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1. INTRODUCTION

Recently, extensive interplaner-spacing data have become
available for a-iron . The measurement has been done of se-
veral interplanar distances near the surface in 6 different
crystal directions. The data stimulated a revived interest in
surface relaxation phenomena in metals.

Empirical.lattice models based on short-ranged two-body in-
teraction between atoms have been successfully used for defect
calculations in bulk crystals/Z/ or for calculations of concen-
tration dependence of elastic constants in Fe-Si alloys/g/ . At
present, corresponding calculations for surfaces are beginning
to appear’ %%’

The major drawback of present-day surface calculations con-

" sists in different treatment of the crystal interior and of the
surface layers, where an additional pressure 5/ is postulated
or some ad hoc modifications of empirical lattiece interaction
are introduced. The aim of the present communication is to show
how the bulk properties of the crystal and the surface inter-—
planar displacements can be treated simultaneously within an
empirical lattice model based on short-ranged two-body inter-—
action.

Starting from a given interatomic pair potential and using
the continued fraction techniques, we express the interplanar
spacing in terms of derivatives of the potential in an analyti-
cal way. On the other hand, the elastic constants can be expres-
sed by the same derivatives in the standard manner’’’. Therefo-
re, analytical expressions can be obtained, which combine the
bulk characteristics (elastic constants) and surface displace-
ments.

We present here a simplified version of the model just to
display the techniques useful in interplanar-spacing calcula-
tions and to discuss possible structures created by near the
surface planes. Indeed, a detailed comparison with the experi-
ment would require inclusion of density dependent and/or direc-
tion dependent terms in the interatomic potential. This will be
postponed to the further publication.

The present investigation will be restricted to the relaxa-
tion along the main crystal directions only, where the inter-
planar displacements are perpendicular to the crystal surface.
There is simple one-to-one correspondence between the interato-
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mic and interplanar potential in this case’®’/. Since all the
displacements have the same direction, the surface relaxation
in the main crystal directions of cubic lattice is equivalent
to the relaxation in linear chian. The topic is analyzed in de-
tail in section 2. Various structures, which can occur near the
surface are discussed in section 3. Conclusions are drawn in
sect.4.

2. SURFACE RELAXATION

Let as assume a linear chain of N points (each of which cor-
responds to a crystal plane) located at positions x,j=1,2,...N.
The points interact via the pair potential ®(x ;- x.i. The later
is assumed to be short-ranged, thus the nearest neighbour and
the next to the nearest neighbour interplanar interactions are
taken into account only. The assumption corresponds literally
to the case of surface relaxation of [100] planes in b.c.c. cry-
stals’®/, We remind the reader that the induced interplanar in-
teractions are of different range for different crystal planes,
"even if the nearest neighbour and next to the nearest nei%hbour
interatomic interactions are postulated in the crystal/4_ 7,

The potential energy of the crystal reads as

N-1 N~2
UN= b d)(xj+1—xj) + X (D(Xj+2— Xj). (n
i=1 i=1
As a reference configuration X. we chose the equidistant one,
X;= ja, where a is to be determined from the equilibrium condi-
tion for a infinite chain

lim — —— | - = 0. (2)

Introducing the notation

9 ®(x) 3 d(x)

1= (. Vg = —— _ (3a)
9x X=a X x=2a
2 2

W, - d ‘I;(x)| Wy = < ®(x) | (3b)
9x X=a axz x=2a,

the condition (2) reads as

Vi+ 2Vy= 0. %)

The reference configuration corresponds to minimum of the poten-
tial energy U, per point, i.e.,

W+ 4W, > 0, (5)

The actual positions X; = ja +¢; of the points in a finite

‘chain are shifted by the amount ¢; from the equilibrium positions
2

due to the unresolved forces that act at the two ends of the
finite chain. The forces arise due to the removal of first and
second neighbour interaction during creation of free ends of
the chain (or of free crystal surface).

2.1. Relaxation in a Chain of Finite Length

Now the shifts ¢; will be determined from the requirement
that the forces acting on all the points in their relaxed posi-
tions are equal to zero. Since the displacements in actual cry-
stals are small, ¢ $0.la, the linearized expression for forces
fj=-0Uy /aej are used:

f1= Vi + Vo + Wileg—eq) + Woleg—eq) =0

fg= Vo + Wileg~ep) + Wileg—ep) + Waleg=ep) = 0

f = Wilejor=ep) + Wylejg—€j) + Walejome) + Wolejyom €)) =0 (6)
fN-1=‘V2+w1(‘N‘fN—1)+w1(‘-N—'2‘fN—1)+W2(5N—3—6N—1) =0
fn == Vi- Vo + Wilegmy—ep) + Wolen—2-€en) = 0.

