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1. Delta function as a new mathematical concept has been introduced 
by the physieist P.A.Dirac for treatment of the quantum mechanical quantí­
ties involving infinities of different kinds. Subsequently, Dirac delta functi­
on 8( x) was used any time when the final result is determined by the eonvo­
lution of the impulse funetion with some continuous funetion. 

The Dirac delta-plus (or minus) function 8+(x) intended for investi­
gatíon of the causal functions and of the dispersion relations enters natu­
rally into Hilbert optícs and mesooptícs, In this braneh of the imaging op­
tics the experimentator makes use of the Dirac delta-plus funetion 8+ (x ) in 
his day-to-day work. 

The review article begins with the introduction of the backgrounds 
and of the underlying relations. Then the properties of the eoherent imaging 
system containing various spatial frequency fílters are treated. They include 
the knife-edge filter, the phase-edge filter and the diffraction grating with 
phase jump. The analysis of the mesooptical imaging system used for ob­
servatíon of the straight line partícle traeks in nuclear research emulsíon 
is presented. It ia shown that in a general case the convolution kemel of the 
mesooptícal system ia a superposition of the form a 18 + (x ) + a 2( didx) 8+(x) . 

2. The Dirac delta funetion 8(x) ia a generalized function or a distri­
bution, and we must at first eonsider the properties of the distributions. For 
this purpose we introduce two key concepts: the scalar product of two fune­
tions (x) and g(x) /2,3/ 

< f(x), g(x) > == f (x)g(x)dx, (1) 

and the convolution of two functiona rl(x) and (2 (x ) : 

(x)= (l(x) @f 2 (x ) =J(1<f:)f ( x -ç)dç. (2)2 

The scalar product, Eq. (1), ia a functional, that ia a process of assigning some 
number <(, g > to the function r(x) , the funetion g (x ) being given. For 
example, the delta function.ô(x) ia fully defined by the relation: 

<ô(x),g(x»· Jô(x)g(x)dx ,. g(O). (3)la 
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The ~onvolution of two functions f 1 (x ) and f 2 (x ) is a new function 
f(x) , defined by Eq. (2). If g(x) is a "good" function which vanishes at 
infinity, then we can give the rule for finding the derivative of the generalized 
function f (x { 3 / : 

d f(x)	 d g( x ) 
< ---- , g (x ) >' = < f (x}, - ---- > , (4)

dx dx 

and 

2f(x)
d	 d 2 g (x )

< ----- , g(x) > = < f(x). + ------ > . (5) 
dx 2 

dx 2 

Let Y (x ) be the unit step function or the Heaviside function defined as 

1. x > O 
Y(x)	 = { (6) 

o, x < O. 

With Eq. (4) we may find the derivative of the unit step function ~ Y(~. 
We have /3/ dx 

« _<!.Yi~2_ , g (x) > < Y (x ) , - -~~-<-xj-- >' d x dx 

(11) 
00 d g (x ) 

= - f --d~--dX =- g(x) I = g(O) = <ô(x), g(x) > , 
o o 

or 

d Y (x) 
-------- ô (x) . (8)

dx 

To calculate the Fourier transform of the generalized function fex) we 
must use a Parseval equation which can be written in the form of scalar pro­
ducts: 

< f(x), g* (x) > _!- < i [ f (x )], ~ * r g (x )] >	 (9) 
211 

'" where ~ denotes both the Fourier transformation and the Fourier trans­
form of the function presented in brackets. 

Let us find the Fourier transform of the generalized function ô (x) de­

fined in Eq. (3). According to Eq. (9), we have 

.<~ [ S (x ) ], G (cu ) > = 2 11 < s(x ). g <x ) > = <s(x ) • j ~icu x G (cu ) d cu > 

(10) 
00 

f G (cu·)dcu < 1 (cu ), G (cu ,) > . 
-()() 

Thus 

i [ S(x)] = 1 (cu ) , 
(11) 

where 1 (cu ) is the unit constant function of cu • Similarly, we get 

< ~ [ S(x - x ) 1, G (cu·) > = 2 11 < Ô (x - x ). g (x ) > = < õ (x - x ).
o '	 o o 

(12) 

