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1. INTRODUCTION 

J~' Recently, extensive interplaner-spacing data have become ,~ 

i available for a -iron /1/. The measurement has been done of se­
veral interplanar distances near the surface in 6 different 
crystal directions. The data stimulated a revived interest in 

:1~ 

r 
surface relaxation phenomena in metaIs. 

Empirical.lattice models based on shor t-r r anged t wo-rbody in­
teraction between atoms have been successfully used for defect! 
calculations in bulk crystals /2/ or for calculations of concen­

.' tration dependence of elastic constants in Fe-Si alloys /3/ • At 
present, corresponding calculations for surfaces are beginnine

,~ t 
J
' 

to appear /4, 5 ~ 

The major drawb~ck of present-day surface calculations con­1 
"1 

- sists in different treatment of the crystal interior and of the~~ 

surface layers, where an additional pressure /5/ is postulated 
or some ad hoc modifications of empirical lattiee interaction 

f 

olí" il- ( are introduced. The aim of the present communication is to show 
how the bulk properties of the crystal and the surface inter­

'V'~' planar displacements can be treated simultaneously within an 
empirical lattice model based on short-ranged two-body inter­
action. 

Starting from a given interatomic pair potential and using 
the continued fraction technique~, we express the interplanar 
spacing in terms of derivatives of the potential in an analyti­--l cal way. On the other hand, the elastic constants can be expres­
sed by the same derivatives in the standard manner/ 7 / . Therefo­
re, analytical expressions can be obtained, which combine the 
bulk characteristics (elastic constants) and surface displace­
ments. 

We present here a simplified version of the model just to 
display the techniques useful in interplanar-spacing calcula­
tions and to discuss possible structures created by near the 
surface planes. Indeed, a detailed comparison with the experi­
ment would require inclusion of density dependent and/or direc­
tion dependent terms in the interatomic potential. This will be 
postponed to the further publication. 

The present investigation will be restricted to the relaxa­

I 

• I .. 

I tion along the main crystal directions only, where the inter­
planar displacements are perpendicular to the crystal surface. 

t 
1 

There is simple one-to-one correspondence between the i~terato-

t 
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mie and interplanar potential in this case/6 / • Since alI the 
displacements have the same direction, the surface relaxation 
in the main crystal directions of cubic lattice is equivalent 
to the relaxation in linear chian. The topic is analyzed in de­
tail in section 2. Various structures, which can occur near the 
surface are discussed in section 3. Conclusions are drawn in 
sect.4. 

2. SURFACE RELAXATION 

Let as assume a linear chain of N points (each of which cor­
responds to a crystal plane) located at positions x j , j = I , 2 , ... N. 
The points interact via the pair potential ~(xi- x j ) . The later 
is assumed to be short-ranged, thus the nearest ne~ghbour and 
the next to the nearest neighbour interplanar interactions are 
taken into account only. The assumption corresponds literally 
to the case of surface relaxation of [100] planes in b.c.c. cry­
stals / 6 / • We remind the reader that the induced interplanar in­
teractions are of different range for different crystal planes, 

'even if the nearest neighbour and next to the nearest nei~hbour 
interatomic interactions are postulated in the crystal/ 4- /. 

The potential energy of the crystal reads as 
N-l N-2 

V N = l ~(Xj+l- Xj) + l ~(Xj+2- Xj)' (I) 
j=l j=l 

As a reference configuration Xj we chose the equidistant one, 
Xj= ja, where a is to be determined from the equilibrium condi­
t~on for a infinite chain 

1 dV~ 
Iírn - -- I - = O. (2)
N -'00 N da xj = x j 

Introducing the notation 

a ~(x) a ~(x) 
V1 = --I v2 = -'--I (3a)ax x= a ax x= 2a 

w = a2~(x) I • W = a2~(x) 
2 (3b)-~-:::_:---1 x= 2a,1 a,x2 x= a ax~ 

the condition (2) reads as 

V1 + 2V 2 = o. (4) 

The reference configuration corresponds to minimum of the poten­
tial energy Voo per point, i.e., 

W1 + 4 W2 > O. (5) 

The ac tual posi tions x j = j a + (j of the points in a fini te 
'chain are shifted by the amount fj from the equilibrium positions 

2 

due to the ~ntesolved forces that act at the two ends of the 
finite chain. The forces arise due to the removal of first and 
second neighbour interaction during creation of free ends of 
the chain (or of free crystal surface). 

