


1.  INTRODUCTION

It is well known that wave f1e1d of the wave length A loca-'-
lized in the restricted volume of the lateral dimension t will
diffract in such a way that at distances Z >>r?/A the wave

, field will have the form of the divergent spherical wave with -
‘the beam width angle of the order of A/r . Meanwhile it has

~ been shown in’/1/ that there exists an axial-symmetric wave
f1e1d in the free space that meets the wave equatlon ‘

L 1 52 - :
'(Vg"*—'T)E(T t) = : (1)
R 5 i -

- “where r = r(x,y,z) is the observation Vector, and that does

" 'not change along the z-axis. At any z> O this wave field is
..-of the same form as at z = 0. As was shown in[lf‘the wave field

. E(r,t) = exp(iBz) exp(-iwt) Iy(ap), T (2);
f/T‘ddes’poSsess this breperty, where p2 = x2 + y s ‘and Jo(o) is ‘,(.
' “'the Bessel function of zero order of the first kind. The special- "

limited case of this class diffracted free wave fields is the

plane wave into which the wave field (2) goes at a-0.

. The diffraction free wave fields postulated in’/1/ were named

~in’? as "Bessel-form beams". It was noted that restricted Bes-

sel- form beams can be produced in lasers with ring mirrors

'and with output beams in the form of the ring.

. The productlon of the Bessel-form beams in the system with

. .narrow ring slit was treated in’23/,  In‘/% it was proved that ..

oz projection of the wave vector of the monochromatic d1ffrac-

“!tlon wave field must be constant for all partial components, .
-as otherwise the phase relations between these components will’
- be changed along z-axis thus introducing the spatial variations

- of the whole wave field. It was pointed out in/¥ that the

.. Jaxial nonsymmetruc wave fields of the form

",E(p, $) =esmg I, @)

with Bessel functlon Jm(o) ‘of the m-order form 1ndeed a new ._,.
class of the dlffractlon free wave fields. The wave field: of
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the form (2) is a conical one, whlle the wave f1e1d of the
form (3) has the form of the.spiral (W1nd1ng) sta1r with m-
vthreads.

. The propert1es of the dlffractlon free wave fields were
ftreated in detail many years ago by J.Dyson’%/, who proved
that the intensity of the light diffracted by the circular d1f-
-fraction grat1ng is of the form

o anf - B
1(p) = 27 tafed K (ap). : : )
SRR (X +£2) it -
where 21 is the distance from the observation point to the cir-
cular diffraction grating, 82 is the distance from the circu-
lar diffraction grating to the screen with observation point

P(p£22, ¢) and

-2t .
‘ 1
&= _1, = cDa ’ (5)
a(f +E2) o,
: with g being the constant pitch of the circular diffraction
- grating. ‘ ' '

-~ 'An Archimedian spiral grating of constant pitch"a'"was trea-
ted in/% as well. The radial distribution of the light inten-
| 51ty in the d1ffract1on pattern is described-by the equation

S 471' 4\23 . .
I(P) 2 Jl(ap).- : = (6)
A ( + )
‘with a given in (5).
_The annular aperture of small width wh1ch creates diffrac-
tion free wave fields with Jg - dependence along the’ rad1a1

‘coordinate has been treated by G.C. ‘Steward 78/ in 1928. The con-z T
!

cise review of the phenomena with conical wave fronts was gi-
ven in/7 . We see that diffraction free wave fields are 1ndeed
.very old ones, and only J.Durbin in 1987 has introduced this
very useful term. As 'diffracted free wave f1e1ds can be produ-
~ced by conical and stair-like wave fronts we may consider this
class of the wave- fields as ‘the mesooptical one/7/ -
“In this paper; the new phenomenon, "the 1ong1tud1na1 inter-
ference of the;dlffractlon free wave fields", is explained.
The exper1menta1 arrangements proposed for observation of such
'phenomenon are presented a) the system w1th two coaxijal cir-
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~wave front.

- cular diffraction gratlngs, b) the system with one circular

diffraction grating which produces at least two diffraction
orders, c) the system with two narrow concentric transmitting
rings. The evolution of the longitudinal interference of the
light in the volume between the generator and the detector is
analyzed. Finally the technique for suppress1on of the longi-
tudinal modulation of the light intensity on the opt1ca1 axis
of the system is suggested.