00 icu x 00 icu x oícux

f e G(cu)dcu > = f e o G(cu·)d cu < e • G (cu) > ,
 

-()() 

or
 

" icu Xo
 (13)~[ô(x-x )1= e 
o 

In a similar way we may prove that 

d F( cu ) 
~ r (ix). :f(x)1, (14) 

dcu 

" df(x) (15)( - i cu ) • F (cu ) ~f----1. 
dx 

Two theorems concerning the convolution of two functions /1,3,/ will be 

used in this article: 

~" '" 
1. fi (x) @ f (x ) ----+ :f[ f 1(x j ] . ~(f2(x) 1,	 (16)

2
 

~ 1 '"
 (17)n. f (x). f 2 ( x) ----+ -- ~ [ f 1 (x )] @:f [ f 2 (x ) 1. 
1 211 
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3. Let the real-valued symmetrical function f o (x ) be given in the in­
terval - < x < 00. To transform this function into the causal one /1: /, it is 
sufficient to multiply it by the unit step function, Eq. (6). To prove that 
the new function f(x) = f (x) . Y (x) is indeed a. causal one, we use the o 
theorem (17) which states that multication of two functions in the x -space 
is transformed into convolution of their Fourier transtorms in the ú) -space. 
As Y(x) is a distribution ~/2/, we cannot find its Fourier transform in a usual 
way. We must follow an indirectway instead. We know that the derivative 
of the unit step function Y(x) is the Dirac delta function, Eq. (8), and that 
differentiation in the x-space turns into multiplication of the Fourier trans­
form of the initial function by( iú» in the ú)-space, Eq. (15). Thus we have 

~[_lLy(x)] = iú). j[y(x)]. (18)
dx 

On the other hand 

" d "­
(19)~[d"i- Y(x)] = ~.r. ô(x)] 1 (ú).). 

We come to an equation 

" 
i ú) '. :~ [ y (x ) ] = ~ (ú» • (20) 

According to /2,3./ 

Ú)·ô(ú» = O (21) 

and the solution of Eq. (20) takes the form 

" 1 
~ [ Y ( x )] = -:-- + C 1 ô (ú) ) , (22)

lú) 

where C 1 is the unknown constant. To find them, it is sufficient to take into 
account that 

Y(x) + Y(-:x) 1 (x ) , (23) 

and that the Fourier transform of the left-hand part of Eq. (23) is equal to 

j=[l(x)] = 2 11 · ô (ú» . (24) 

Finally we get 

j=[Y(x)l 211 ( !- s(ú» + --_.!_--] 211 Ô+ (ú) ) , (25)2 211 i ú) 

where the function 

+ 1__- , (26)
ô+(ú» = l.. ô (ú» 

2 211iú) 

is the Dirac delta-plus function of cu. We have proved a well-known theorem: 
the Fourier transform of the unit step , function is equal to the Dirac delta­
plus function up to a constant factor /1/. It remains to prove that the func­
tion f (x ) = f o (x ) . Y (x) is indeed a causal one. Let us rewrite the right-hand 

side of the equation
í li 

"­

j= 
---- (27)

fo(X). Y(x) Fo (ú» 0 j=ú) [ y (x) ] , 

where 

1 __ f f -1Ú). X (28)F o (iD·) 211 o(x)e dx, 

-00 

is the Fourier transform of the function f o (x) .
 

We have
 

F (ú» 0 j=ú) (Y(x)] F (ú)) 0 211 r .1. ô (ú» + _1-._] 
o o . 2 211icu 

1 Fo (ú) ') , . 
11 [F (ú» + _L F (ú) ) 0 _L ] 11[ F (ú» + -~f ----; dú) ],(29) 

o 11i o ú) o 111 ú)-CU 

where the integral taken in the sense of the Cauchy principal value /1,2 I is 
equal to the Hilbert transform of the function F o(ú» : 

1 F (ú) , ) "­
(30)--" -~--- d ú)' = J{[F (ú» 1. . :r, o 

111 ú)-ú) 

Eq. (30) is known as a Kramers-Kronig relation which expresses the dis­
persion relation: the real and the imaginary parts of the Fourier transform 
of the causal funetion are Hilbert transforms of each other up a signo 
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which after the inverse Fourier transformation,nl accomplished by the lensThe delta-plus function, Eq. (26), is commonly used in quantum elect­
is going into the filtered image with the field amplitude rodynamics 14,5: I, in spectroscopy and in radioengineering. In this artic1e 

it will be shown how the properties of the Dirac delta-plus function presen­
f<l> (x) = ~ [fo(x) + iX(x)],	 (35)ted here manifest themselves in imaging optics and mesooptics. 