2.1. Relaxation in a Chain of Finite Length 

Now the shifts (j will be determined f tom ~he requirement 
that the forces acting on alI the points in their relaxed posi­
tions are equal to ~ero. Since the displacements in actual cry­
stals are small, (j ~ o. Ia, the linearized expression for forces 
f j = -aVNla(j are used: 

f 1 = V1 + V2 + W1«( 2 - (1) + W2 «(3- (1) = O 

f 2 = V2 + W1«( 1- ( 2 ) + W1«( 3- ( 2) + W2«( 4 - ( 2 ) = O 

f j ~ W1«( j- 1- e j) + W1«(j + 1 - e j) + W2 «(j .2- (j ) + W2«( j+2- (j) = O (6) 

f N - 1= - V2 + W1«( N - eN - 1) + W1k N ~ 2- eN - 1 ) + W2 «( N _ 3- (N _ 1) = O 

f N = - VI - V2 + W1«( N - 1 - e N) + W2( eN - 2 - e N) == O. 

As expected, the unresolved forces VI and V2 act in the referen­
ce configuration on the points j = 1,2,N-I and N only. The re­
sulting system of linear equations (6) for fj is linearly depen­
dent because of its syrnmetry with respect to the substitution 

(j = - (N - j + 1 ' j = 1. 2••••• N • (7) 

i.e., the shifts have to be symmetric with respect to the cen­
ter of the chain. Particularly, eq.(7) indicates 

N 

. ~ (j = o. (8) 
J = 1 

Therefore, the solutions chosen according to (7) do not conta in 
the motion of the chain as a whole. . . 

Using (7) and choosing N = 2n+1 for the sake of definitness, 
the system (6) can be reduced to the system of n linearly ~nde­
pendent equations 

ú)E = O, (9) 

where vT= (V1/(2W1).-V1/(2W1).O ••••• O). E T 
=; «(1' (2 ••••• (N) and ,ú) 

is symmetric band matrix with nonzero elements ú)j+ 2,j =ú)j,j+ 2 =-~ 
W j+ 1, j = ú) j,j+ 1 = -I and the diagonal matrix elements Ú)jj are 
1+2, 2+2, 2+22, •.. , 2+22, 2+32 for j = 1,2,3, •.• n-l, n, respec­
tively. In obtaining eq.(9) we introduced 2 = W and used 

2/W 1the equilibrium condition (4). 
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Further, the similarity transforrnation 

(B TcuB)(B- 1E) = BTO,	 ( 10) 

where B is the upperdiagonal matrix with elements bi,i+j = 1, 
i = I, ... ,n and j = 0,1, .•• ,n-i, brings the matrix cu'=: BTcu B to 
sywmetric tridiagonal form.The diagonal matrix elements cuD are 
1+2, 1+22, ... ,1+22, 1+32 for j = I,2, ... ,n-I,n, respectively, 
and the off d í agonal ones cu i,j+ 1=: cu i+ l,j = Z. The vector E'T =: 
= (B-1 E) T = ( TJ 1' TJ2'" .TJJcontains now the relative displacements 

TJ j =: fj - (fn+1 = O).	 (11)f j+ 1, 
Finally, the matrix v'T= (BTv)T= (V l/2W 1) , O, ••.• O) has only 
one nonzero element. This enables one to express the s.olution 
of the system (10) in a particularty simple formo lntroducing 
the j-rows x j-columns determinants 

. 1 + 2Z Z o. . . O O O 

Z 1 + 2Z Z. __ O O O 

O Z 1 + 2Z ·0 O O·.. 
dj =: I. j ~ 2.3...~.1:)·.. .I 

O O O Z 1 + 2Z Z·.. 
O O O ... O Z 1 + 3Z 

and d.1 = 1+32, the relative displacement sare 

V . 1 d_1 (_Z)J- n-jTJ·=:	 , for j = 1,2, ..•• n , (13)J 2W 1 dn-	 Zd n_ 1 

The three-term recurrence relation (do = 1)
 

d j+ 1 =:(1+2Z)d j- Z2 d j_ 1, j = 1,2, •••• n-1 (14)
 

facilitates the evaluation of TJj from eq.(I3) for any point of 
the linear chain of arbitrary finite length. 

