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Fifty years have elapsed since the publication in 1934 in
Doklady Akad. Nauk S.S.S.R, of two papers - a paper by P.A.Ce-
renkov and a paper by S.I.Vavilov */1L.2/ P A.Cerenkov has summed
up a comprehensive experimental material available then on the
properties of glow in liquids induced by y-rays, except for
the directivity of radiation discovered later (in 1936). The
paper by S.I.Vavilov contains the analysis of these results
which brought him te the conclusion that the observed glow
could not be the luminescence of a liquid and that the light ap-
peared due to Compton electrons.These two papers should be con-
sidered as the two parts of one and the same work ~ experimental
and theoretical.

The ideas advanced by S.I. Vavilov were of great importance
for the development of both theory and experiment. They stimula-
ted the experiments on the observation of glow induced in 1i-
quids in the magnetic field in order to seek for the connection
between the direction of motion of electrons and polarization
vector of light. The result was unexpected - it appeared that
the direction of motion was connected with the angular distri-
bution of radiation which was strongly anisotropic. This pecu-
liarity was surprising and made the search for its interpreta-
tion especially urgent. The discussions of the problem which
began in 1936 in collaboration with I.E.Tamm were a success.
Recalling the remote past I would like to note that the mutual
work with I.E.Tamm was very essential for me. It was the begin-
ning of my career as a theoretician, and my further study of
Vavilov-Cerenkov radiation and related topics has its origin
there.

Since then many authors discussed the Vavilov- Cerenkov Ra-
diation (VCR). In this paper I would like to linger cver some
peculiarities of the phenomenon that maybe have not always been
paid attention to.

I shall begin with the role of the phase and group velccities
of light in VCR. Everyone knows the construction based on the
Huygens principle (Fig.!). It immediately gives the answer about

* The title of Cerenkov’s paper'1/ was '"The Visible Glow of

Pure Liquids under the Action of y -Rays'; and Vavilov‘s/zﬂ
"On the Possible Cause of the Blue y-Glow in Liquids". Both
papers came to the Editors”of Doklady on May 27, 1934,
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Fig.1. A sitmplified Huygens construction that allows
to find the characteristic angle 0

the direction of k -vector satisfying the following condition

cosf, = & = ! {1}

vn(o) Bnl(w)

As is well known under n(w) one understands the refractive index
for the given frequency w. In the optical isotropic medium for
the light of given frequency the condition for the threshold

is that the velocity of particles should be equal to the phase
velocity of light

C
VvV =

(2)

n(w)
for which the angle f, equals zero. The characteristic angle
really depends only on phase velocity of light while the group
velocity of light in that case is not essential.

From Fig.l it follows that there is a cone enveloping sphe-
rical waves with generatrices forming the angle ¢ with the di-
rection of motion
B W5 B) = i, (3)

2 Bn(w)
However, strictly speaking, it is not on the surface of this
cone the VCR electromagnetic energy concentrates. The matter is
that the Huygens construction applied here, though demonstrative,
is oversimplified, and, therefore, not exact: In the construc—
tion to the light pulse arising in each point of the trajectory
the constant velocity of propagation ¢/n is ascribed. Thus the
light dispersion in the medium is not accounted for, while the
theory does not allow this neglection. If one makes the same
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Fig.2. The wave cone (gene-
ratrix AC) and the group eone
(generatrixz AD).

D
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plot for monochromatic waves, it should be assumed that the
waves of frequency w are radiated not in pulse, but continuous-—
ly, and there is then not a single, but a vast number of cones
satisfying eq.(3). These cones, of course, cannot be connected
with the electromagnetic energy radiated. From here neverthe-
less follows that the direction of k -vector for the frequency
@ 1is really determined by eq. (1). At the same time it is not
always noticed that the light energy is transmitted not at

a phase velocity, but at a group one, which in the medium with
dispersion differs from the former and equals

W - £ . (4)
dn(w)

d(l)