4. Let us consider a simple imaging system which enables one to accomp­
lish the spatial frequency filtering of the image's field: / 6 

J. For this purpose 
it is sufficient to expose the object-transparency by the convergent light beam 
and to set an imaging lens .in the spatial frequency plane (Fíg. 1). The two­
dimensional (2D) Fourier transform of lhe transparency function f o (x, y) is 
mapped at the spatial frequency plane (w x ,wy ): 

1 . -iw x x -iwy Y
 
Fo (w x ,w y) = --- rdx f dy f (x, y ) e e
o(2 71 ) 2 

Ftg. 1. Coherent 
containing the~t "J'z	 
L 1- lens which 
light beam, Ob ­\L$d~:~--· knife-edge fi/ter, 

1 Ob F"(",) L 2 '1 image plane. 

(31) 

optica/ imaging system 
spatia/ frequency fi/ter: 
produces the convergent 
object-transparant, G 

L 2 - imaging /ens, I ­

Here the integral ís extended over the field of view of the imagíng system. 
To elucidate the essence of the filtering process, we may restrict ourselved 
to the one-dimensional (lD) transparency fo(x) . Its lD Fourier transform 
is equal to 

F (w ) := J.. r f (x ) e -iw% xdx	 (32)I 

o % 271' o • 

Let us insert a lD knife-edge filter with the amplitude transparency 171 

cHw ) := Y(w ),	 (33)
% % 

into the spatíal frequency plane (wx ,w y ') ' Now the lens ia onlyexposed by 
the positive spatial frequencies of the far field diffraction picture, F (w % ). 

Behind the knife-edge filter with transparency (33) we have a causal func­
tion of the spatial frequency 

F(w:lF) = Fo(wx)':V(w x')'	 
(34) 

~}
 
"
 

J
 equation W x = O.
 
The amplitude of the field appeared in the first diffraction order is descri­


bed by the Hilbert transform X(x) of the input field f (xy/7:1 . However,
o 

if the distance between two neighbouring central grooves is equal to a ' f;: a/2 , 
the intensity of the signal in the first diffraction order is equal to 

where X(x) is the Hilbert transform of the function f o (x ) 17:1 . As functions 
f o (x ) and i X (x) are in quadratura with each other, that ís they are shifted 
in phase by 90°, the light intensity in the filtered image is the swn of its 
quadrates il7l 

1 2 2
1<1>(x) = 4(r C (x ) 1 + Ix·(x)1 ].	 (36)o 

When we need to observe only one function X (x) without admixture of the 
input image field f o (x) ,the phase-edge filter with transparency/81 

I , cu ::> O,
 
G (w) = i sgn cu == i
 (37){ 

-1, cu < O, 

must be inserted into the spatíal frequency plane. Here the sign function 
sgn w ia related to the unit step function V(w ) by the equation 

sgncu == 2Y(cu) - t(cu).	 (38) 

The inverse Fourier transform of the sign function sgn w only consists of an 
imaginary part of the Dirac delta-plus function multiplied by two: 
,..,,.., . 1 
~rsgnw] = ~[2Y(cu) - 1(0')] = 12ô+(x) - ô(x)l ... -. ­

71IX 
39) 

Unlike the quantum mechanics and the physical optics the/ coherent 
Hilbert optics enables one to construct a convolution kemel whíêh differs in 
princíple from ô( x) function as well as from ô± (x) functions. To prove 
this, let us use the diffraction grating with phase jump:/9.1 as a spatial fre­
quency filter.· The relevant diffraction gratíng has a distance "a'" between 
two neíghbouring central grooves which is equal to a ' = a /2 , where "a" 
ia the grating period, the phase jump line being on the line, defined by the 
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(40)
1(x ) =	 IcoS a . X (x) + sin a' :fo (x) I2 , 

where â is the angle which differs from the nominal value a n om= O. In this 

case the convolution kernel is equal to 

(41)ÔH1LB(X) = sina' ô(x) + COSa' _1_
17X 

instead of a classical convolution kernel
 

. .' 1 1
 (42)ô+(x) =-ô(x) + --. ­
2 217 IX 

The inherent property of the convolution kemel, Eq. (41), is that its 
real and imaginary components are in phase instead of being in a quadratu­
re. Due to this we may observe the direct interference between the field f o(x) 
and X (x) in accordance with Eq. (40). This interference phenomenon was 
observed in the experiment /7./. 