As expected, the unresolved forces Vy and Vp act in the referen-
ce configuration on the points j = 1,2,N-1 and N only. The re-
sulting system of linear equations (6) for € is linearly depen-
dent because of its symmetry with respect to the substitution

G =7 enogerr T = L 20N, | 73

i.e., the shifts have to be symmetric with respect to the cen-
ter of the chain. Particularly, eq.(7) indicates
N

3 ¢; =0, : )
i=1" ®)
Therefore, the solutions chosen according to (7) do not contain
the motion of the chain as a whole.’ .

Using (7) and choosing N = 2n+1 for the sake of definitness,
the system (6) can be reduced to the system of n linearly inde-
pendent equations

ok = ¢, 9)

where v7T= (V;/(2W), - V,/(2W,),0,..., 0), ET= (e, €5rurnreyy) and o
is symmetric band matrix with nonzero elements Oy, =012 =—5
@jr1,§ =@jj+1 = —1 and the diagonal matrix elements o j are
142, 242, 242Z,..., 2422, 2+3Z for j = 1,2,3,...n~-1, n, respec-
tively. In obtaining eq.(9) we introduced Z = Wy /W, and used
the equilibrium condition (4).
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Further, the similarity transformation

@B B)(B"'E) = BT, (10)
where B is the upperdiagonal matrix with elements bj j4; = 1,
i=1,...,nand j = 0,1,...,n-1, brings the matrix o’= B% B to
symmetric tridiagonal form.The diagonal matrix elements wj; are
1+2, 1+2Z,...,142Z, 1+3Z for j = 1,2,...,n~1,n, respectively,
and the off diagonal omes w{, =,y = Z. The vector E*T=
=(B-1E)T = (945 1y .o )contains now the relative displacements
T =6 T € (€n+1 = 0). (1)

Finally, the matrix v'%= (BTv)T=(v,72W,), 0,..., 0) has only
one nonzero element. This enables one to express the solution
of the system (10) in a particularly simple form. Introducing
the j—rows x j—columns determinants

1+22 Z 0 .. 0 0 0
Z 1+2Z Z ees O 0 0
0 Z 1+2Z2 ,.. 0 0 0 (12)
dJ = . . . e . . . E] j=2y3|ua)n,
0 0 0 cee Z 1+27 Z
0 0 ee. 0 Z 1+3Z
d
and d; = 1+3Z, the relative displacements are
V1 j=1 3
= e (=Z n—l , for j =1,2,...,n.
T, Y T zd, ! . (13)
The three—term recurrence relation (d, = 1)
2 .
dj+1 =(1+22)dj— Z dj'-l , ) = 1,2,...,11—1 (14)

facilitates the evaluation of 7; from eq.(13) for any point of
the linear chain of arbitrary finite length.

Before concluding this subsection, one remark is in order.
Provided that we were considered the nearest neighbour interac-
tion only, i.e., Z = Vo = Wy =0 and dj = 1 for only j, zero
relative displacements would be obtained from (13) as a conse-
quence of the equilibrium condition (4) (V;= 0). Therefore the
model, which takes into account the nearest neighbour and the
next nearest neighbour interactions is a minimal one in the
sence that it yields nontrivial surface relaxation.

2.2. Relaxation in a Chain of Semiinfinite Length

Actual crystals contain large number of parallel planes,
which may take part in the relaxation. Therefore, the asympto-
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tic values (n>> 1) of the displacements M; are relevant in this
case. To investigate the asymptotic behaviour of the later, we
introduce the quantities

A Zdj_l
i = — for j=1,2,...,n (15)

J

in terms of which the displacements turn out to be

v, (-1itt g

.= I A .
" W, 1-A | ., ™k (16)
The three-term recurrence relation (14) yields the recursion
Z Z
A = ——— Ay =
Ut ez T za R TNEY A an
for the quantities Ay, j = 1,2,...,n,which are of the continued

fraction type.
The recursion (17) can be viewed as a sort of mapping Ay~
+ A;, 1, which has two fixed points A(+) and A_,

1 ) N

Thelatter were obtained assuming A-+1==Aj =~A and solving (17)
as a quadratic equation for A. It is intéresting to note that
Aty = 1/Ag) holds.

