


1. INTRODUCTION

In recent years, the technical and methodical progress om
several fields has contributed to an increase in the accuracy
of curved crystal spectrometers and has excluded a series of
aberrations, typical for spectrometer operation., Essentially,
most of aberrations which might occcur with a curved crystal
spectrometer can be negligible by a careful construction,
alignment and operation of the spectrometer. However, the
types of aberrations, which can occur, and their relative
magnitudes should be noted. Some aberrations produce a line
shift, others contribute only to brodadening of the line, Line
shifts could affect in systematic errors in the measurements
of the wavelengths or energies, Especially, this problem takes
a leading part at the absolute determination of the wave-
lengths or energies. 7

In the present time, wavelengths standards, which only
exhibit errors from some few ppm, exist for calibration in
the X -ray spectroscopy with crystal diffraction spectrome=~
ters. As a primary standard, the WK, ay llne is used; its value
was determined by AWK, 0. 20901349(18) & (see ref, "1’)

In other papers a series of high precision secondgry stan-
dards is also determlned 50 AMoKa ={.7093187(4) A ‘and
XCuK 5, =1.5405981(15)A in the papers of Deslgttes et al,’1%
ABgK g = 0.5594219(9)A and ACiKq, =2.293665(4) A by a comblnatlon
of the results of Deslattes et al.’1®’ and Bearden et al.
and MK, ,=8.34034(7) A by Henins’4’. The probable er-

rors in EEfS/l 8/ lie at about ppm, only the Aﬁﬂzlz wave-

length determination gives an error of 9 ppm. To compare the
results, obtained at different ZX-ray diffraction spectrome-
ters, it’s necessary, in addition to the knowledge of the crys-
tal characteristics and the control of the crystal position

by the use of laser interferometers ™7/, to investigate in
detail the possible origin of systematic errors.

In this payer we investigate for the Bragg-case (Johann /®/
and Johansson’! ver51on) centroid shifts and shape alterations
of the diffraction line due to the finite size of source and
crystal, i.e., the effect of geometrical aberrations.

This problem was' appreoached for transmission spectrometers
(Laue-case) by Schwitz et al. and was also taken into con-
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sideration by Schult and Reidy .In the present paper we
study the effect of geometrical aberrations under the main-
tenance of the improved statement of Schwitz et allll’, The
investigation of the Bragg-case gives results for a series

of configurations, differing quantitatively and qualitatively
from the transmission case, so that an autonomous treatment
seems to be necessary. In addition, interest for a more deta-
iled amalysis arises from the application of high precise la-
ser interferometers for crystal position measurements and
from the use of great crystals to improve the count efficien=-
cy of the spectrometer.

The present study doesn’t take into consideration crystal
structure effects, radiation absorption and extinction, and
the effects, originated in errors of the crystal bending. For
different geometrical cases the analytical expressions are
deduced to describe the diffraction line shift. Further on,
the problem is solved by integrating a multiple integral over
the crystal and source volumes with the use of the Monte-Car-
lo-method. As a result, we present line shifts and shape al~
terations for concrete geometrical arrangements.

2, THE GEOMETRICAL PROBLEM AND THE EFFECTIVE ANGLE
OF DIFFRACTION FOR THE JOHANN SPECTROMETER

We consider a focusing diffraction spectrometer with a con-—
cave crystal for the Bragg-case in the Johann-version’®/. The
geometry of the problem is shown schematically in projection
in Fig.l. The coordinates of an arbitrary ewmission point Q(x,y,z)
of the radiation source are defined from the point T on the
focal circle., In the same way the coordinates are defined for
a diffraction point B(r, t,h) of the crystal from the point S
on the same circle. The point § lies oppositely to the inter-
section K- of the curvature axis in the plane which contains
the focal circle. The axis of curvature as well as z and h
(source and crystal heights) are perpendicular to that plane.
The Bragg angle ¢ appears between the rays passing through
the points T and 8 and the crystal plane, i.e., the reference
angle TSK becomes the value »/2-¢. The angles, forming with
reference to the arbitrary emission and diffraction points @

. and B(JQBK), have the value #/2~6¢; .With respect to Fig.l the
following relations are wvalid

a=Rsind, _ (N
b= Rcosd, . ' : (2)
v=esins, . (3)