1\ 5. Now	 let us treat the mesooptical counterpart of the imaging system 
1\1 shown in Fig. 1. We recall here that the ímagíng system is called a mesoop­

tical one when the object point is mapped into a straight-line segment (the 

II	 longitudinal mesooptics) or into the circle (the transversa! mesooptics) /10:/. 

To construct a mesooptical system with the transversal mesoopticity, it 
\1 is sufficient to add a negative conicallens to the circular lens in Fig. r/ 1 1 

,,12 / 
,I 

(Fig. 2). Now the object point goes into a circle in the plane of the mesoop­
l 

li	 tical images. As before, the object is exposed by the convergent light beam. 
Despite the exotíc construction and seeming uselessness the mesooptics found 
application in high energy physics for observation of the straight line partícle i 
tracks in nuclear research emulsion /10.12-16:/ . This is due to the fact that 
the straight line segment is mapped by the mesooptical ímaging system into it­Ili self and twice multiplexed. Two mesooptical images of the same straight 

11\1 line particle track are displayed in the plane perpendicular to the optical 
axis of the system. Positions of the mesooptical images are defined by the 

:1 orientation angle of the particle track, by the distance from the centre of 
the field of view and by its z-coordinate :/1&/. The nature of transformations 

G1 

Fig. 2. Mesooptical imaging system with 
circular 'response: L 1 -' lens which pro­
duces the convergent light beam, Oh ­

K 
~G 

MI object, L 2 - imaging lens, K- negative
 
conical lens, MI - plane, where the meso­


optical images d['the straight line objects are displayed, R - radius of the focal circle.
 

8 

Fig. 3. Example of the transformations
 
which the straight line particle tracks under­

go in the mesooptical system with cir­

cular response (Fig. 2). In the centre is
 
the field of view containing three-particle
 I tracks: mesooptical images of the straight
 
line particle tracks are shown on the focal
 (1

iI, ring of the width equal to the diameter ,r of the field ofview. 

which the straight line particle tracks 
are subjected to in the mesoopti­
cal imaging system, can be explained 
with the help of Fig. 3. In the centre 
of Fig. 3 the optical images of three 
straight line particle tracks in the 
field of view of the system are shown. 
The corresponding three pairs of 
the mesoopticalimages of the straight 
line particle tracks are given on the periphery of Fig. 3 on the focal ring. 

The transformations which the straight line particle tracks are subjec­
ted to along the radial coordinate in the meridional cross section of the meso­
optical system are described directly by the Dirac ô+.;function. It is easy 
to see that the knife-edge filter with transmittance of Eq. (33) is virtually 
present in the mesooptical system. This can be explained by the fact that 
each mesooptical image of the straight line particle track is produced only 
by the positive (or negative) spatial frequencies and the virtual knife edge 
filter is always oriened parallel to the straight line particle track. In contrast 
to the Hilbert optics each straight line particle track has its own virtual knife­
edge filter. Besides this, the Fourier transform of the straight line particle 
track produced by the convergent líght beam and displayed in the region 
of the mesooptical element (Fig. 2) is additionally subjected to one operation, 

1 
'I the multiplication 'by the function i w . To explain this, we must take into 

account the fact that the mesooptical image of each straight line particle 
track is focused from those parts of the mesooptical element which produce 

~ 

a narrow sector with the centre on the optical axis. Therefore the initial 
optical field f o ( x) is subjected to the fol1owing chain of transformations 
in the mesooptical srstem:11 

G (w ) = y (w )x x
') f o (x ) :fx • Fo (w x) ---. Fo (w x ) ' Y (w x') -+
 

9 



. s:
,., 

-1 
~ i cu • Fo (cu x) . y (cu x .) • 

--+" _d_ [~ (x) ~ f (x) ] = -.L[f (x ) + i X (x) ]
dx + o dx o (43) 

d . d 
~fo(X) + 1 ~ X(X). 

~. il· 
The real and imaginary parts of the light field amplitude being differentiated. 

