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Introduction

When the complex formation process is studied in some
metal-ligand system traditionally the number of comple7 /species
is restricted to the coordination saturated complex U the
complexity reaction is expressed as M +nL SML, then, the thermo-
dynamic stability constant of the complex ML, defined as

(MLg) fwe, fme,
= i ———=Bur
n o (M)(L) fy-1y

’

ML

" Iyefy

could be regarded as a product of concentration quotient fyr, and

f
activity coefficient quotient 7 ML;’,,—- Most experimental methods
molL
used for the determination of stability constants are designed for
constant ionic strength of the solution, which provides conditions
such as the activity coefficientquotient to be considered as a constant.
Actually, the activity coefficient quotient expresses the medium
effect. Thelzl?tter is usually estimated by uﬁll}g the Debye-Hiickel’s
expression’ or some of its modifications /"""

Sillén’*/ has pointed out that generally there is not always
an evidence to ignore the presence of the species formed in the
solution as a result of the interaction between the metal complexes
ML, and the ionic medium ions and solvent molecules. The right-
ness of this opinion wf'ls supported by the results reported in
a number of papers/6~8/. According to Mironov/% part of the
ionic medium effect could be ascribed to 2 formation of outer sphere
complexes in the solution. 1016/

In previous papers’’ the validity of a simple relation
which connects the overall stability constants of metal complexes
was demonstrated for a number of metal-ligand systems. That




relation has been derived on the basis of a mathematical model
concerned with a stepwise series of mononuclear metal complexes
formed in an aqueous solution with a constant ionic strength/20/
In the present paper an attempt is made to modify this model
for metal-ligand systems studied at several constant ionic strengths
on the basis of the assumption that the ionic medium effect is
mainly due to a formation of cuter sphere complexes the number and
the concentration of which depend on iie ionic strength of the
solution. :

Theory

The equations which will be derived are based for the most
part of earlier paper/19/so here many detal/lfo /wlll be omitted.
The mathematical model constructed in Ref. was concerned
with the formation of a series of mononuclear complexes of the
type NL, formed in an aqueous solution with a constant ionic
strength. One of the basical assumption was thatin the system under
consideration no formation of outer sphere complexes of the type
C ML, occurs, where C denotes the electrolyte cation. For this
case the quantity P - the total probability for the distribution of the
metal ¥ in the solution has been introduced and defined as

=iV
P-P" +n¢21 P"Ln - 1» (l )
where
L)}
PM - C—M (l!)

is the probability of ¥ ion being found in the solution,

1 an n
== A= (N)(L »”
wL, " Ty n!{)() )
is the probability of ML, complex bemn%found in the solution,
M is the complex forming metal N , L is monovalent ligand,

Cu is the total (analytical) concentration of W in the solution,
n is the number of ligands, ( ) are concentrations, 4 and a are
constants.




The concentration of ML  in the sol:tion is then given by
a” n
(ML J= Cpy Py =A-n-.-,-(M)(L) . @)

Now, we shall consider the same metal-ligand system but at
a constant ionic strength of the solution at which the formation ci
outer sphere complexes could not be ignored. The higher the ionic
strengtz of the sclution is the higher is C* ions concentration.
On one hand this could cause lon-pairing of the electrolyte

cts L-;-C+L" 3)

and on the other hand a formation of outer sphere complexes of the
type C,ML,. The latter could be charged as well as neutral ones,
and their formation may proceed by different mechanisms. Two
conceivable reactions are

ML S y_)Sy, +PC o C, ML, Sy 15y _, +pS, (4)

Igp<N-m m <n<N

[ML_s 1s

m~ N=m

wy #2(CL)a LML, S, NC*'C) oSy, _ptoS, @

1<psH,

where S is water molecule, ¥ and ¥, is the maximum number
of water molecules coordinated to M in its first and second hydra-
tion spheres respectively.

