A was obtained 
after 30ty time integration step (denoted by NSTEP in Fig.5~7) 

using damping coefftcient 0.609'10 14 sec-1 for the first! 
I a HIN = 

mode cu 1 of vibration. The potential energy of the cluster was 
in initial configuration Eo = -0.1675 .1()1l8 J and in fin'al re­
laxed configuration E = -0.1680,10- 18 J. 
(ii) N = 19. The value 8i~Ol> = +0.089K was obtained after about 
60ty time integration step using a = 0.2436.10 15 sec-1 for

MA X 

Fig.3. Cluster for molecular dynamic simulations. 
0.6 

value of damping. (This is the so-called method of dynamical re­

laxation). In this paper central difference method is used for
 
numerical integration and the damping term is chosen as ((J(r)
 
C = atn, a = 2çr cu r ' 

where a is the damping coefficient, Çr weighting factor and cu 
the angular frequency of r -th mode vibration. 

r 

We have performed the numerical simulations of .<001> surface -19 2	 
r(10-10 rn)

relaxation in a - Fe with a claster illustrated in Fig.3. The (10 J) 
atoms denoted by + lie in the plane (1 la), identical with the 
plane of paper. The atoms denoted by & represent in a fact two 
layer of atoms lying below and above the plane of paper. For I -05example, it is the atom 5 and 6 in Fig. 1, projected on the plane a'Y >0I 
(110). The boundaries in the directions <001> were free of ex­ ôrU 
ternaI forces. At the boundaries <1 la> and <1 la>, the mirror for­ \ 1 
ces have been applied to simulate an infinite dimensions in the­

I ise directions. I	 ., lit
The number N of the (001) plane in the cluster was changed -1.0

and aamping coefficient a has been chosen in dependence on this t 
number. The time integration step ~t = 0.1,10 13 sec was ~sed in 

2)alI presented calculations. The initial leveI of unresolved for­ Fig.4. Central pai.r potential l/J(r) = (r - d) 2(cO + C1f + c2r 
ces at the (001) surface was about 10-9 N. The model was con6id~-	 for a - Fe. 
12	 i3 



810 810 
~ N=19 O<MAX 

(AO)(Ao) 
-""""N-5 O(MIN	 0.10 

~ N :=19 cXMIN 

10.10 I 

,I 
!x 

0.05 

N=5 O(MIN 

10 20 30 40 50 N STEP -O.021-~	 EXPERIMENT~~...--;. _ 

-o.02	 EXPERIMENT.t 
Fig.6. Reeu l.t:e of dynamical re l.axat.i.on i.n the di.rect.i.on 

Fig.S. Results of dynamical relaxation in the direction <001> iai.t-h non-cent.ral. potentialljJ(r,e,1J)=D{3[f3e -2ar_ 

.<001> iai th the potential ifJ(r) i.l.Iuet.rat.ed in Fig.4. - 2e -ar ] + C (r - r o) e-rlro y (0,1» • 

<001>	 . 
the highest mode (UMAX of vibration. The value a...JN=O. 1354. 10 10 sec-1 N=5. The value 5 10 = +0.06 was obtalned by the method of 
fore the lowest mode does not lead to the stat~onary solution ­ dynamic relaxation using aMIN = 0.609-10 14 sec -1 - see Fi~.6. 
see Fig.5. lt may be seen that the convergence of solution with For t h i s potential, the second derivative al/Jlarn is again posi­

tive - see /8/ and that is a reason of the discrepance with ex­respect to N is very fast, the solution~ for N=5 and N=19 lie 
close to each other. The potential energy has changed from Eo= 

periment /1/. Thus, adding of non-spherical term does not improve 
-0.7377· 10-16 to E = - 0.7382.10-16 J. the s i tua t on whé'n i t leads to a pos i tive value aljJlar of theí n 

total potential. 

Comparison with the model of linear chain (c) Oscillating potential t/J = :i(r) + ?eY(Ot ,cPe )
 
. . .
 

