

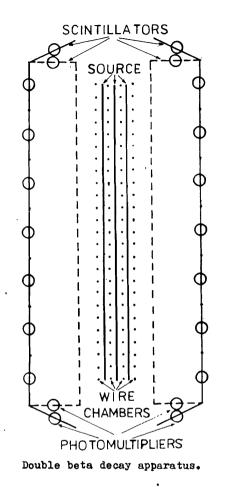
A 29

E13-87-309

1987

Yu.K.Akimov

COMBINED SCINTILLATION AND TRACK TECHNIQUE TO SEARCH FOR ββ-DECAY


Submitted to "NIM"

Double beta decay is one of the most powerful ways to test conservation of the lepton number. The highest balf-life $(T_{1/2})$ limits for the neutrinoless (0V) $\beta\beta$ -decay were obtained using /1/ germanium solid state detectors. 76Ge-isotope can give the \mathcal{OV} etaeta -decay with the total energy of two electrons E = 2 MeV. But this technique does not exclude other methods of investigation with different sources of $\beta\beta$ -decay. For instance a probability of the $OV \beta\beta$ -decay for ¹⁵⁰Nd is much higher (by two orders ^{/2/}) than for ⁷⁶Ge. Besides it is not necessary to use a high resolution detector to search for $\beta\beta$ decay with 2 Vor Majoron $(\mathcal{OV}\mathcal{K})$, because $E \neq \text{const}$ for these modes. New limits for the $\mathcal{O}\dot{\mathcal{J}}\,\chi^{\circ}$ -mode will have some important consequences in astrophysics $^{/3/}$. According to ref. $^{/4/}$, a probability of the $\mathcal{OV}\chi^2$ -mode is even higher than that of the OV-mode, if Majoron exists. A scintillation counter with a \sim 20% energy resolution is an adequate detector for a search for the 0V - or 2V-modes.

A scintillation spectrometer with a ¹⁵⁰Nd-source was used in the underground experiment ^{/5/}. The Nd₂O₃-sample (¹⁵⁰Nd -92.5%) was placed between scintillators and a two-dimensional spectrum was measured. The main background in the experiment is due to electrons produced in the scintillators by gamma-rays from natural radioactivity and n-capture.

The time-of-flight and track technique can be used to exclude such a background. This approach is used in the version of the apparatus shown in the Figure 1.

Объсявленный ікнститут Пасияма вселедований SURTHINTERA

There are three planes of the source $(\sim 3 \text{ M}^2)$ in the center of the set-up. Four wire chambers measure particle tracks in the source region. An accuracy $\triangle \theta = \pm 5^{\circ}$ for measurement of the angle θ between two tracks is quite sufficient. The thickness of each plane is about 6 mg/cm². It can be Nd₂O₃ precipitated on $6/M \ltimes$ -mylar (aluminized). Nd thickness is $\sim 4 \text{ mg/cm}^2$ in this case. To simplify preparation of the source precipitation can be done on smaller surfaces ($\sim 0.1 \text{ M}^2$) in succession. Two planes are for 150 Nd (M = 75 g) and the third plane is a dummy source. Each chamber measures two coordinates. The average amount of substance (Cu) in each chamber is $\sim 1 \text{ mg/cm}^2$. Scintillation counters are made of long plates. Typical thickness is 1 cm, width is 4+5 cm. Scintillations in each plate are detected by a small photomultiplier, taking off $\sim 10\%$ of collected light. Four such plates form a counter with two fast photomultipliers on both edges. A time resolution $2.35 \text{ G} \leq 1 \text{ ns}$ is expected for the energy of electrons T = 0.5+3 MeV. The time of flight of electrons between the scintillators is 2+5 ns depending on the angle of emission. The energy of two electrons $E_0 = 3.4 \text{ MeV}$ for the $0^{\gamma} \beta \beta$ -decay of 150 Nd. The most probable energy of one electron is 0.5 E_0 . Timing allows determining a position of the scintillation in the counter.