Here also, /as it was already done in the derivation of the
equations in Raf, , the hydration of the species which substitute
water molecules is not taken into account. It should be pointed out
that the proposed reactions (4) and (5) could not represent the
actual mechanisii. But since the thermodynamic considerations
underlying the equilibria in solution are concerned with the initial
and final states and not with the path the reaction takes, formally,
we could use each of these reactions to express the process and it
will not affect the final results.



Depending on the properties of the system as a whole the
electrolyte ion-pairing, Eq. (3), and the formation of outer sphere
complexes, Eqs. (4) and (5), may proceed to a different degree.

Let us suppose that by reaction (4) only charged outer sphere
complexes are formed. Then, the following unequalities will be
hold m+[ <n< N and I £ p < N-(m+1I).The neutral outer sphere
complexes are supposed to be formed by reaction (5) only.

As far as the mathematical model which will be presented in
this paper is an extension of fiat developed in Ref. /10 , all
initial assumptions made in that paper are hold here also. A slmilar
treatment as that applied in Ref. /10/ i) b7 used keeping in mind
that: i) In the system treated in Ref. the metalion M is
considered as a central group of the complex series and here this
part will be played by the species ML, ii) In Ref. /7% the complex
formation reaction is considered as a substitution of water mole-
cules from the first hydration sphere of M with ligands L , and
in the present treatment the water molecules from the second
hydratlon sphere of M are substituted with C* ious (or with
ctL”ion-pairs if reaction (5) 1is considered). iii) Short range
attractive forces will be introduced and defined as follows: a) for
reaction (4) . , , Is the force directed from the species ML, ,
CML , ; C, ML, ... towards C* ion, which is assumedtobea constant
independent of the type of the complex species. f , . , is the force
directed from C* ion towards the complex species ML,, CML, ,
C2> ML, ..., which is assumed o be constant independentof the type
of the complex species. f « . s is the force directed from the
species CHML, , C, ML,... towards water molecule, which is assu-
med to be constant independent of the type of the complex species.
fs4x 1is the force directed from the water molecule towards the
complexes CML, , Cz ML,... which is assumed to be constant
indenendent of the type of the complex species. b) for reaction
(8) I, ., is the force directed from the species CML  ,
CML ; + 1> C2MLgyyz2.. towards c 'L~ which is assumed to be
constant independent of the type of the complex species. f,‘,x’is
the force directed from the ion-pair ¢ *L~ towards the complexes
MLm ; CHL m+t , C2ML,;.. which is assumed to be constant
independent of the complex species. f.’. s° is the force directed
from the complexes CML ., C; MLy ... towards a water molecule,
which is assumed to be constant independent of the type of the

complex species. f_ ., .. istheforcedirectedfroma water molecule




towards the complexes CML,4s‘, CaMLpi2 ., which is assumed
to be constant independent of the type of the complex species.
iv) The number of the complex species which have a suitable energy
for the forward reaction of Eq. (4) is given by Ky (C,HL,) . The
following relations are assumed to be hold

K =K

= .. =K =
CML,, c, ML, CoML, x

and
Kyp = B,K,
n

where B, is a coefficlent of parametrization, the index n denotes
that this coeificient depernds on the number of lizands in the complex
ML, . The number of C% tons, which have a suitable energy for
the forward reaction of Eq. (4) wiil be given by K _(C); By analogy,
the number of the neutral complex species, which have a suitable
energy for the forward reaction of Eq. (5) will be givea by
Kee(CoML, o) . The following relations are assumed to be
hold
Kome = Keyme, 7w = Koo oand - Ky = 0K,
wiere @ is a coefficient of parametrizatica. The number of the
c* L™ ion-pairs which have a suitable energy for the forward
reaction of Eqg. (5) will be given by KC,_(C+ L~ ).The number of the
complex szacies which have a suitable energy for the backward
reaction of Eq. (4) will be given by K. (C, ML, ). Here also as
it was already done for the coefficients in the forwa-. reacticn of
Eq. (4), K, s coefficient is assumed to be independent of the
complex species The number of the water molecules which have
a suitable energy for the backward reaction of Eq. (4) will be given
by K5 (S) .By analogy, the number of the neutral complex species
which have a suifable energy for the backward reaction of Eq. (5)
will be given by K, s/(C p MLpup) » The number of water molecules
which have a suitable energy for the backward reaction of Eq. (5
will be given by Kg-(S) . ’