In order to find an instant position of the centre of a group
of waves in the given narrow frequency range one should in the
isotropic medium take W and not u c¢/n along the k-vector. The
generatrices AD indicate the instant position of the group cone
for the frequency @ (Fig.2). The angle between the two wave
cones X (first calculated by [.E.Tamm) may vary in a wide range,
but as it seems to me it is not measured experimentally as yet.
It is far from being an easy task in the practically interes-
ting cases. For example, as is known the time difference in the
detection of particles and signals due to VCR is measured in
order to determine the height where the showers of cosmic par-
ticles form in atmosphere. As a rule it is assumed then that the
VCR light propagates with phase velocity u-c¢/n.Strictly speaking
it is not correct, but here as a simple calculation shows the
interchange of u for W does not affect the result within the
accuracy of the experiment. (The relative error does not exceed
10~ %3, The principle side of the matter is another question
and we shall return to it in the further. Let us note that the
fact that there is a cone of a group of waves is not at all in
contradiction with the Huygens construction, if one applies it
in sequence for at least two neighbour frequencies. Then as it
was emphasized earlier we have to consider each point of the
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Fig.3. The Huygens plot for monochromatic wa Solid
lines - for the frequency © , dashed lines - f‘cr the
frequency o + Aw . The intersection of the corresponding
generatrices gives the instant position of the group
cone (dash-dot line).

trajectory as a source of the monochromatic waves of frequen-
cy @ generated continuously. The moment when the particle pas-
ses the given point determines only the phase of the wave. It
is easy to see that as a result there is really a vast number
of cones being the phase surface with generatrices forming

the angle ¢ with the axis.Figure 3 presents the cross section
in the plane of the drawing of an instant position of a series
of such cones with a phase difference of 27. Therefere, the
distance between their apexes is the path the particle covers
during a period of oscillation of waves with frequency o (in
the figure the generatrices of cones are A pC 5, A_ 1C_13 AgCos
A Cl’ etc.). The apex of the only one of them c01nc1des with
the instant position of the particle (let us call it the wave
cone). In order to find this cone one should consider the same
picture, but for another frequency, say, a little larger, e.g.,
w'=w+ Aw. The phases of those two waves coincide in the point
of the particle and consequently so do the apexes of the cones.
In the case illustrated in Fig.3 it is the point Ag. Other
cones do not coincide, since they have a little different ¢
angle in the presence of light dispersion and, moreover, the
distance between cones is shorter due to a shorter oscillation
period. The cross sections are shown by the dashed line. The
intersection of the corresponding generatrices of both cones
determines the surface of equal phases for the two frequencies
w and ®’, i.e., the group cone. It can be shown that the dis-
cussed graphical method‘ﬁives as it should be the same result
as that shown in TFig.2
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It is only natural to try to find out the role of the group
velocity in VCR. For that one should ask oneself about the mi-
nimal velocity at which the radiation appears and not about the
velocity at which the radiation with the given frequency is in-
duced. The answer is simple - the minimal velocity corresponds

to the maximal value of n

I (5)
min nmax

If the value of n is maximal then dn/dw = 0 and consequently the
phase velocity coincides with the group velocity. Thus the con-
dition for the threshold of VCR appearance corresponds to the
case’®8/ yhen the velocity of particle first achieves the value

of the group velocity

v=W, (6)

This relationship could have been considered as a mere coinci-
dence 1if it were not true for all threshold phenomena of the
radiator moving uniformly in the medium. It is the same for
the appearance of the complex Doppler effect, of the anomalous
Doppler effect’®8/ and with some reservations it 1s ,true for
the appearance of the X -ray transition radiation”’ . So, the
general nature has also the statement that the velocity of mo-
tion equal to the group velocity of light is the condition for
the threshold of appearance of the complex effect, i.e., the
radiated frequency splits into two components. Therefore, the
VCR is always the complex effect, because, though at a given
angle the radiation with only one frequency is observed, there
is the other unseen frequency component in the anomalous dis-
persion area. It can be easily seen that the condition (6) for
the threshold of appearance of VCR is also true for the opti-
cally anisotropic media which cannot be at all considered evi-
dent in advance. The condition (1) for the characteristic angle
f holds also in the anisotropic medium, if n is the refractive
1ndex for the k —-vector with a given polarisation and direc-
tion ’

At the same time, however, the direction of the ray along
which,as is known, the group velocity is directed does not,
generally speaking, coincide with the k —vector, but forms with
it a certain angle a. Then in anisotropic medium, not only the
phase velocity u appears essential, but also the velocity of
phase propagation along the ray. Let us denote it u’ (see Fig.4).

u‘cos a = fi =n. (7)

The general condition for the appearance of the Vavilov- Ce-
renkov Radiation of frequency @ should be formulated in the fol-
lowing way: the threshold velocity of the source should equal
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anisotropic medium.