W = 8C0s5, (4)

r =t/R, )
sind =sinl(d +r - arcsin%) = 1?[(b—y) sin(@+r) —xcos(@+rl, (6)
cosd=cos(f+r —arcsin—i—): %—-[(b—y) cos(@+7) +Xsin(0+:) . (7

Insertion of eqs. (6) and (7) in eqs. (3} and (4) vyields:
v = (b—y) ‘sin(f+r) — xcos{f+r), (8)

w=(b-y) cos{f+r) +xsin{f+7). (9)

Fig.l. Schematic geomet-—
ry of a curved crystal
Bragg spectrometer (Jo-
hann versiom). T -
gource reference point
on the focal circle;

'Q - projection of an
arbitrary source peint
(coordinates X,¥%, 2 } on
the drawing plane; H -
projection of the source
point @ on a plane
containing the axis of
curvature and the point
B; K - intersecti-
on of the axis of cur-
vature with the draw-
ing plane; $ - crystal
reference point on the focal circle; B - projection of an ar-
bitrary diffraction point (coordinates r, t, h ) on the draw-
ing plane; (note, that for the Johansson version the point B
is placed on the focal circle); f - spectrometer angle between
the direction of a photon, emitted in T and diffracted in S
and the crystal plane; ¢; — projection of the effective diff-
raction angle of a photon emitted in Q and diffracted in B;

R - crystal bending radius; R” is equal to R-for the Johann
version and equal Rcoss for the Johansson versiom.




The space between the arbitrary emission and diffraction
points @ and B can be expressed as

u=[(R+r—w)2+v2+(h-z)2]% . (10)

To take into consideration the triangle QBH, sinf, has the form:

sind; = cos(Z - g;) - BII=W . Rorow (11)

u [(Rer=-w)R +v® +(h—z)2]l/2.

For a favourable mathematical treatment we define the follow-
ing quantities:

p=1/R, 12)
ét(h—i)/R, (13)
¢ =y/R, (14)
u=3R, , (15)
V’=V/R = (cosf~e)sin(f+r) ~ poos(d +7), \ (16)
%'=w/R =(cosf~e)eos(@ +r)+usin(@+r) 7

Substituting egs. (12} for (17) in eq. (11), sinf; is-given by

1+p—w’ . | (18}
[(L4pw % v 2s £21%

We use formula (18) as a starting point for analytical and
numerical investigations of the influence of geometrical ef-
fects on aberrations in the line position and shape alteration
of diffraction lines in curved Bragg crystal spectrometers,

To demonstrate the influence of single crystal dimensions, we
provide an analytical study for these cases in the next chap~-
ter, The obtained expressions are very useful to estimate the
effects provided by single geometrical dimensions.

§in@ =

3. POINT SOURCE AND EXTENDED CRYSTAL
IN THE JOHANN SPECTROMETER

3.1. Effect of the Crystal Height

We consider a source (xg =y, = zg = 0) and a crystal line
extending from -hy/2 to +hy/2  with rg=ty=10. Formula (18)
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becomes (with &'=¢&/sin@ ):

3 1w’
‘SmG_l = , - = .
[1-w)2sv B4 g % (19)
= sin®6 — sin@(—Le—) %
{'sin®0 +EB] 1+§'2

The average value of sind; , obtained by lntegrat:;.on over the
range {-“ ==h,/Ra to é_,'-' =h,/2a yields:

. 2 .
sind ( 1 )% ac,

sinf = ——— (20)
£5-¢4 g; 14872
Wlth §2=“‘51 the average value of sin@; ' becomes the form
— 1+§'2) + £
sinf = Sin 0 In 2 (21)

02 ”
28y g -
A series expansion of the logarithmic term in formula (21)
yields: ‘

o nd = smB o[ (1 - glz)% &1 = sm6 arcsmhrf
2 2.
h? 3 hg (22)
= 'sin 61 9 —_—— =

- —_—
0402 640 at

As it follows from formula (22}, the average angle § is smal-
ler than the measured angle §. so that a larger one than
the true wavelength is determined. The wavelength shift is