Real fixed points exist, of course, only for Z > -0.25.
The value Z = -1/4 is critical for the bulk stability of -the
chain (c.f.(5)). Let us discuss now in some detail the proper-—
t%es of the fixed points. It can easily b€ shown that inequali-
ties
A(+) >1 A(_) <1 (19)
always hold for Z > ~1/4., Further, it can be verified that Ay
is stable and A(+) 1s unstable fixed point for any Z > -1/4.
The proof of the last statement is based on the following ob-
servation. If A;= A +) + 8 lies in the vicinity of one of the
fixed points Aty (1.e.|8| ~0). Then '

Ajpr =Ay+ Afhs + 062) ‘ (20)

follows from (17). Because of (19), the value Aj;q moves to-
wards (outwards) the fixed point A(_)(A(+) ).

_ It can be concluded that asymptotically Aj= A, and the
displacements of the points at the end of a semiinfinite chain
are given by

. i
Vv -
7 = - _z_w_l_ El_ﬁ%—_l]__, (21)
2 ~8E) N



Fig.1. Fized point A(_y.

(-} . Therefore, the relative
displacements decrease as

a geometrical sequence to-

wards the interior of the

chain. The quocient of the
sequence is always smaller %
than unity and its depen-— '
dence on Z is displayed in [
Fig.l. Eq.(21) represents

our final result for the
semifinite chain and ex-

presses in a very simple

way the relationship bet-

ween the derivatives of
interatomic potential and

relative interplanar displacements. For the sake of completeness,

we give also the expression for-.absolute displacements

J
v [-A,_, 1
| nd S (22)
J 2W, l—A(_) .

Except for regions, where A,y and A, have almost the sa-
me magnitude (i.e., Z » -1/4 and Z + = ), the convergence A; -

» Ay 1is very fast. Three examples are shown in the Table.
) Table
z Ay A, Ag A4 A5 A(_)

-3/16 -0,42857 -0.34426 -0.33455 -0.33346 -0.33335 -0.33333
0.5 0.26316 0.26761 0.26792 0.26795 0.26795 0.26795
5.5 0.31428 0.53546 0.60740 0.63516 0.64655 0.65492

The value Z = 5.5 in the last row of the Table is close to W,/W, ‘
ratio in a-Fe. The conclusion can be drawn that the relaxation
typical for a semifinite chain even at the ends of very short
chains for almost all values Z.

Since there is only one stable fixed point, the result of the
iterative procedure (17) does not depend on the starting value
Ay unless Ay = A(,,. Therefore, the relaxation at the ends of
a long chain remains unchanged, even if the equidistant lecatilon
of points in the interior of the chain is somehow disturbed.

6

2.3. Surface Stability

By the construction, the resulting force acting on each point
in its relaxed position is zero. We investigate nmow the stabili-
ty of our solution (21) with respect to small perturbations.Put
it in other words, the potential energy of a stable relaxed con-
figuration should be smaller than that of the reference configu-
ration. The requirement of surface stability reads as
ILILDOO _;—(Urefer— Urelax') -~ —%"[qul - W1j§1n32 -

0o . (23)
- w2j§1(77j+ T;j+1) 1 > 0.

Substituting in (23) for'qj (see eq.21) and performing some for-
mal manipulations, we arrive at

1

T 17 > 0. (24)

The sign of Vyn, is controlled by the sign of W;. Therefore,

LWy >0 (25)

is our resulting condition of surface stability.

3. SURFACE STRUCTURES

Having obtained the displacements 7; (21) in terms of deriva-
tives of the interplanar potential ®(x), we could relate them
to the derivatives of the interatomic potential and to the ela-
stic constants. The detailed analysis of surface relaxations in
a—-Fe along this lines will be given in further publication.Here,
we discuss in some detail various structures, that can occur
near the surface in the dependence on the sign and magnitude of
the derivatives V (V,= -V,/2), W, and W,. Five different orde-
rings are compatible with our model. '

(1) V;<0, Wy >0, Wo>0. In this case the displacements change
sign and a sort of "antipairing" develops near the surface. The
outermost point moves outwards the chain and the remaining
points create pairs. The relaxed distance within each pair is
smaller than the reference one (see Fig.2). The simplest inter-—
planar potential leading to this configuration is depicted in
Fig.3a, where the reference positions of the nearest neighbour
and the next to the nearest neighbour are denoted by 1 and 2,
respectively.

(ii) V;{ <0, W;>0, Wp2>0. The displacements are negative and a
nonuniform dilatation takes place near the surface. All points
move outwards the chain. The situation is visualized in Fig.2
and Fig.3a (points 1' and 2'). .
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FPig.2. Four structures,
which can occur near the
end of semiinfinite chain.