Fig. 5. A simplified Huygens plot fV) the anisotropie
medtum. The divection of the ray is detcrnzned by the
tangent points of elipse and generatrices of the wave
cone (see AgF and AgF’ in the figure to the left).
Vector k is directed along the normal to generatrices
of the wave cone (see AD and AD’). Under threshold con—
ditions the direction of the ray coincides with the

dirvection of velocity v and v is being equal to u’.
The vector k is directed along the normal to the
tangent plane (see Ag'D™). Tt forms the angle a with

the divection of the ray.

the velocity of waves along the ray in the direction of motion.

In other words

.

Vo= R,

The threshold velocity v coincides always with the direction

of the ray and not with the k-vector, that, generally speaking,

forms the angle ¢ with v, (In optically isotropic medium the
velocity u =u” and it is the same in all directions). Hence,
the condition (2) is a special case of the more general con-

dition (8). The correctness of the condition (8) may be easily
proved in the frame of the Huygens principle applied for the

optically anisotropic medium
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(Fig.5).

Fig.4. The normal to the wave
(u - phase velocity) and the
direction of the ray (u’ - wave
velocity along the ray) in the

The condition for the appearance of VCR and not only of the
given radiation frequency is
vmin = Ymin * (9)
For the frequency @ at which u’=u’; the derivative of the wave
velocity along the ray equals zero and hence the velocity itself
equals the group velocity. This again brings us to the conclusion
that the threshold for the radiation to appear is defined by
eq. (6), i.e., it is determined by the group velocity, or in
other words the above connection proved to be general.

First we obtained the conditions for the threshold of appea-
rance of the complex and anomalous Doppler effects’1%/L.1.Man-
delshtam in his lecture has drawn attention to the essential role
of the group velocity *

Another question I wish to discuss here is the duration of
VCR pulse arising when the charged particle goes through the ra-
diator. Besides its theoretical value the question has the prac-
tical importance, since the Cerenkov counters are widely used in
various coincidence schemes. P.A. Cerenkov ' had shown even in
his first experiments that the radiation he observed could not
be reduced neither by introducing strong quenching agents of lu-
miniscence nor by changing the temperature of the liquid. It was
this that made S.I.Vavilov ° think that the observed light was
not the luminiscence at all, since the necessary characteristic
of the latter according to S.I.Vavilov is a finite time of exci-
tation of atoms and molecules which is of the order or more than
10710 gec. However, the duration of the light pulse is not always
due to the time of excitation only. If the radiator has some
length, then it takes different times for the light from its
points to arrive at the detector. For example, the light pulse
from the radiator 3 cm long will be of duration not less than
1071% sec under the condition that the light simultaneously lea-
ves each point of the radiator. At the same time one knows that
the Cerenkov counter may be more than 100 cm long. A question
naturally arises: how will it affect the light pulse duration
in VCR? The answer might have been the simplest if there were no
dispersion of light in the medium. Really, if the detector summa-
rizes the radiation coming at an angle ?, then signals from all
the points of the radiator must arrive at the counter simulta-
neously. But the dispersion makes it different.

The picture to be observed i1s shown schematically in Fig.6.
The dashed line is the trajectory of the particle, d is the width
of the beam detected. Such limitations for the width always exist
in each real counter. They are due to either the diaphragm, or
the size of a focusing instrument, or the geometry of the light

7/ '4
"In the published lecture’ it is done in short and not dis-
tinct enough.
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Fig.6. The distribution of the Light signal from the
particle moving in the counter. The time Ty T8 deter-
mined by the finite length of the group waves, and 7
by the fact that the group cone forms the angle yx
with the wave cone. i

1

source itself. For the sake of simplicity let d be the diame-
tgr of the diaphragm. The group surface forms the angle y
y1th the wave surface. The detected spectrum is always 1iﬁited
in frequency and, therefore, the group of waves has a finite
I?ngth too. It is denoted by 2¢ in the figure. Let us find the
time which it takes the group of waves in the given frequency
range v +Av to go through the diaphragm. The time period evi-
qently goes into two parts. Since the group has a length 2/

it will go through each point for some time To. Besides that
t?e group passed through different points not simultaneousl;,
since the group surface forms the angle x with the wave surface.
Let us denote this additional time by 7. Now I shall consider
o and 7, separately. It is easy to see that

S TR

¥ Av (10)

Usually there is no large increase of pulse duration due to r
It does not exceed 10-1%for visible light if the width of tb;y
group is AA - 10 A. Tt is evident that, if the light disper—
sion in the radiator is low, the group width can be taken more
than 10 A and r_. may be neglected.

thaig42rder to find 7, one should know x. It can be easily shown

]
X = ——
)\Otg” dv N3
From where it follows
Fiws .EEE.-.d. = __._cl_- .d_“_ 3
1 W Atgf  dv Ve