For example, if 

(44)
fç>(x) = "A(x). 

where fi A (x) is the rectangular pulse of width 2A /7/, then the output síg­

nal is described by the function 

_l_[ô(x + A) - ô(x - A)] ....g(x) = ~nA(x) + AiH[nA(x)l
dx dx 2A 

(45)
i _d_lnl~\ _1_ [ °(x + A) - s (x - A ) 1 ­+ - ­

TT dx 'x - A A 

17( X 
2 

- A
2 

) 

This effect of düferentiation in the mesooptics was observed experimenta11y~ .I1? ! 

6. In some cases the straight tine patricle tracks in nuclear research
 
emulsion are practically parallel to each others within a small .angular range
 
(± 00, 5), and the mesooptical element in the form of a torroid can be rep­

laced by a cylindrical lens or a mirror (Fig. 4). Here düferentiation with
 
respect to the x coordinate is absent. As in the optical system with the knife­

edge filter, the light field amplitude is equal to f o(x) + i X (x) ,Eq. (35).
 

It is instructive to note that the mesooptical system (Fíg. 2) may con­

tain more general mesooptical elements (Fig. 5). The düference between
 
them is determined by location of the curvature centre of the mesooptica1
 
elemento In the case of the traditional mesooptica1 system (Fig. 5a) the cur­

vature centre of the mesooptical element coincides with the optical axis of
 
the system. In the case of a cylindricallens this centre is at infinity (Fig. 5c).
 
For a general mesooptica1 element its curvature centre can be set at a distan­

10 

Fig. 4. Mesooptical imaging system constructeâ 
for observation 01 the collimated particle tracks 

~ in nuclear· research emulsion has positive cy­
lindricallens L cy • 

........
 

x 

d: 8:r{x) 

Fig. 5. Optical relief 01 three mesooptical
 
elements which can be used for produ­

cing mesooptical imaging 01 straight­

line particle tracks: a) a traditional meso­
optical lens [mirrar or kinoform}, the .S·
I 

convolution kernel 01 which has the xIlE_l
form (d/dx) 0+ (x ),. b) an intermedi- ::t:
 

ate scheme 01 the mesooptical lens, the 8.,..(x) . .. __~
 
curvature centre 01which does not coin- i
 
cide with the optical axis 01 the system; the convolution kernel has form 01 superposition
 
a l(d/dx) ô+(x) +a 2ô+(:&) .. c) the optical relief of the cylindrical lens, the convolution
 
kernel 01 which ts equal to ô+(x). The optical axis is perpendicular to the plane 01 figu-'
 
re and goes through the dot-and-dash line.
 

ce from the optical axis equal to the width of the mesooptical element 
(Fig. 5b). It can be shown that the convolution kernel of the mesooptical 
system (Fig. õb) has the form 

d 
a 1 ô+ (x ) + a2 - + (x ) , (46)

dx 
õ 

i.e., is reduced to the superposition of ô+ (x) and its derivative (d/dx) 8+(x) . 
Finally, the curvature centre of the mesooptical element may be on 

the mesooptical element's left instead of being on its right, as in Fig. 5. In this 
case the convolution kernel will contain the operator 

.r 0+ (x) dx , (47) 

11 



which transforms the input function f o ( X ) into the output function 

f [ f o (x ') + i X (x')] dx' .	 (48.) 

We see that in Hilbert optics and in mesooptics we may construct a great
 
number of the convolution kernels containing the Dirac delta-plus function,
 
its derivatives and integrals.
 

The author expresses appreciation to D.V.Schirkov and V.I.Ogieve~sky
 
I· .for useful díscussíons. 
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Soroko L.M. E13-87-292 
Dirac Delta-Plua (or Minus) Function 
in Optics and Mesooptics 

The topic of this review article is Dirac delta-plus function 
and its application in Hilbert optics and in mesooptics. The artic­
le begíns with the introduction of the backgrounds and of the under­
lyíng relations. Then the properties of the coherent imaging system 
containíng varíous apatia! frequency filters are treated. The analy­
sis of the meaooptical imaging system used for observation of the 
straight Une partícle tracks in the nuclear research emulsion is pre­
sentado It ia shown that in a general case the convolution kernel 
of the mesooptical system is a superposition of the fonn a 1ô+ (x) + ~ x 
x (d/dx)8+ (x) .	 . 

The investigation has been performed at the Laboratory of 
'Nuclear Problems, JINR. 
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