2. CONICAL WAVE FRONTS

To produce the diffraction free wave field of the form
J,(ap) (4), it is sufficient to use the axial symmetrical coni-
cal wave front which in the vicinity of the optical axis produ-
ces the light intensity distribution

(o) =17 (ap) 1. | | ™

For this aim we may use the 01rcu1ar diffraction grating or ki-
noform axicon :

The main d1fference between spher1cal and conical wave-
fields consists in the structure of the crossover on the op-
tical axis of the system. In Fig.l the crossover for the colli-
mated beam (a) and for the spherical lense (b) are shown. The
effective length of the crossover is equal to

-— - — — - Rt 2 . - :
R - (8)
2 d 9 A '
; where d is the diameter of the
! z crossover and ‘A is the wave
] A length. The distribution of the
L ' light intensity L(p) has the
e:%' L,:%!-,v z>>L,. _fom/g'm/ :
J.(ap) 2 -
A b ) =|—1 . o (9)
G jd 9 _
: . 3 In the case of the conical wave-
f i . front the distribution of the
3

light intensity is described by
the eq.(4). The length of the
Fig.l. The structure of the cross- Crossover L is equal to
lover in the case of the spherical D

L» = -E- smo, (10)
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.Fig.Z. The structure of the crossover in the case of the
conical wave front.

where D is the external diameter of the conical wavefront in
the region of the crossover (Fig.2).

The diffraction free wave field with helix structure
E(?, t) =exp(ifz)exp(-lwt)exp(i -2%‘;—) 'Jl (ap) (11)
can be produced by Archimedian spiral grating with one Fhreaq
(pass), the structure of which is shown in Fig.3. The light in-
tensity on the optical axis is zero on the whole length F, d?—
fined by eq.(10), and the diameter of the first bright ring is
equal to 1/a in eq.(5).

The radial distribution of the light intensity of the form
E(r,t) =exp(iB2) exp(~iwt) exp(i-%) Jz(ap) (12)
can be produced by the Archimedian spiral grating with 2
threads (passes). ‘ o

In' the experiments/8: 11,12/  the diffraction free wave
field was observed over the length L = 30 m with diameter of
the crossover of the order of 100 pum for the wave length A=
= 0.63 pm. This '"laser string'" can be used for the metrological
purposes with spatial resolution of 30 pm over the length L =
= 50 m'with kinoform axicon of the diameter 100 mm. )

'-The~1ongitudina1 distribution of the light intens%ty/over
the focal segment produced by axicon was analysed in/!3/. The
profile of the conoid axicon in the form proposed in gives
rise to the constant light intensity along the crossover. The
application of the axicon for generation of very long (~ 1 m
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Fig.3. The properties ‘of .the spiral
diffraction grating: top - the.meridio-
nal cross section of the interference,
fringes, bottom to the left - the view
of the spiral diffraction grating, bot-
tom to the right - the picture of the
interference fringes in one of the
cross sections. -
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is described
. The conical wave
fronts produced by axicon were
used for radial and axial pum-
ping of X-ray lasers ’17/. The
complex polarization effects in

the reflective axicons are trea-
ted in /18,19/ . -

discharge in gas
in /15, 167

3. LONGITUDINAL INTERFERENCE OF TWO COAXIAL
CONICAL WAVE FRONTS '

Let us consider two coaxial conical wave fronts which can
be described by two wave vectors il and'i2 with |§1| = |§2l
(Fig.4). In the meridional cross section of these two wave
fronts in the region of the mutual superposition of these two

% : wave fronts in the region of the
mutual superposition of these
two wave fields we observe the
interference fringes oriented
along the bisectrix of the angle
made by two wave vectors. k; and
k,. The period of these fringes
is equal to )

A

_61)'

. - (13)
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Fig.4. Two coaxial conical wavefronts,
the structure of the interference .
fringes and the longitudinal distribu-
tion of the light intensity on the op-
tical axis of the system: k, and k :
are two wave vectors in the given - ~ :
ridional cross section, A - period of
the light intensity modulation. -
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,’ghereyezLandVB1 are the angles between .the wave vectors iz and
k, with optical axis of the system, respectively. The orienta-
tion angle 6, of the interference fringes with optical axis of
. the system z is equal to - : ;
R N 1 s o . H
00 = E;(el + 62). - - (14)
In the real system each point of this meridional cross section
- corresponds to a circle. Only the points lying on the optical
axis of the system are fixed. Thus we can observe the longitu-
dinal interference of two coaxial conical wavefronts. The pe-
. riod ‘A of this light intensity modulation’ on the optical axis ﬁ&g

 shown in the bottom of the Fig.4 is equal to » ’W
R A v B
A= - = - ; - . (15) i

02 + 91 8  + 01 "\i

‘Shl(—_—g——_) sin(6, - 61) - sin( ———E;T—-)

The most straightforward experimental arrangement for obser-ﬂf

vation of this longitudinal interference of two coaxial conicall'{.