Before concluding this subsection, one remark is in order. 
Provided that we were considered the nearest neighbour interac­
tion only, i.e., 2 = V2 =: W2 = O and d j = 1 for 'only j, zero 
relative displacements would be obtained from (13) as a conse­
quence of the equilibrium condition (4) (V1= O). Therefore the 
model, which takes into account the nearest neighbour and the 
next nearest neighbour interactions is a minimal one in the 
sence that it yields nontrivial surface relaxation. 

2.2. Relaxation in a Chain of Semiinfinite Length 

Actual crystals contain large number of parallel planes, 
which may take part in the relaxation. Therefore, the asympto­

4 

tic val.ue s (n» 1) of the displacements TJj are relevant in this 
case. To investigate the asyrnptotic behaviour of the later, we 
introduce the quantities 

Z d j_ 1A	 =:j	 for j =: 1, 2••••• n
d j	 

( 15) 

in terms of which the displacements turn out to be
 

V (_1)j-1 j

171	 =: ----__ nA 

"j 2W l-A n-k'	 (16)
2 n- 1 k=: 1 

The three-term recurrence relation (14) yields the recursion 

A. =: Z _ Z 
J+ 1 • ZA. c ...... _ A 1 = "'l:"3Z	 ( 17) 

J 

for the quantities Aj , j = I,2, ... ,n,which are of the continued 
fraction type. 

The recursion (17) can be viewed as a sort of mapping A ~ 
Aj+ 1,	 

j 
~ which has two fixed points A and AC+) C-) 

1· - ­AC±) =: "2Z{ 1 + 2Z ± v'" 1 + 4Z ].	 (18) 

The latter wer e obtained assuming Aj+ 1 ::os A j <=>A and solving (17) 
as	 a quadratic equation for A. lt 1S interesting to note that 
AC±) = 1/ A(+) holds. 

Real fixed points exist, of course, only for 2 ~ -0.25. 
The value 2 = -1/4 is criticaI for the bulk stability of .the 
chain (c.f.(3». Let us discuss now in some detail the proper­
ties of the fixed points. lt can easily be shown that inequali ­
ties 

AC+ ) > 1 AC-) < 1	 (19) 

always hold for 2 > ~I/4. Further, it can be verified that AC-)
is stable and AC+) is unstable fixep point for any 2 > -1/4. 
The proof of the last statement is b~sed on the following ob­
servation. lf Aj<=> AC±) + S lies in the vicin~ty of one of the 
fixed points AC±) (i.e.lô I - O). Then 

2±) sAj+ 1 =: AC±) + AC + O(ô 2 ) (20) 

follows from (17). Because of (19), the value Aj+ 1 moves to­
wards	 (outwards) the fixed point AC-) (A C+) ). 

Lt can be concluded that asyrnptotically Aj <=> a~d theAC-)
displacements of the points at the end of a semiinfinite chain 
are given by 

V [":"A_]j
TJ. = - ---1 !.:_L__ (21 )

J 2W 2 1 - AC-) '. 

5' 



Fig.l.	 Fixed point A (_) • 

A(_) Therefore, the relative 
displacements decrease as

0.5 a geometrical sequence to­
wards the interior of the 
chain. The quocient of the 
sequence is always smaller 

1.5 Z	 than unity and its depen­
dence on Z is displayed in 
Fig.l. Eq.(21) represents 
our final result for the 
semifinite chain and. ex­
presses in a very simple 
way the relationship bet­
ween the derivatives of 
interatomic potential and 

relative interplanar displacements. For the sake of completeness, 
we give also the expression for·absolute displacements 

. j 

__~	 ~_A(-2_1 
( .	 (22)

J 2W2 l- A7_) 
Except for regions, where A(+) and A(_) have almost the sa­

me magnitude (i.e., Z ~ -1/4 and Z ~ ~ ), the convergence Aj ~ 

~ A(_) is very fast. Three examples are shown in the Table. 