K n# h2
M Asme 1Mo 3 B 1 N
A ‘siné 24 a2 = B40 at 24 R%sin2@
where
A(sin8) ='sin8 —sinf . | (24)

We can note an angle dependent wavelength shift, whére the
shift increases with (sinf)™%

3.2. Effect of Crystal Width

We consider the case x0=y0=zo=r0=h0=0. Then, formula
(18) has the form -



1-cos@cos(f+r)
'sing | — =
[(1-cos6cos(0+r)) 2%+ cos®9 sin Bloam ™

25
1 ~cosfcos{@+r) (25)

[1+00828 ~2co80 cos(8+ 1] %

To obtain an explicit sinf —dependence in formula (25), we
transform eq. (25) in the form
1+cot?g 1-cos ot @'sin
s ~sing (- co8r)+ cotO'sins T (26)
[ 1+ 2cot® #{1—cosr) + 2 cot @sinr
If the angle r is assumed to be small {r<<n/2),we can write
down approximately

1-cosr =r2/2, | (27)
sinr = 7.
The insertion of eqs. (27) in eq. (26) yields:
g L+72/2 cot®8 47 cotf

's'mBi ~ ‘5in ol
[1+7%cot 28 + 2 cot)
(28)
-~ 8in @ 1+72/2 cot?0 +r cotf , sinf (s reot + -
14+ rooté 2 1 +rcot
The average value of sinf; is obtained by the 1ntegrat1on
over the range from ~t5/2R  to +tgy/2R
+o/BR g,
-t /2r 1+ 7 cotd
-smo=-sma(%.+% o - (29)

t/R
pl+to/2R cotf
1 __1-t/2R cotf

to
—— cot &
R

1.
l:" 6—
sm.(2+

Performlng a series expan51on of thls expressu)n we obtain

sng ~ s:n6[1+—-—(—— cotd)” + (—- cot®? 4., (30)
24 R 0 R




Therefore, the wavelength shift is -
t t
A=A GO ot8) 4 (2 cotd )P+ ) =
24 R ‘160 R _
t2 30
wA 2 Oen? .
24 g2

Let’s note that the approximate wavelength shift in eq. (31)
is valid only for large angles. For small angles the fourth
power term is still important. Whereas for the Laue case we
obtain an angle independent wavelength shift 8",for the Bragg
case we get an increasing negative shift, if the angle is
small. '

3.3. Effect of the Crystal Thickness

It’s assumed that x, =y =Zg=hgy=ty=0.To simplify matters,
further on we assume that the radiatiom on all crystal planes
is diffracted with the same probability, e.g., we neglect ab-
sorption processes of the interaction of the analysed radia-
tion with the crystal matter. Formula (18) gives

1+p-~ cos?d

'sinGi = n =
— ona2d)2 2.0 2
[(1+p- cos 9). +cos®@sin®g) (32)
p +sing
= 1
[(sin®6 +p)2+ cos %6 sin® @1 *
The average value of sinf, becomes then
1 +p/2 p’+sin®@ .
sin6 = L. f &’ (33
P —p/2 [(sin20+p") 2+ cos 20 sin26] %
Performing the integration, we get
——bitmia, . . 1,
sinf = —l-—[i(sin26+-§)2 + sin 26 cos® 61 4 _
P
W%
- Hsin®g - £)7 + sin® 0 cos®61 ") = (34)
2 Y P 2 Y
. =sin9[(1+p+—-'a—'-—) "(1"P+"'—"_2') }.
4sin® 6 48in*49



A series expansion of the square Toot yields

2 } . rg ’ .
'sinf = sin (1 — L cot®6) = sing(1 - 02 cot?0) . (35)
_ 8 8R
The shift is:
2
T
Mo cot®g. (36)
A 8R2

Eq. (36) is deduced for the complete description of the geo-
metrical aberrations to describe the radiation penetration in
the crystal. Since the penetration depth is very small, this
contribution can be negligible in practical calculations, be-
cause their magnitude is a few orders smaller than the other
contributions. Further on, in our calculations we set r=0.