-~ wavefronts is the ‘'system with two coaxial circular diffraction }
. gratings G, and G2 shown in Fig.5. The working parts of these [}
: ) two coaxial circular diffrac-
- tion gratings are chosen such |
that the region of the mutual |
superposition of two fields is |
restricted near the optical '
axis of this system. - I
We can use only one circula
diffraction grating G (Fig.6)
if the later produces at least .
two diffraction orders. To “
5 match the intensities of the ,
corresponding diffraction or- _ ¥

St

.Fig.5. The experimental arrangement
‘with two coaxial circular diffraction
igratings and the wave vectors of the
tdiffracted components: 61 and 6y are
ithe orientation angles of the diffrac- :
“'ted light into the plus first diffrac- 7{)

diffraction grating.

Y

tion orders of two coaxial circular A

Fig.6. The experimental arrangement

- with one circular diffraction gra- ‘'
ting G in which the interference frin-
ges are produced by different diffrac-.
tion orders of the same circular dif-
fraction grating: P - the rotating po-
larizer to match the intensities of
light in two different orders.

ders an attenuator in the form
of a rotating polarizer P is
inserted before the circular
diffraction grating G. The ex-
ternal diameter of this rota-
ting polarizer P must be smal-
.~ ler than the diameter of the
external working part of the
grating G. In such a configu-
ration we have 6, =26, and
the period A, of the longitudi-
nal interference is equal to

Apm ——2 (6
sin6, - sin 6,

The light intensity modulation is observed in the region of mu-
tual superposition of two different. diffraction orders.

The most simple experimental arrangement for observation
of the longitudinal interference consists of two coaxial coni-
cal wave fronts produced by two coaxial narrow transmitting
rings on the screen. The components of the transmitted light
go initially separately and then these components cross the
optical axis. In this region we see the longitudinal interferen
ce of the light.

)
3

4. HOW TO SUPPRESS THE LONGITUDINAL INTERFERENCE

OF TWO CONICAL WAVE FRONTS

Now let us consider the technique of suppressing of the lon-
gitudinal interference of two coaxial conical wave fronts in
the case when this phenomenon would be undesirable. For this.
purpose we may use the Hilbert phase jump in the form of the
ring on the optical plate/2°/. The construction of this filter

is shown in Fig.7. It consists of twoﬁhalves with 180° azimUtal
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T o : Fig.7. The formation of the longitudi-
L - nal interferences in two halves of the
filter in the system with two coaxial
narrow transmitting rings on the screen
and the sum of these pictures on the
optical axis of the system.

Lol T o ' o z
Fig.8. The view of two halves of the

ring phase jump filter with Ag = }
= 180°.  (see text).

angular interval. One half of this filter shown in Fig.7 is a
glass plate. The second half of this filter shown in the top of
Fig.7 is a ring phase jump with phase difference A¢ = 180° for
given wave length A. The radius of this ring with phase jump
is just intermediate value of the radii of two coaxial narrow
rings. Under the influence of this filter the interference pic-
ture produced by the upper part (L) of this filter is in an-
tiphase with respect to the interference picture produced by
the bottom part (R) of this filter. The sum of these two mu-
tually-antiphase interference pictures is the constant func-
tion of z-coordinate. As this cancellation is taking place in
each meridional: cross section we got the complete smoothing of
the light intensity modulation on the optical axis of the sys-
tem. The constructions of two halves of the ring phase jump
filter with A¢= 180° are shown in Fig.8.

e

1! 5. LONGITUDINAL INTERFERENCE OF MANY COAXIAL

CONICAL WAVE FRONTS ' o ‘ o ) S

: It is easy to prove that the function a(z) whichvdeséribes_
.. the amplitude of the longitudinal interference of many coaxial
conical wave fronts with light intensity

() - k@I | S an

is equal ‘to the Fourier Transform of the angular field g(4)

with many wave vectors kl (i =1, 2, 3,...) which on being su-
perposed give rise to the 1nterference p1cture in one meridio-
nal half-plane.

-

For the case of two wave vectors k1 and k2 we have
g(0) = 8(6-6) + 86 - 6,) | (18)
and
a(z) = cosy —%, . | (19)' ;
where |
y. = sin(6, -6)). - . (20)

For the case when the number of the conical components.is
high and the corresponding wave vectors represent the equidis-
tant set along the axis sin6; the periodic structure of the
longitudinal interference on the optical axis will be periodic
as well as the angular spectra of light diffracted on the pe-
riodic grating with noncosinusoidal form of groves and with
small number of groves.

In the case when the namber of the conical wavefronts is
very high and the angular distribution of the wave vectors is
irregular, we have

sinf— - |
a(2) o m——— (21)
(EZ) ‘
"
~ where y = siné = 1/26_,, > and 6_,. is the angle of the

cone which is ﬁilled by the irregular or1ented wave vectors
of conical components. The eq.(21) is just equal to the: distrir




bution of the optical field along the longitudinal coordinate
in the vicinity of the crossover produced by the trad1t10na1
lens 21/,
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