Background electrons with the energy about B_0 produced in the scintillators will have the r.m.s. scattering angle ~ 10^0 after traversing the source. A major part of these electrons can be rejected if opening angles $\theta > 155^\circ$ are excluded. Only 10% of the true events are found at $\theta > 155^\circ$ in the distribution with the angular correlation $(1 - \cos \theta) / 6/$. Timing can make the electron background negligible for $\theta > 155^\circ$. The main background will be caused by pair production in the source. But there are 90% of pairs and only 20% of the true events for $\theta < 80^\circ$. Multiple scattering will not change the angle distribution very much because of small thickness of the source planes.

The apparatus efficiency for $80^{\circ} < \beta < 155^{\circ}$ is about 1/3. If $T_{1/2} = 10^{22}$ y. and M = 75 g one will record N = 7 events of the $0\sqrt{\beta\beta}$ -decay for the measuring time t = 1 y.

Let's take data of $^{/5/}$ to estimate the background. Events occurred at a rate of 1.5/h for E = 3+3.5 MeV with the scintillator of mass $M_g = 6.2$ kg. Taking into account the ratio $M_{\rm Nd}/M_g$, the pair production cross section and efficiency for 80° $O < 155^{\circ}$

E13-87-309

 $(\sim 6\%)$ one can expect ~ 0.5 N of e⁺e⁻-pairs for t = 1 y. But the real background can be higher. Active scintillation shielding (20+30 g/cm²) can be made for suppressing the background. There will be a high probability of detecting one of the two annihilation gamma-quanta (0.5 MeV).

In the case of the $OV \beta\beta$ -decay two electrons have a total energy $B = (\sim 0.5-1)E_0$. Gamma-quanta must have energies $E_{\gamma} \ge 1.5 E_0$ to produce pairs with $E \ge 0.5 E_0$. It is higher than the natural radioactivity boundary and the background is much lower in this region. The number of single background electrons will be larger than for the OV -mode. But this kind of background can be effectively excluded by the time-of-flight and track technique.

References

1. E.Fiorini et al. Nuovo Cimento 13 (1973) 73.

- 2. H.Mishiura. Kyoto Univ. Preprint RIFP-453 (1981).
- 3. S.Nussinov, M.Roncadelli. Phys.Lett., <u>122B</u> (1983) 387.
- 4. M.G.Shchepkin. Uspekhi fizicheskikh nauk 143 (1984) 513.
- 5. A.A.Klimenko, A.A.Pomensky, A.A.Smolnikov. Proc. of the Int.Conf. "Neutrino-84" Dortmund, p. 161.

6. R.K.Bardin et al. Nucl. Phys., A158 (1970) 337.

Received by Publishing Department on May 5, 1987.

Акимов Ю.К.

Комбинированная сцинтилляционная и трековая техника для поиска
 $\beta\beta$ распада

Рассматривается вариант сцинтилляционного спектрометра с проволочными камерами для поиска $\beta\beta$ -распада. Предложена времяпролетная техника для подавления фона. Источник (~3 M²), расположенный в центре установки, состоит из трех плоскостей. Четыре проволочные камеры измеряют треки частиц в центре источника. Весь объем заполнен гелием. Сцинтилляционные счетчики изготовлены из длинных пластин. Четыре таких пластины образуют счетчик с двумя быстрыми фотоумножителями на обоих торцах. Время пролета электронов между сцинтилляторами составляет 2-5 нс. Если масса источника (¹⁵⁰Nd) равна 75 г, то может быть измерен период полураспада T $_{12}$ = 10²² лет.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1987

Akimov Yu.K.

E13-87-309

Combined Scintillation and Track Technique to Search for $\beta\beta$ -Decay

A version of the scintillation spectrometer with wire chambers for the search for $\beta\beta$ -decay is considered. The time-of-flight technique for suppression of a background is proposed. There are three planas of the source (-3 m^2) in the center of the set-up. Four wire chambers measure particle tracks in the source region. The whole volume is filled with helium. Scintillation counters are made of long plates. Four such plates form a counter with two fast photomultipliers on both edges. The time of flight of electrons between the scintillators is $2 \div 5$ ns. If a sourse mass (150 Nd) is 75 g, a half-life T $_{14} = 10^{-22}$ y. can be measured.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

4