4. POINT CRYSTAL AND EXTENDED SOURCE
IN THE JOHANN SPECTROMETER

4.1. Effect of the Source Height

We consider a point crystal (rg=tg=hgy= 0) and a source
line extending from —-2y/2 to +%,/2 ‘with xg=yo=0. Analogous
to paragraph 3.1. the wavelength shift becomes then:

2
Av 1 %o 3 20 .
A 24 REsin2 640 Risinle
1 2§
24 RZ2sin2g
4.2, Effect of the Source Width

(37)

It’s assumed that Xgw 2o =T, zt6=h0=0. Formula (18) be-
comes then

1-cosf{cosf-c)
'sin@i = - =

f[1 - cos6(cosf — )12 + sin2(cos 6 —)% ] %

(38)

8in%6 +ecosd

[sin®@ + ¢

2]%

Now, we transform eqs. (38), so that we obtain an explicit
*sin®  —dependence:

1+ (e.cot@/sing)
sinf = sing vl 1 (39)
[1+ e2/sin®9)" '




The averaged value of sinf; is obtained by integration over
the range from -¢;/2 to +¢y/2

o Heg/2 14+ = 3 cot§
sing = =09 1) s 5 de, ' (40)
€ 2
—o/ [14+ 62 ]%
sin® @

After integration the wavelength shift yields:

2 4 2
Mmoo Yo 1 Yo oot Yo 4
A 24 pegin%9  * R4sin 24 R2gin2g

4.3. Effect of the Source Depth

. In this case yy=zg=rg=tg="hg= 0. The effective value of
sinf; is then :
1-cos?@ - X sinf ]
_ §inf, = — = 8inf. (42)
(1 —cos?6 —xosin6)2+ (cosd sine—-xocosﬂ)z]

The result of formula (42) shows that only the source depth
hasn’t influences on the position and shape alterations of the
diffracted line,

5. SUMMARY OF THE ANALYTICAL EXPRESSIONS .
FOR THE JOHANN VERSION

In the previous chapters we have derived analytical expres-—
sions for the contributions from the single crystal and source
dimensions. A survey about the obtained results is given in
Table 1. , ,

Contrary to the results, obtained by Schwitz et al.
for transmission spectrometers, we obtain an angle — dependent
expression for the crystal width. For all other terms, with
exception of the source depth, a (sinf)" —dependence
is characteristic. A decrease of the wavelength shifts can be
attained by increasing the diameter R of the focal circle on
the strength of the typical R™® -dependence.

To illustrate the orxrder of magnitude of the various wave-
length shifts, some concrete results are given in Table 2 for
a standard geometry, which we’ll use for all the analytical
and numerical examples in the present paper,

Xp = 0.3 mm yo = 0.1 mm 20 = 10 mm

Tg = 0 mm tg = 40 mm hg 10 mm

11/

(43)

9



Table 1

The influence of non-zero crystal and source dimensions
on the wavelength shift AM)A (analytlcal expression)
~ in the Johann spectrometer

Non-zero

Characteristic Non-zero Characteristic
Crystal Wavelength Source Wavelength
Dimension Shift Ax/x Dimension Shift AMA
h g2
Height h, L _i___._._ Height z, Lo
24 R%sin? ¢ 24 R2sin20
2 g
. 1 P e , 1 Yo
Width t - — cot“f Width ¥y S
0 24 pe 0 24 RZsin26
1§
. = 0
Depth ¢ T cotd Depth x,
Table 2

Analytical wavelength shifts (in ppm), created by
non-zero crystal or source dimensions for diffrac-
tion angles in the range of 20 up to 85 degrees,
The symmetric case is assumed

Dimension 20°  80° 40°  50° 80°  70° 80°  85°

ty =40mm -1198.4 -476.3 -2255 -111.8 -52.9 -21.0 —4.9 -1.2
hg =10mm 84.8 39.7 240 | 169 13.2 11.2 10.2 10.0

¥o=0.1mm 0.0085 0.0039 0.0024 0.0017 0.0013 0.0011 0.0010 0.0009

We assume by our estimations that the two pointsT and R
in Fig.l were in the plane perpendicular to the axis of cur-
vature K and that the source and the crystal were placed sym-
metrically with respect to the points T and R (symmetric case).

