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1. Delta function as a new mathematical concept has been introduced
by the physicist P.A.Dirac for treatment of the quantum mechanical quanti-
ties involving infinities of different kinds. Subsequently, Dirac delta functi-
on &§(x) was used any time when the final result is determined by the convo-
lution of the impulse function with some continuous function.

The Dirac delta-plus (or minus) function 8,(X) intended for investi-
gation of the causal functions and of the dispersion relations enters natu-
rally into Hilbert optics and mesooptics. In this branch of the imaging op-
tics the experimentator makes use of the Dirac delta-plus function 6, (x) in
his day-to-day work.

The review article begins with the introduction of the backgrounds
and of the underlying relations. Then the properties of the coherent imaging
system containing various spatial frequency filters are treated. They include
the knife-edge filter, the phase-edge filter and the diffraction grating with
phase jump. The analysis of the mesooptical imaging system used for ob-
servation of the straight line particle tracks in nuclear research emulsion
is presented. It is shown that in a general case the convolution kernel of the
mesooptical system is a superposition of the form a5 (x) + 8,(d/dx) 5 (x).

2. The Dirac delta function 8(X) is a generalized function or a distri-
bution, and we must at first consider the properties of the distributions. For
this purpose we introduce two key concepts: the scalar product of two func-
tions f (x) and g(x) /%37
<f(x), g(x)> = [ f(x)g(x)dx, 1)
and the convolution of two functions f 4(x) and f,(x) :
f(x):t‘l(x) 0fz(x) Ejfl(g'.)fg(! —f)dE. (2)
The scalar product, Eq. (1), is a functional, that is a process of assigning some
number <f,g> to the function f(x) , the function g(x) being given. For
example, the delta function §(x) is fully defined by the relation:

<8(x), 8(X)> = [8(x)g(x)dx = g(0). (3)
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The ponvolution of two functions f,(x) and f o (% ) is a new function
f(x), defined by Eq. (2). If g(x) is a good” function which vanishes at
infinity, then we can give the rule for finding the derivative of the generalized
function f(x)' 2’ :

af

L3I , B(x) > = <f(x), - 4s(x) >, (4)
dx dx .

and
2 2

<I® exy s = <gx), 4 48X (5)
dx? ax?

Let Y (x) be the unit step function or the Heaviside function defined as

{ 1, x> 0
Y(X) = 6
0. . (6)

dy(x

With Eq. (4) we may find the derivative of the unit step function
We have 73/

<-(1§§2— ,» B(X) > = <Y(x), — -E—i—(x—x-)-—> =
(7)
=— __ax_-—dx =-g(x) | = 8(0) = <8(x), g(x) >,
(o] o :
or
Y™ sy, @®)
dx

To calculate the Fourier transform of the generalized function f(x) we

must use a Parseval equation which can be written in the form of scalar pro-

ducts:

<1008 @) > = L« Flem, F*igel> , 9)
w
2

where § denotes both the Fourier transformation and the Fourier trans-

form of the function presented in brackets. ' .
Let us find the Fourier transform of the generalized function 5(x) de-

fined in Eq. (3). According to Eq. (9), we have

<Fl5m)], Glo)> = 27 < 8(x), 8(x) > = <8(x), 8 Glw)da > =

— 00

(10)
= [ Glw)dow = <1(w),Glw)>.
Thus
Flo(x)] = 1), (11)
where 1 (o) is the unit constant function of « . Similarly, we get
<Flo(x-2)1 Gla)> = 27 <B(x =X ), 8(X) > = <BE - X),
(12)
}" eia)x Glw)dow > = 3? eiwxo Glow)do = < elwxo, G(w)>,
or 4
f?[a(x— x )= e ? %o (13)
In a similar way we may prove that
AFe) Frix)-fx)1, (14)
do
~ df(x)
(-iw)  Flw) = 5‘[—-——(-——-]. (15)
dx

. . /1,87 _:
Two theorems concerning the convolution of two functions will be
used in this article:

~

1., (x) o £, () I Frmn- Fre,ml, (16)
g0 00— 2-Flr @) 0 Flryo]. (7)
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3. Let the real-valued symmetrical function f,(x) be given in the in-
terval —co < x <. To transform this function into the causal one /}/, it is
sufficient to multiply it by the unit step function, Eq. (6). To prove that
the new function f(x)=f (x).Y(x) is indeed a causal one, we use the
theorem (17) which states that multication of two functions in the x -space
is transformed into convolution of their Fourier transtorms in the o-space.
As Y(x) is a distribution:/2/, we cannot find its Fourier transform in a usual
way. We must follow an indirect way instead. We know that the derivative
of the unit step function Y(x) is the Dirac delta function, Eq. (8), and that
differentiation in the x-space turns into multiplication of the Fourier trans-
form of the initial function by(iw ) in the wspace, Eq. (15). Thus we have

~

ff[i—Y(X)] - e FLY@)]. (18)
On the other hand

Frdval = F15@)] = 16). (19)
We come to an equation

o+ FLY®)] = 160) . (20)
According to 72,38./

0-8w) =0 (21)
and the solution of Eq. (20) takes the form

Flv) = -1+ ¢ 50), (22)

lw

where C; is the unknown constant. To find them, it is sufficient to take into
account that

Y(x) + Y(=x) = 1(x), (23)

and that the Fourier transform of the left-hand part of Eq. (23) is equal to

Flix)] = 272.8(0). (24)
Finally we get

o 1 1

g[Y(X)] = 277[‘2— 8(0&)) + —2-17—;:0——] = 2ﬂ8+(m)’ (25)
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where the function

5, (w) = L8() + ~—L—u, (26)
2 2rniw

is the Dirac delta-plus function of ©. We have proved a well—known' theorem:

the Fourier transform of the unit step.function is equal to the Dirac delta-

plus function up to a constant factor /17, It remains to pro.ve that ‘the func-

tion f(x) = f,(x) - Y(x) is indeed a causal one. Let us rewrite the right-hand

side of the equation

~

fo(x). Y(x) ——%—* Folw) ® F (Y(®)], (27)

where

F (o) = - _;oro(x)e'm’x dx, (28)
T

is the Fourier transform of the function f, (x).
We have

P 0§ 1¥)] = F o) @ 200L80) « =11 -

2riw

Flo®)  , '
= 7 (F (@) + 2= F_ (o) @-(1-0-] = 2lF, () + _nli.gs__L__,am 1,(29)

wl W -0

. /1,27
where the integral taken in the sense of the Cauchy principal value

equal to the Hilbert transform of the function Flw):

R (o -
Log e dur = HIF, W) (30)
w1

W= w

Eq. (30) is known as a Kramers-Kronig relation which expresses the dis-
persion relation: the real and the imaginary parts of the Fou.rler transform
of the causal function are Hilbert transforms of each other up a sign.




The delta-plus function, Eq. (26), is commonly used in quantum elect-
rodynamics /4+5:/, in spectroscopy and in radioengineering. In this article
it will be shown how the properties of the Dirac delta-plus function presen-
ted here manifest themselves in imaging optics and mesooptics.

4. Let us consider a simple imaging system which enables one to accomp-
lish the spatial frequency filtering of the image’s field/®*. For this purpose
it is sufficient to expose the object-transparency by the convergent light beam
and to set an imaging lens in the spatial frequency plane {(Fig. 1). The two-
dimensional (2D) Fourier transform of the transparency function f,(x,y) is
mapped at the spatial frequency plane (v, ,wy ):

1 . “Hw, X ciw, ¥
Fo(wx ,wy) =(—2—;)—2'f dx fdy fo (X, y )e x e y . (31)

Fig. 1. Coherent optical imaging system
containing the spatial frequency filter:

= L,— lens which produces the convergent
light beam, Ob — object-transparant, G —
knife-edge filter, Lo — imaging lens, 1 —
image plane.