Table 

0.5 

Z AI A2 A3
A4

A
5 A(_) 

-3/16 -0.42857 -0.34426 -0.33455 -0.33346 -0.33335 -0.33333 
0.5 0.26316 0.26761 0.26792 0.26795 0.26795 0.26795 
5.5 0.31428 0.53546 0.60740 0.63516 0.64655 0.65492 

The value Z = 5.5 in the last row of the Table is close to W1/W 2 
ratio in a-Fe. The conclusion can be drawn that the relaxation 
typical for a semifinite chain even at the ends of very short 
chains fo~ almost alI values Z. 

Since there is only one stable fixed point, the result o( the 
iterative procedure (17) does not depend on the startin8 value 
AI unless AI = A(+). Therefore, the relaxation at the ends of 
a long chain remains unchanged, even if the equidistant location 
of points in the interior of the chain is somehow disturbed. 

2.3. Surface Stability 

By the construction, the resulting force acting on each point 
in its relaxed position is zero. We investigate now the stabili ­
ty of our solution (21) with respect to small perturbations.Put 
it in other words, the potential energy of a stable relaxed con­
figuration should be smaller than that of the reference configu­
ration. The requirement of surface stability reads asli, 

· 1 (	 1 [ C>O 2

J 1im - N Ure fer - UI')re ax - - 2 VI TJ 1 - W1 L TJ'J ­
N ~.~ j= 1
 

~ 2	 (23) 

- W2 .L (TJj+ TJj+ 1) ] ;> O.
 
J= 1
 

Substituting in (23) for' TJ· (see eq.21) and performing some for­
mal manipulations, we arri~e at 

T1 Vl TJl > O.	 (24) 

The sign of V1 TJ 1 is controlled by the sign of W1• Therefore, 

• W1 > O	 (25) 

is our	 resulting condition of surface stability. 

3. SURFACE STRUCTURES 

Having obtained the displacements TJj (21) in terms of deriva­
tives of th~ interplanar potential ~(x), we could relate them 
to the derivatives of the interatomic potential and to the ela­
stic constants. The detailed analysis of surface relaxations in 
a -Fe along this 'lines will be given in further publication.Here, 
v/e discuss in some detail various structures, that can occur 
near the surface in the dependence on the sign and magnitude of 
the derivatives V1(V2 = and W2 • Five different orde­-V1/2), W1 
rings are compatible with our model: 

I

(i) V1 < O, Wt > O, Wn> O. In this case the d i spl.ac ement s change 
si6n and a sort ofantipairing" develops near the surface. The 
outermost point moves outwards the chain and the remaining 
points create pa~rs. The relaxed distance within each pair is 
smaller than the reference one (see Fig.2). The simplest inter­
planar potential leading to this configuration is depicted in 
Fig.3a, where the reference positions of the nearest neighbour 
and the next to the nearest neighbour are denoted by 1 and 2, 

• j respectively . 
(ii) VI <O, Wl>O, W2>0. The displacements are negative and a 
nonuniform dilatation takes place near the surface. AlI points 
move outwards the chain. The situation is visualized in Fig.2 
and Fig.3a (points l' and 2'). 

6'	 7' 
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Fig.2. Four structures~ 

which can occur near the 
end of semiinfinite chain. 
• - relaxed configuration 
O - reference configuration. 

x	 Fig.3. Simple interplanar 
potentials leading to the 
structures shown in Fig.2. 
Arrows indicate the points~ 

iohere d 2 <I> / dx 2 = O 

(iii) Vl> O, W1 > O, W2 < O. The displacements are positive and an 
over-all compression occurs near the surface. All points move 
'to~ards the chain (see Fig.2). The simplest interplanar poten­
tial accounting for this structure has a two-dip shape shown in 
Fig.3b. The reference positions are marked by I and 2. 
(iv) Vl> O, Wl>O, W2>0. The displacements change the sign and 
.so r t of "pairing" takes p l ac e , The structure is displayed in 
Fig.2 and Fig.3b (pointsl' and 2'). 
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In the cases (ii) and (iii), the value of W2 is restricted by
I the bulk stability condition W2> -W1/4 (5) . 