6. THE TREATMENT OF THE JOHANSSON VERSION

The mathematical treatment of the Johansson version is ana-
logous to the Johann version, as described in the previous
chapters., The geometrical situation is similar to the plcture,

10 .



shown in Fig.l. In difference to the Johann version we must
replace the quantity R’ by

R’ = Rcosr . . ‘ _ : (44)

and the diffraction pomt B is in all cases places closely to
the Rowland circle,because the crystal is bended with the. ra-
dius R and addltlonally ground with the radius R/2.If we neg-
lect the radiation penetration in the erystal,the point B is
placed for all cases at the Rowland circle and the coordinate
r is set to zero. Due to these conceptions, eg. (10) has the
form ‘

u-[(Roosr+r=w)? + v2s (h=-2)2] % | | (45)
so that 'sinf; becomes:

Cosr+p — W’
((cosr+p—w)2ev B £

Starting from eq., (46), we notice that the formulae for the
influence of non-zero crystal and source dimensions, as given
in Table 1, are also valid for the Johansson version. Only the
treatment of the crystal width requires a mew detailed analy-
sis, In this case x,=yy=zg=rg= hy= 0. Formula (46)
has then the form

(46)

sinf, =

cost-cosdcos(G+r).
sing, - o : 47)

{ (cosr—cosd cos(+7 ) + cos %0 sin®(9+41)] e

e.g., we find
siné, = sinf ‘ (48)

From eq. (48) it follows that the crystal width in the Jo-
hansson case doesn’t influence the position and shape altera-
tions of the diffracted line. This result exactly reflects the
preferences of the Johansson version to the Johann case,

7. THE NUMERICAL PROCEDURE

The present study is limited to the aberratioms produced
by the finite size of the source and the crystal on the ref-
lex profile. In our calculations we consider an idealized ho-
mogeneous crystal. At each point the diffraction pattern f(9;)
will depend only on the effective angle ¢; between the inci-
dent photon direction and the reflecting planes.

11



Thereby, we assume that the photon emission from each
point of the source occurs with the same probability and ra-
diation absorption and extinction doesn’t occur. The numeri~
cal procedure is based on the same principle as applied by
Schwitz (11) et al., but for the integral, describing the si-~
tuation in Bragg spectrometers. The diffraction pattern f(8;)
we specify by the Gaussian function: ‘

@, -05)°
(@, ) =exp[.- ———] (49)
1 : 202 e
where ¢, denotes the Bragg angle corresponding to the wave~
length of the incident photon. ¢ is a free parameter depend-
ing on the mosaic spread in the crystal., Further on, we as-—
sume that the radiation is strictly monochromatic and that
the spectrometer setting angle § is close to the corresponding
Bragg angle ¢ . The observed reflex is given by

©6,0,%)-05)°

P Jav (50)

F@) =L fexpl
v v .
with 6 - effective diffraction angle and ¢;{6¢, 1) =
=Gi(6, X,y %¢tt h) =6, V =6 - dimensional source =
crystal volume. To obtain the wvalue of the integral (45)
for any geometrical condition, we define ag Schwitz et al.
and Schult /%’ a distribution function D(J -6), independent

of the diffraction pattern, as follows
D(G-9) = -‘1,- [80sing, (6, %) - sindl, av, 1)
v

where § is the Dirac & ~function and § - an arbitrary effec-
tive diffraction angle, R

To understand the significance of D, we note that V.D(¢-8)
4 represent that part of the 6-dimensional source~crystal
volume for which the effective diffraction angle ranges bet-

ween 6 and €+d¢. Then we have:
F{0) = [ DE-0)0(0) dh . (52)
9

To obtain practical results, we’ve developed the program
GEOMC /14/ which calculates the problem by the Monte-Carlo
method. This program allows one to solve the 6-dimensional
integral for the reflex F(f) and generate the distribution
function D{(9-6).
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8. NUMERICAL RESULTS FOR SINGLE GEOMETRICAL DIMENSIONS

In this caption we give some numerical results, calculated
with the program GEOMC’14’ for our chosen standard geometry.
For the calculations we have placed the crystal and the scource
symmetrically with respect to the points § and T,respectively,

Figure 2 shows the distribution function D(-8) for the
influence of the crystal width and the influence of finite
source height and width in Figure 3 and 4, respectively. We
note that the function D(G-Gi for the crystal and source
height has the same characteristics so that it is not neces-
sary to demonstrate both distribution functions, Whereas the
finite size of the crystal depth and the source width give
only a symmetric broadening of the reflex, both the crystal
height and width and also the source height lead to an asym—
metric deformation of the diffraction pattern.