So the coefficient in front of dn/dv is expressed in portions
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Ag=nA—difference of paths from the farest and the nearest
point of the radiator the light from which goes through the
diaphragm, i.e., reaches the detector (see Fig.6). This dif-
ference 1is lar%e when the radiator is long and 6 is small. It
may achieve 10~ in modern Cerenkov counters. However, they are
as a rule the gas counters in which dn/dv is very small, and
thus qlois nofllarge. With solid radiators the time increases
to 107" - 107" "sec. In several cases it seemingly may even
serve as a method for the measurement of 9/%/,So the difference
between the phase velocity and group velocity is essential in
some cases.

It should be noted that the time 7y may, in principle, be re-
duced. Really, it appears due to the dependence of ¢ on ref-
ractive coefficient. So, it is enough to transmit VCR as it is
often done for precise measurements of # through an achromatic
system to reduce r, to minimal possible value. Some of these
achromatic systems were discussed by the author in his paper
published in 1956 /4.

Here the angle 6 is supposed to be practically constant.

-If the spectral width of the beam is so wide that the change

in the refractive coefficient and consequently in the angle ¢

is considerable, then the pulse duration increases by an addi-
tional time 7p that may be large. All the above stated depends
essentially of course on the type of the counter used and, first
of all, on its geometry and the material of the radiator.

The fact that in any Cerenkov counter the radiation is al-
ways summed up over some finite path of the charged particle
brings forward additional peculiarities of the phenomenon. They
may be especially important at small f, i.e., in the vicinity
of the theoretically expected threshold.

A sharp directivity of VCR at a characteristic angle 0 is
often considered to be the integral part of the phenomenon.

But a simple consideration shows that the radiation goes in
some angle range A6 near 6, that is the wider the shorter

the radiator is. It is the so-called diffraction width of the
peak directly connected with the coherent length f’, being equal
in the simplest case of wave summation in the f direction to”1%/

v B,

w|l -~ Bncosf 2|1~ Bncosd)

According to the definition ¢’ is the length along which the
phase of the waves from both its ends arriving at

an infinitely far point differs by ». The value of {* formally
turns into infinity for the characteristic angle 6, though in
reality it always has some finite length. The width of the diff-
raction peak A is determined by the fact that the length £

of the counter comprises two coherent lengths £°.

i (13)




From here under supposition of very small Gm one has

Al = e (14)

So, if the angle 6, 1is not very small, the range A, is first
of all determined by the ratio between the wavelength and the
length of the radiator. It has a small but finite value and
this probably may set limits for the accuracy of 8, measure-
ments. The value of Af¢ can be easily measured, if one takes
the radiator of thickness comparable with A. For the radiator
from mica of thickness £=8\g the value of Af reaches 30° and
the experiment demonstrates good agreement with theoretical
predictions.

Other peculiarities are connected with the behaviour of VCR
near the threshold. The diffraction width did not allow the
threshold to be sharp. Really, for Bn =1, i.e., the characte-
ristic angle # = 0, the intensity must not be equal to zero
due to the finite width of the radiation peak. If it were pos-
sible to observe the radiation strictly in the direction of
motion of the particle, then it would have appeared that the
threshold for the appearance of radiation with frequency o
shifts a little to lower values, i.e.,”!%/

By = _%;—‘. (15)

When the length of the radiator is large in comparison with the
wavelength of light the displacement of the threshold is in-

significantly small. llowever, if the radiator is thin, the shift

is large as is shown in ref.”1®

Besides, near the very threshold the simple relationship (1)
for the characteristic angle does not hold already. The matter
is that at a finite length of the counter one of the coeffici-

ents of intensity proportionality is the squared sinus of radia-

tion angle which makes the observed angle of radiation larger.
Nearer to the threshold the intensity of VCR decreases, but

the angle f! always has a finite value. Strictly speaking, the
intensity never turns into zero even for fin less than the prac-
tical threshold (15), since there is always the radiation due
to a limited trajectory. The latter radiation is identical with
the bremsstrahlung or with the transition radiation, which can-
not be separated from VCR above its threshold, though make

a little contribution into it. They become essential near the
threshold and below it. This really takes place in the gas Ce-
renkov counters for relativistic particles. One should take
into account then the particular geometry of the counter.
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I wished to show here that in the latter case as well as

“in other problems considered in the present paper the Vavilov-

Cerenkov Radiation is a more complicate phenomenon, than the
idealized picture conventionally used for it.
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