Now let us introduce the total probability for the distribution
of the ‘metal M (centr:1 group) in a solution with a given ionfc
strength - P



P =P + LPy +2PcpMLn+chpuLm+p=

1, )

where P, is the probability of X species being found in the
solution; p + m < n is hold for the charged outer sphere complexes.

To obtain Eq. (6) in an explicit form we have to find relations
giving = Pcp mr, and %P 'cp ML, ,3S tunctions of the varizble

(L). ( Py and ZPy;  could be taken from Eqs. (I°) and (1)
respectively). For this purpose, we shall first consider reaction
(4), starting with the formation of the complex species CHML, which
will be given in details. The probability of CML, complex being
formed according to the forward reaction of Eq. (4) will be given
by

‘B 1
n
P{m-. = CM * Kx' fx-y {MLn)chy-vx(c) = FM‘ Bn. bn,o (MLn)(C) ’ (7)

where b,, =K f , K I , = const.

The backward reaction probability will be given by:

w Kx,S fx-S Bn' bn,o (MLn)(C)KS fS-x {S) =
" ®

= —= - B, b,, D(ML,)(C),

where (S§)= const ; D= K f K

x5 fTxas Kg* L5, (S) = const,

The probability of the CML,complex being found in the solution
will be given by the difference of the forward and backward reac-
tions probabilities

1
Pewr, ™ Proe. ~Poack™ € " Ba* Ba,0 (1~ DI(ML,)(C) = )
1
= z’; B, - b,(ML, }(C) ,



where

bn=bn’0 (1 ~D) = const . i
If Eq. (2) is used to express the term (ML,)in Eq. (9) the latter
will be transformed to

n

1
= A=
CML,, CM n!

B, - b, (C)M)(L)" . (10)

In analogous way we can get the following equation for the
probability of C, ML, complex being found in the solution
P
a .

n e
P = A— B, — (C) PGy )" an

1 n
Cp ML Cu n! P

Here a factor of p! appears in the denominator, which is related to

the model consideration of the proper orientation of the interacting
species at collision (see Ref. /20/ ), Summation of Eq. (1) over
n and p will give

1 p=N-m—-1 n=N an P o n
P =—AmM) X £ B — ~2@)"@). (12)
Cpllll.n Cu p=1 n=m+2 n nt p!

Let us now consider reaction (§) assuming that it is the main
reaction by which the formation of neutral outer sphere complexes
proceeds.’ If an analogous approach to that applied above is used,
the following relation for the probability of C pMlmip complex
being found in the solution will be obtained -

1 q° + =P
P’ = =05 ML_)(cLT)"=
Co ML o Cu p! m as)
L4 o L wma) ey’
where "G fm e L)

9=q,(1~D) =K - f;. K cz,‘y'-.x'[""x's"x'..s"‘s"ssx'(s”'



If the concentration of thz electrolyte ion-pairs c'L in Eq. (13)
is expressed by using the equilibrium constant 8 o, of reaction
(3) and a summation of Eq. (13) over p is performed it will be
transformed to

P. 8P . (C)P
1 p=Ny 3Bt p
5P’ =C—A o——(M)(LJ"' { — (L) g

c ML . p!