For practical application it is very useful to study the
change of the peak position, full width at half maximum and
the peak amplitude over a wide range of diffraction angles
. The characteristic influence of some selected single Crys-
tal -and source dimensions on the mentioned quantities is shown
in Figures 5,6 and 7. :

In Table 3 we give some comparisons between calculated
wavelength shifts after the formulae in Table | and the nume~
rical results computed with the program GEOMC. A good agree-
ment between the analytical and numerical results can be re-
corded. '

Table 3

Relative shifts A(sin6)/sind, calculated with the analytic
formulae from Table 1 (AS) and numerical calculations ,
(MC) with the Monte—Carlec Method (program GEOMC) in ppm

Dimension 30¢ 5Q° 70° 80°
AS MC AS MC AS MC AS MC
h(] =10 mm 39.7 393 16.9 16.7 1.2 11.1 102 10.2

ty =40 mm -476.3 4774 -111.8 -111.7 -21.0 -21.0 -4.9 -49

9. NUMERICAL RESULTS FOR NON-ZERQ SOURCE
AND CRYSTAL DIMENSIONS

Assuming the same predictions as mentioned above, we cal-
culate the reflex profile for the Johann (Fig.8) and the Jo-
hansson case (Fig.9). : .

13
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FWHM ) : Fig.13 Full width at half maxi-
mum for various diffraction
angles 0 in Johann and Johans-
son version. For crystal and
gource dimensions see eq. (43).
R =648 mm, og = 5.
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The size of the peak amplitude after convolution with the
distribution function D(fy-6)) is presented in Fig.10. Note
that the absolute maximum of the Gaussian shaped diffraction
pattern becomes only less than 30 percent of the initial peak
amplitude after the comvolution with the distribution fumec-
tion.

Fig.11 demonstrates the characteristic position change of
the center of gravity for changing reflection angle GB-Since
the peaks show in general a clear asymmetry, we demonstrate
(Fig.12) the position change of the peak maxima as a function
of the reflection angle 0g.The characteristic full width at
half maximum spread is shown in Fig.13.

In Fig.8 it’s seen that with the decreasing reflection
angle the nearly symmetric reflex profile becomes a more
asymmetrical character that can lead to complications for
exact wavelength determinations in several experiments. From
Figs, 10 to 13 it follows that the angle region between 40°
and 80°in the Johansson case is recommended for optimal spect-
rometer operation. The operation of the Johann spectrometers
characterizes an angle dependent position change that can
lead to over~ or underestimation of the analyzed wavelengths.

In all cases the shifts are mainly affected due to the
crystal width and to the source and crystal heights. For all
non-zero dimensions we find the following result:

_I}.E_SM.. . Ar = 1 ..__...}__——[ h(z} +z2y y(2 4 3[‘(2] sin@cos()—tgcosz()} .
sin 0 A 24 R2sin%0 et
) (53)

The shifts computed by the above-mentioned formula, can be
compared with the results computed with the program GEOMC.
A good agreement can be noted.
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10. FINAL REMARKS

In this paper we have analyzed the effects caused by geo-
metrical aberrations in Bragg diffraction spectrometers. The
described theory allows onme to study the influence of single
geometrical dimensions on the reflex profile and position in
curved crystal diffraction spectrometers. The presented method
gives a uniform mathematical treatment for Bragg spectrome-
ters in the Johann- and Johansson version. In concrete measu—
rements it might be necessary to correct the data with the
use of relation (53). The correction may be important when
large crystals are used, since the geometrical parameters ap-
pear in second power. Exact knowledge about geometrical aber-
rations allows one to take into consideration these effects
at the processing of the X-ray spectra. It may be also ad-
vantageous for estimations to find an optimum of source and
crystal dimensions by the construction of concrete diffrac-
tion spectrometers.
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