® - relaxed configuration

O - reference configuration.
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(iii) V4> 0, W;>0, Wp< 0. The displacements are positive and an
over—all compression occurs near the surface. All points move
towards the chain (see Fig.2). The simplest interplanar poten-
tial dccounting for this structure has a two-dip shape shown in
Fig.3b. The reference positions are marked by 1 and 2.

(iv) V1> 0, W1>0, Wp>0. The displacements change the sign and
sort of "pairing” takes place. The structure is displayed in
Fig.2 and Fig.3b (points 1' and 2').

8
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X Fig.3. Simple interplanar
potentials leading to the
structures shown in Fig.2.
Arrows indicate the points,

. where d2@/dx%= 0

In the cases (ii) and (iii), the value of Wy is restricted by
the bulk stability condition Wg> -W /4 (5).

Up to now we assumed Wy> O. The opposite case is more delica-
te. If Wy<0, the surface stability condition (24) is violated.
However, the bulk stability condition requires Z < -1/4 in this
case. Therefore, the mapping (17) has no fixed points for W;<O0
and chaotic interplanar spacing occurs near the surface. We ha-
ve proved numerically that the displacements of the outermost
points in the chain depend substantially on its length. If W;<0O
occurs in real crystal, the creation of free surface is likely
to be impossible for corresponding system of crystal planes.

4. CONCLUSIONS

First and second neighbours are assumed to interact in a 1li-
near chain with two-body forces. The analytical expressions
were obtained for stable configurations of a finite or semiin-
finite linear chain using continued fraction techniques. The so-
lutions we obtained for the displacements of the points of a se-
miinfinite chain with respect to their equilibrium positions in
an infinite chain correspond to the surface relaxation of [ 100]
planes in b.c.c. metals,

Five different structures of near the surface planes can
exist according to our model. Appart from compression or dila-
tation, two types of pairing can take places among the planes
lying in the surface layer. In some instances, a chaotic inter-
planar spacing can occur near the surface.
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Max P. E14-86~680
Mopenb JIMHeHHOH LENOYKH AJIA MOBePXHOCTHBIX

pelakcauufi B MeTalax

H3yuyaeTca peslakcaluusa KOHIOB KOHEYHOH H Nony6ecKOHe4UHOH IIu-
HeHHOH nenouku. llpepnosiaraercda mapHoe B3aHMMOOeHCTBHE IIEpBHX U
BTOpPbIX coceneH. [lomyueHb aHanmUTHYECKHe BblpaXeHHUA OJIA CABHIOB
TOYEeK LeNnoyYykKH OTHOCHTENBHO HX DPABHOBECHBIX IIO/IOXEeHHI B 6ecKoHeu—
HO#M penu. [Ipu 3TOM HCNONB3yeTCA MeTOn LenHbX apobeii. Hmeercs
npsAMas CBs3b MeXAy penakcauuel KoHIA monNy6eCcKOHeUHOH LemoykH H
noBepxHocTHhx [100] mnockocreit B 0.u.K. KpUcTanmax. B cooTseT—
CTBHH C INpHjaraeMof MOAeJIbl0 MOXeT NPOH3OHTH CXaTHe, pacTaKeHue
HJIM OBa THNA CHNapHBaHUSA KPHCTAJUIHUECKHX MIOCKOCTEH OKOJIO ImOBepX
HOCTH. Mopmenrs mpenckashBaeT XAaOTHUECKOE paclpemelleHHe INOoCKoc—
TeH OKOJIO TNOBEpPXHOCTH OJIA HEKOTODLIX CIIyydeB.

Pa6ora BbmonHeHa B Jla6opaTopuu TeopeTHueckod oéusuku OUAH.

Coobuenne OGbeaHHEHHOTO MHCTHTYTa AfepHbix uccinegoBaHuid. IlybHa 1986

Mach R. . E14-86-680
Linear Chain Model for Surface Relaxation
in Metals

The relaxation at the ends of a finite and semiinfinite 1i-
near chain was calculated assuming that first and second neigh-
bours interact via pair forces. Analytical expressions we obtai
ned for displacements of the points from their equilibrium po-
sitions in an infinite chain are relevant also for the surface
relaxation of [100] planes in b.c.c. metals. Appart from com-
pression or dilatation, two types of pairing can take place
among the planes lying in the surface layer according to our
model. The model predicts also chaotic ordering of near the
surface planes in some cases.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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