Expressing now Eq. (6) through Egs. (1), (1), (12) and (14) and
multiplying its both sides to Cy /(M)  wegetthe following relation
for the complexity function of the system, which will be denoted

as Fgpus
n=N an
Fgmxs. = Fu. n Fp.n * F,x’m-qp'u I+ A nél —(L') +
p=Nem=1 n=N, a® bl’

I N R A - M {15

p-1 n=m+ 2 n!

am™ p=N; q B (C)

m D)

+AQ (L) < —T!"'——(L) ,
where F, , - complexity function ofthe ML, complexes plus
unity, F - complexity function of the charged outer sphere

p.u
complexes, F_, ., .,

sphere complexes.

When some metal ligand system is studied at several constant
ionic strengths of the solution the constants in Eq. (15) will have de-
finite values. A priori it could be said that the constant 4  will
remain independent on the ionic strength of the solution, while the
constants 8,y and € will be functions of 1 . This follows
from the fact that A is a coefficient of parametrization for a pro-
cess concerned with the first hydration sphere of M which is
expected to be less sensitive to the presence of electrolyte ions in
the solution, while B,, and ¢ are coefficients of parametriza-
tion introduced for a process which is concerned with the second
hydration sphere of ¥ . The structure of the latter is expected to be
much more affected by the presence of electrolyte ions in the solution,

- complexity function of the neutral outer

10



e.g., by the ionic strength. Theconstants 2 , 5 and ¢ areproducts
of a number of quantities, the variation of which with the ionic
strength is assumed to be neglible.

It the relations B,=B, (1) and 0=0(p ) are known, the
problem of finding the values of the complexity function of a given
metal-ligand system studied in an aqueous solution with a variable
ionic strength will be reduced to getting the solution of the following

modification of Eq. (15)

n=N a”
= 4 - — n
Fgross - FD,n + I';-:,n ) * FP.M+p(F) T+4 nE’l n! (" +
-le—m—l qPHE
VA% 3 ﬂa"(,l)_ ._’*.'.(L) +AO(p)——(L) I%L w®”, s

where the index (1) indicates that the quantity isafunctionof # ,
(C) {is substituted by (L) , takingintoaccounttherelation (C)=(L),
which is hold in the given case.

So we have obtained an expression for the total complexity
function at a discrete fonic strength - Eq. (15) and an expression for
variable ionic strength - Eq. (16). These two functions show some
interesting features which could be summarized as follows:

1) Wheng,(x)+» 0; O(p) » 0 ; in a certain range of ligand
concentrations and ionic strengths no outer sphere complexes are
present in the system. Then, Eqs. (15) and (16) are reduced to the
following unique form

n=N ah n

Farons Fop=t+4 5 Zr (L) . an
2) When N,>q Eq. (15), where the following relations are hold:
5,(C) -b wconst and qﬁ ;q“i.cnnst,ls transformed to

F Man n
¢ro:aj *‘4,.5 ;T(L)"'

p-N-m-I ndV
A an ___ q'\eJ(L)_
+ M A q, (L)"+ 402 (L) (e 1) a8)



and Eq. (16), where the following relations are hold (C) = (L)
and ¢B_, = g* = const , is transformed to

n=N n n
Fgoes =1+ 4 2 (L) +
PiN-m-1 n=p n a™ .r 2
. (L
+ A b b3} Bn(,‘)i-—-—(z,) +A0(y)-—,-(L)"'(eq .
P =1 n=m+2 n! m: Qs)

3) For the particular case, when ¥ = 4 and m=2 (a great
number of metal-ligand systems studied belongs to this class), the
number of the charged outer sphere complexes is reduced to one.
So, if the contribution of F, in F gross is neglected Eq. (18)
is trans!ormed to

a"  a a2 7 adoOWw
Faons 114 }: F”‘) +AQ—Z(L) (e - 1) (20)
and Eq. (19) is transformed to
nm=y an 2 2
gross 10 A2 —(L) + 4O(u)——(L) (¥ ™ ip.@n

n=1

Results and Discussion

To check the validity of the relations derived in the previous
part of this paper we had to have at our disposal experimental data
for a given metal-ligand system studied at several ionic strengths,
from which the complexity function for each discrete ionic strength
could be gotten, e.g., to have available a family of F -functions. We
have focused our attention to families of F -functions, eachobtained
by one author or working group, using a single experimental method
for each ionic strength. This was done to escape the error which
could be introduced if the individual F -functions of the family are
obtained by different authors /% . 24