Here, the oscillating part of the potential has been taken aslf we evaluate the value ar/! lar I = éJ4>1 ara for the central pair 
potential cf;(r), the relative di'splácement 510 in the direction cP - (r) =: c4 (r - b) 4 - c2(r - b) 2 + Co' The par ame t e r s of the po­

tential have been fitted using the equation (2.8) of zero initi ­<001> can be obtained from the equations (3.3) and (2.21-2.23): 
aig<Jl>= +0.088K for N=5. This estimate is in a very good. agree­ aI pressure and using the equation for bulk modulus B= (Cl1 + 

ment with the abQve given simulation results but does not agree + 2C'12 )/3 which is obtained by linear combination of (2.9) and 
with ob.served value ô[8°1>= -0.02 G.. The reason is the positive (2.10). The parameter b was chosen nearly at the middle point 
value	 of a", I ()r 11 for the used potential - see Fi.g , 4. b~tween the first and the second nei8hbours in b.c.c. lattice. 

The numerical values of the parameters are: c4 =0. 1832' 10 23 J Im 4,.
(B) Noncentral potential t/J = 4>(r) + OCr) Y(f), r/J) c2 =: 0.2195'10 2 J/m 2 , b = 2.679PA. The depth Co of the poten­

,I..() • • (-2ar -arHe're 'P ri r s the Morse po t en t a I D{:3 (:3e., -2e ) and G(r) tial can be chosen either according to vacancy formation energy
í	 = 

= c(r - ro) e -r ro • The parameters D, {3, a and f, r'o are given	 or according to surface cleavage energy. This value does not af­
for a - Fe in /8/. This type of interatomic potential obeys a l I fect the relaxation - see eq.(2.17)-(2.29). With the above gi­
equations (2.7)-(2.11). ven potential, following calculations have been pe~formed: 

14 15 



__

Fig.? Results of 
dynamical relaxa­
tion in the directi­
on <001> with oscil­rv atp< O~(rl lating potential

arE i(r) + Gfycef ,cPf). 

TI	 (i) N=5 and central 
0.02 part potential <per) • 

<001>10 20 30 40 NSTEP The value Ô H) = 
x, = -0.044 was obtai­

EXPERIMENT• I X-0.0 2L,-4i--~~~::':':':'="":'':'':-_----- ned (see Fig ..7) af­
~ )(~)(-x.--x_)(_ ter relaxation using 

-0.05 a~HN = 0.0609 .
GU+0~N=19 <x'MAX : 10 1 5 sec -1. This va­

8 lue is twice higher10 
but the same sign(AO) 
as the experimental 
value. The total po­
tential energy of20 30 40- NSTEP 
the cluster has 

EXPERIMENT charged from E o = 
= -O 13657' 10-17 to

~x-X~-x-*"")(....x 

E=-O: 1375· 10 --17 J-0.05 
after relaxation. 

"'MINGO+-0**N=5	 (ii) N=5 and t/J = 
~10 

G=O ....... N=5 CXtvtIN	 = ~(r) + Ge Y (8e' cPe),
 
(AO) where the value of 

0 0 has been t aken 
as O f = o, GIl =,.p Oo' As may be seen from Fig.7, the value 

- O OC.I"'IC1' 11"'115 -1ôi801> = -0.0336 A was obtained using a MIN - .. \)\1) \' sec . 
The potential energy has changed from E = -0.7496 10 -18 too
 
E= -0.7593.10-18 J.~ .
 

(iii) N=19 and t/J = cP(r) + 0fY(Oe ' ~e2' where G1 = O and G~I 
= Pc 00 , The value 0i80 1> = -0.0357 A wa s ob t a í ned using damp i ng 
coefficient a MAX = 0.2436·10 15 sec -1. The potential energy has 
changed from E = -0.4163.10-17 to E= -0.4173.10-17 J.o 

4. CONCLUSIONS 

The presented models of interatomic space interaction and 
interplanar interaction in the crystalographic directions <001> I 

<110> and <111> show that it is possible ~o describe success­
full~ both bulk properties and surface relaxation data in a-iron 
if the second derivative of interatomic potential at the place 
of the second nearest neighbours in b.c.c. lattice is negative. 

Three various types of interatomic potentials have been tes­
ted using non linear molecular dynamic simulations and the mo­

16 

del of linear chain. The numerical results indicate that with 
oscillatinr, potential obeying the condition a~/~II< O, a reaso­
nable agreerncnt with the surface relaxation data in a- Fe can be 
achieved ir: nn nppropriate values of non-spherically term0e Y(Oe'~e) nre taken into account. The work will be continued 
in this ficld. 