|1
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Here the integral is extended over the field of view of the imaging system.
To elucidate the essence of the filtering process, we may restrict ourselved
to the one-dimensional (1D) transparency f (x) . Its 1D Fourier transform
is equal to

1

Folog) = 2L g f (e *ax. ' (32)
”

Let us insert a 1D knife-edge filter with the amplitude transparency 1/

Gloy) = Ylo,), (33)

into the spatial frequency plane (wg ,0y). Now the lens is only exposed by
the positive spatial frequencies of the far field diffraction picture, Flo,).
Behind the knife-edge filter with transparency (33) we have a causal func-
tion of the spatial frequency

F(mx) = Fo(wx)-iY(mx'), (34)

which after the inverse Fourier transformation’?’ accomplished by the lens

is going into the filtered image with the field amplitude
fp (%) = S11,(x) + ix(®)], (35)

where x (%) is the Hilbert transform of the function o (%) /t/ " As functions
fo(x) andiy (x) are in quadrature with each other, that is they are shifted
in phase by 90°, the light intensity in the filtered image is the sum of its
quadrates®’?/

Iq,(x)=i—[[fo(x))2+|x-()‘1)12]. (36)

When we need to observe only one function y (X) without admixture of the
input image field f, (x) , the phase-edge filter with transparency /87

1,0 >0,

Glw) =isgne = i{ 37
-1, w < 0,

must be inserted into the spatial frequency plane. Here the sign function
sgno is related to the unit step function Y () by the equation

sgo = 2Y(0) - 1lw). (38)

The inverse Fourier transfom of the sign function sgn o only consists of an/
imaginary part of the Dirac delta-plus function multiplied by two:

Flomol = FI2Y(0) - 1) = 126, (x) - 5(x)} =

mix

39)

Unlike the quantum mechanics and the physical optics thjéherent
Hilbert optics enables one to construct a convolution kernel which differs in
principle from 6(x) function as well as from +(x) functions. To prove
this, let us use the diffraction grating with phase jump:’®/ as a spatial fre-
quency filter.  The relevant diffraction gratin% has a distance a’” between
two neighbouring central grooves which is equal to 2 "=a/2 , where a”
is the grating period, the phase jump line being on the line, defined by the
equationwy = 0.

The amplitude of the field appeared in the first diffraction order is descri-
bed by the Hilbert transform x(x) of the input field f (x)/% . However,
if the distance between two neighbouring central grooves is equaltoa*£a/2 ,
the intensity of the signal in the first diffraction order is equal to



(x) = \COSa-X(X)+Sina-fo(x)|2, (40)

where a is the angle which differs from the nominal value a_, = 0. In this
case the convolution kernel is equal to

BHILB(X) = sing - 5(X) + cosa - (41)
instead of a classical convolution kernel

(x) -1 (42)
by(3) =5 0x) + 5o

The inherent property of the convolution kerel, Eq. (41), is that.its
real and imaginary components are in phase instead of being in a.quadratu-
re. Due to this we may observe the direct interference between the field f (x)
and x (%) in accordance with Eq. (40). This interference phenomenon was
observed in the experiment s,

5. Now let us treat the mesooptical counterpart of the imaging system
shown in Fig. 1. We recall here that the imaging system is called a mesoop-
tical one when the object point is mapped into a straight-line segn.lent/ St‘:)h/e
longitudinal mesooptics) or into the circle (the transversal mesooptlc.s).
To construct a mesooptical system with the transversal mesoopt/lizit%,:a /1t
is sufficient to add a negative conical lens to the circular lens in Fig. 1" **»
(Fig. 2). Now the object point goes into a circle in the plane of th.e mesoop-
tical images. As before, the object is exposed by the convergent llght beam.
Despite the exotic construction and seeming uselessness the n%esoorl)tlcs fov.'md
application in high energy physics far observation of the straight line particle
tracks in nuclear research emulsion /10:12= 18/ This is due to the fact that
the straight line segment is mapped by the mesooptical imaging system mtq it-
self and twice multiplexed. Two mesooptical images of the same stra.tght
line particle track are displayed in the plane perpendicular to .the optical
axis of the system. Positions of the mesooptical images are defined by the
orientation angle of the particle track, by the distance from the centr(? of
the field of view and by its z-coordinate / 16/, The nature of transformations