I 
Up to now we assumed W1> O. The opposite case is more delica­

te. If W1 <O, the surface stability condition (24) is violated. 
However, the bulk stability condition requires Z < -1/4 in this 
case. Therefore, the mapping (17) has no fixed points for W1 <O 

J 
and chaotic interplanar spa~ing occurs near the surface. We ha­
ve proved numerically that the displacements of the outermost 
points in the chain depend substantially on its length. If Wt<O 
occurs in real crystal, the creaiiQn of free sur~ace is likely 
to be impossible for corresponding system of crystal planes.

,1\ 

I 4. CONCLUSIONS 

First and second neighbours are assumed to interact in a li ­

i
 
i near chain with two-body forces. The analytical expressions
 

were obtained for stable configutations of a finite or semiin­

finite linear chain using continued fraction techniques. The so­


i 
I lutions we.obtained for the displacements of the points of a se­


miinfinite chain with respect 
an infinite chain correspond 
planes in b.c.c. metals. 

Five different structures 
exist according to our modelo 
tation, two types of pairing 

to their equilibrium positions in 
to the surface relaxation of [ 100] 

of near the surface planes can 
Appart from compression or dila­

can take places among the planes 
lying in the surface layer. In some instances, a chaotic inter­
planar spacing can occur near the surface. 
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Max P. 
MoAenb ITHHeHHOH ~erro~KH AITH rroBepXHOCTHb~ 

penaKca~Hli B MeTannax 

EI4-86-680 

H3y~aeTCH penaKCa~HH KOH~OB KOHe~HOH H rrony6eCKOHe~HOH nH­
HeHHOH ~erro~KH. TipeAITOnaraeTCH rrapHoe B3aHMOAeHCTBHe rrepBb~ H 
BTOpb~ COCeAeH, flony~eHbl aHanHTH~eCKHe Bb!paJKeHHH AITH CABHrOB 
TO~eK ~erro~KH OTHOCHTeiTbHO HX paBHOBeCHb~ ITOITOJKeHHH B 6eCKOHe~­
HOH ~errH. TipH 3TOM HCITOITb3yeTCH MeTOA ~errHb~ Apo6eli. HMeeTCH 
ITpHMaH CBH3b MeJKAy penaKCa~HeH KOH~a rrony6eCKOHe~HOH ~errO~KH H 
ITOBepXHOCTHbiX [100] ITITOCKOCTeH B O.~.K. KpHCTannax, B COOTBeT­
CTBHH C ITpHnaraeMOH MOAeiTbiD MOJ!CeT ITPOH30HTH CJKaTHe, paCTHJKeHHe 
HITH ABa THITa crrapHBaHHH KpHCTaiTITH~eCKHX ITITOCKOCTeH OKOITO ITOBepX 
HOCTH. MOAeiTb rrpeACKa3biBaeT xaOTH~eCKOe pacrrpeAeneHHe ITITOCKoc-
TeH OKOITO ITOBepXHOCTH AITH HeKOTOpb~ cny~aeB. 

Pa6oTa BbmonHeHa B Jla6opaTOPHH TeopeTH~ecKoli cPH3HKH OIDIH. 

Coo6weHHe 06oeAHHeHHOfO HHCTHryra l!AepHbiX HCCJJeAOBaHHH. lly6Ha 1986 

Mach R. 
Linear Chain Model for Surface Relaxation 
in Metals 

EI4-86-680 

The relaxation at the ends of a finite and serniinfinite li­
near chain was calculated assuming that first and second neigh­
bours interact via pair forces. Analytical expressions we obtai 
ned for displacements of the points from their equilibrium po­
sitions in an infinite chain are relevant also for the surface 
relaxation of [100] planes in b.c.c. metals. Appart from corn­
pression or dilatation, two types of pairing can take place 
among the planes lying in the surface layer according to our 
model. The model predicts also chaotic ordering of near the 
surface planes in some cases. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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