The author thanks Dr.V.K.Fedjanin, G.M.Gavrilenko, I.Mertig 
and N.M.Plakida for valuable discussions. 

Appendix 

The second derivatives Yi j 
in eq.(2.5) are given/7/ by the 

relation 
4 1,2,3 4 24 1,2,3 4 16 3 

Y i . == - - Ôij :L r k + - r i r j I r - -- r i r k Ô jk
k k r 

(AI) 
16 3 12 2 

J r k r 

- -- r j r k Ô lk + -- r k oik o lkr 4 1 r4 J 

Taking into account (A. 1), (2.2) and performing partial summa­
tion over	 the first I, second 11, third 111, etc., neighbours 
in the la~tice, the relations (2.5) and (2.3) turn out 

(C -C ~ .lIa,,}; 4r~ (rt+f~+ r~ 3ri2 I f 2 ------ - --) +12 44)2e o	 4 2
I r r r 

(~2) 

3r L) + .. , I , + Gl~ f _4r: (~~L -;2
-n r r 4 

4 4 4	 4 4 4 
o 1 o r 1 + r 2 + r 3 3 o. r 1 + r 2 + r 8 3 . 

E y = y tG I	 ;: (---'"-~-4---- -"5) + Gu lo< (---;--r4 - --- - 5") + ... I ,
 
'1 II
 

(A3) 

where r ==	 r(f) and r i == riU) for i = 1,2 and 3. It is easy to 
verify that in every centrosymmetric cubic lattice the relation 

4 4 4	 2 4 4 4 3 
3 3 4r 2 r],..+r 2+r 3 ri

2 
rll+ r2 + r 3 

~ (-------- --) -- I - (---------- - --) , (A4)
2R. r 4 5 10 fi r 2 r 0\ r

1 

holds independently on the range of interaction f i := eI' f II • fUI.. ·. 
It is obvious from (A4) that (A3) can be written using (A2) as: 

E o = 21 ~	 G(f ) Y (f) = _3.- (C - C ) 2 O = ~ P O. 
y f	 10 12 44 o 5 o 
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Maxosa A. E14-86-681 
fioBepXHOCTHaH peJiaKCaJ.J;HH B a -JKeJie3e 

B pa6oTe rrpeAITaraeTCH 3MTIHpHqecKaH MO~eJib B3aHMO~eHCTBHH 

B o. u;. K. perneTKe JKeJie3a, KOTOpaH IT03BOJIHeT OITHCbJBaTb ITOBepXHOCT­
HbJe HBJieHHH H O~HOBpeMeHHO HBJieHHH BHyTpH KpHCTaJIJia. B CJiyqae 
JKeJie3a a rroKa3aHo, qTo AITH cornaCHH c 3KCrrepnMeHTanhHbiMH ~aHHbi­
MH ITO ITOBepXHOCTHOH peJiaKCaJ.J;HH He06XO~HMO llpHMeHHTb 3~eKTHBHhrn 
ITOTeHJ.J;HaJI B3aHMO~eHCTBHH, 06JI~aiD~HH OTPHJ.J;aTeJibHOH rrpOH3BO~HOH 
B MeCTe BTOpbJX 6JIHJKaHIIJHX COCe~eH 0. J.J;. K. perneTKH • qHCJieHHbJe pe-
3YJibTaTbl 6biDH ITOJiyqeHbl B paMKaX MO~eJIH JIHHeHHOH u;erroqKH H HeJIH­
HeHHOH MOJieKYJIHpHOH ~HHaMHKH. 

Pa6oTa BbiiTOJIHeHa B J1a6opaTOPHH TeopeTHqecKOH «l>H3HKH OlliU1. 

Coo6weHHe 06J.enHHeHHoro HHCTHtyra ll,ltepHbiX HCC1IeAOBaHHH. Jly6Ha 1986 

Machova A. E ]l,-:-86-681 
Surface Relaxation in a-Iron 

An empirical model of interaction in b.c.c. lattice is suz­
gested. The model allows one to describe both surface effects 
and bulk properties of the crystal. It is shown that to obtain 
an agreement with surface relaxation data in a - Fe, the effec­
tive interatomic potential with a negative derivative at the 
place of the second nearest neighbours is required. Some numeTi 
cal results have been obtained for a - Fe using the model of li 

cLear c11ain and non-linear molecular dynamic simulations. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1986 