Fig. 2. Mesooptical imaging system with
circular ‘response: Ly — lens which pro-
duces the convergent light beam, Ob —
object, Lo — imaging lens, X — negative
conical lens, M1 — plane, where the meso-
optical images c;f “the straight line objects are displayed, R — radius of the focal circle.
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Fig. 3. Example of the transformations
which the straight line particle tracks under-
go in the mesooptical system with cir-
cular response (Fig. 2). In the centre is
the field of view containing three-particle
tracks: mesooptical images of the straight
line particle tracks are shown on the focal
ring of the width equal to the diameter
of the field of view. '

which the straight line particle tracks
are subjected to in the mesoopti-
cal imaging system, can be explained
with the help of Fig. 3. In the centre
of Fig. 3 the optical images of three
straight line particle tracks in the
field of view of the system are shown.
The corresponding three pairs of
the mesooptical images of the straight
line particle tracks are given on the periphery of Fig. 3 on the focal ring.

The transformations which the straight line particle tracks are subjec-
ted to along the radial coordinate in the meridional cross section of the meso-
optical system are described directly by the Dirac J,.-function. It is easy .
to see that the knife-edge filter with transmittance of Eq. (33) is virtually
present in the mesooptical system. This can be explained by the fact that
each mesooptical image of the straight line particle track is produced only
by the positive (or negative) spatial frequencies and the virtual knife edge
filter is always oriened parallel to the straight line particle track. In contrast
to the Hilbert optics each straight line particle track has its own virtual knife-
edge filter. Besides this, the Fourier transform of the straight line particle
track produced by the convergent light beam and displayed in the region
of the mesooptical element (Fig. 2) is additionally subjected to one operation, -
the multiplication by the function iw . To explain this, we must take into
account the fact that the mesooptical image of each straight line particle
track is focused from those parts of the mesooptical element which produce
a narrow sector with the centre on the optical axis. Therefore the initial
optical field f,(x) is subjected to the following chain of transformations
in the mesooptical system:

~

Glw,) =Y, )

fo (X)) —2— F, (0,) Fo(wg) Y(wyg) —



~

. -1
2 W iw-Fylwg) Y(wg) ——

. _E_[5+(x) o f (x)]
dx

It

At x)+iyx®)] =
ax ° (43)

d . a
Rl § R — X).
dx o(!,i) * ldx x ()

1

-~

The real and imaginary parts of the light field amplitude being differentiated.
For example, if

fp(x) = "A(x)o (44)

where I, (x) is the rectangular pulse of width 2A 77/, then the output sig-
nal is described by the function

g(x) = Edi'““(x) + a‘_’;i}([nA(xH - —21;[8(!” A) - 5(x-B)) =+

i _d x+A 0 _ 1 (s5(x +A) - 8(x -A)]) -
Ll TR

i ‘

ﬂ(XE_AZ)

. 3 ! 17 /
This effect of differentiation in the mesooptics was observed experimentally

6. In some cases the straight line patricle tracks in nuclear research
emulsion are practically parallel to each others within a small nfmgular range
(£ 0°, 5), and the mesooptical element in the form of a t.;orrmd can be re'eg;
laced by a cylindrical lens or a mirror (Fig. 4). ﬂem dlfferex}tlatlon kxxf
respect to the x coordinate is absent. As in the optical sys?‘,em with tllgle 35e-
edge filter, the light field amplitude is equal t9 fo(x) +iy gx) , Eq. (39).

It is instructive to note that the mesooptical system ngg. 2) may con-
tain more general mesooptical elements (Fig. 5). The difference betw:_aen
them is determined by location of the curvature centre of tl.xe mesooptical
element. In the case of the traditional mesooptical syftem (Fig. t'?a) the.cur-
vature centre of the mesooptical element coincides w1'th th'e ogtlcal axxs of
the system. In the case of a cylindrical lens this centre 1s at infinity (Flg.. 5c).
For a general mesooptical element its curvature centre can be set at a istan-

10 '

Fig. 4. Mesooptical imaging system constructed
for observation of the collimated particle tracks

‘ in nuclear -research emulsion has positive cy-
lindrical lens Ligy .

Fig. 5. Optical relief of three mesooptical
elements which can be used for produ-
cing mesooptical imaging of straight-
line particle tracks: a) a traditional meso-
optical lens (mirror or kinoform), the

comvolution kernel of which has the /
form (d/dx) 8, (x ), b) an intermedi- =
ate scheme of the mesooptical lens, the 6:-(1) L

curvature centre of which does not coin-

cide with the optical axis of the system,; the convolution kernel has form of superposition
a 1(d/dx)5+(x) +a 28_,_ (%) ; ¢) the optical relief of the cylindrical lens, the convolution
kernel of which is equal to 8, (X). The optical axis is perpendicular to the plane of figu-
re and goes through the dot-and-dash line.

.8’

ce from the optical axis equal to the width of the mesooptical element
(Fig. 5b). It can be shown that the convolution kernel of the mesooptical
system (Fig. bb) has the form

d
a o, (x) + a2—6-;8+(x), ) (46)

i.e., is reduced to the superposition of &, (X) and its derivative (d/dx) 5 (x) .

Finally, the curvature centre of the mesooptical element may be on
the mesooptical element’s left instead of being on its right, as in Fig. 5. In this
case the convolution kernel will contain the operator

./‘3+(X)dx, (47)

11



which transforms the input function f,(x) into the output function
[IE (%) + iy (x")]dx”. (48)

We see that in Hilbert optics and in mesooptics we may construct a great
number of the convolution kernels containing the Dirac delta-plus function,
its derivatives and integrals.

The author expresses appreciation to D.V.Schirkov and V.1.Ogievetsky
for useful discussions.
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Copoxo JI.M. E13-87-292
Hensra-rutioc (win Muaayc) ¢yHxuua dupaxa
B OIITHKE U Me300TNTHKE ‘

PabGoTta mocesaureHa mensra-unoc dyuakunn Jupaka H ee npu-
MEHEHHI0O B rwib0epT-onTHKe M B MesoonTuke. BHauane pmaercsa
BBeJleHHe U OCHOBHBI@ COOTHOLIEHUA. 3aTeM paCCMOTpPEHbI CBOHCT-
Ba KOTepeHTHON H300paxaioulell CUCTEMBI, KOTOpas COIEPMKHT
pasnuunbie GUILTPH! NPOCTPAHCTBEHHBIX yacToT. JlaH aHanmus meso-
onTtUueckoit wH3oGpakaromiell CHUCTEMBI, KOTOpaA MCHOJIb3YeTCA
IR HAOMOLEeHKS NPAMBIX CNeJ0B YACTHI[ B ANEpHON (OTOIMYIIb-
cun. [TokasaHo, uro B o0lIeM cjiyuae CBEPTOYHOE HAPO ME300M-
?(n(qdicé?)ogtcy(x:)r.emm NpeacCTaB/IfAeT CyIEpNO3HIIHIO BHIA 318 +(X) + a5 X

~ Pabora srimonnena B JIaboparopun amepHsIx npo6rem OUAU.

MpenpuxTt OBbEMITIGHHOTO HHCTHTYTA ANEPHBIX HCCleNoBaHHiA. Ny6Ha 1987
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The topic of this review article is Dirac delta-plus function
and its application in Hilbert optics and in mesooptics. The artic-
le begins with the introduction of the backgrounds and of the under-
lying relations. Then the properties of the coherent imaging system
containing various spatial frequency filters are treated. The analy-
sis of the mesooptical imaging system used for observation of the
straight line particle tracks in the nuclear research emulsion is pre-
sefn:}(:d. It is shown that in a general case the convolution kemel
of the mesoopti iti
S @ (gg)?lcal system is a superposition of the form 2,5, (x) +a, x
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