Here as an ulustrauve 7xample the system Cd~ - Br~ stu-
died by Kivalo and Ekari / will be given. This system had been
studied polarographically at temperature 25°C and ionic strengths

12



0.5, 0.75, 1.0, 2.0 and 3.0 respectively. NaClO, had been used as an
inert electrolyte. At each ionic strength the measurements had been
performed to bromide concentration corresponding to the full sub-
stitution of cfo; with Br ions. The F -function at each ionic
strength had been obtained from the experimental data using the
De Ford and Hume's method /!8/ and they are presented in the cor-
responding tables of Ref, 717/ ynere they zre denoted as F,. In
Fig. 1 the Iloé F;, vs. the bromide concentration of the solution
are plotted, the values taken from Ref. / ’7/2. These curves were
the subject of our analysis. As far as Cd * has a coordination
number ¥=4 and charge m=2 , this family of complexity functions
could be deseribed by Eq. (20). To find the values of the corresponding
constants ‘4, a2 ,Q and q* these curves were analysed in the
following way: first, the ligand concentration region has been found
in which the F -functions at low ionic strengths coincide. This was
the bromide concentration 0-0.5 M in which the F -functions at
g = 0.5 and ¢ = 0.75 lay on one curve as shown in Fig. 2ina
suitable scale. So, according to the idea developed in the previous
part of this paper, the absence of an ionic medium effect in this
concentration range for these two F -functions was considered
as an indication that no outer sphere complexes are formed in the
solution at these conditions. So, for this concentration range and
for these F -functions the requirements for the application of Eq.(17)
are fulfilled. Using the method described in Ref. /10/ the constants
‘A and & in Eq. (17) were determined. In Fig. 3 the solid line
represents the theoretical F-function calculated by Eq. (17) to bro-
mide concentration 0.5 M, where the experimental points for both the
ionic strengths are given too. As could be seen a satisfactory fit is
obtained. Then, using the values of ‘A and a constants obtained, the
Q and g¢* parameters are gotten by solving Eq. (20)for two values
of F, at eachionicstrength.In Tablel-5the experimental F -func-
tions (F; ) are compared with the F -functlo?s ;:alculated by using
the Bn values reported by Kivalo and Ekari /!7/ and these by using
Eq. (20) of the present paper. The fit at each data point is estimated
by the quantity AF defined as AF = 1/F; (Fcare - Fy ) 100

It should be pointed out that irrespective of the fact that Eq. (20) is
an approximate equation (the presence of the charged outer sphere
complex NaCdBr, is neglected) the F -functions calculated by
Eq. (20) show satisfactory fit to the experimental ones. As could
be seen from the data presentedin Tablesl-5 the constants 4 , &



and q¢* are independent of the ionic strengthandonly the Q para-
meter is a function of the ionic strength of the solution, this being
in agreement with the theoretical considerations of the mathemati-
cal model presented in the previous part. In Fig. 4 the graphical plot
of ¢ vs g Ispresented. Itgivesastraightline: Q@ = 0% - @, .
The constants ©* and Q, could befoundas a slopeof the curve
and an intersect on the x -axis. In this way, the results obtaire.i
indicate that for a metal-ligand system to which Eq. (20) could b::
applied, five constants are necessary to describe the system for an
arbitrary number of ionic strengths. When the same system is des-
cribed by the conventional polynomial expression of the complexity
function /79/ with the stoichiometric stability constants of the com-
plexes the number of the constants necessary todescribe the system
is given by the number of the complex species assumed to be present
in the solution multiplied to the number of ionic strengths at which
the system 1s studied. So, for the pra2sent case 16 free parameters
will be necessary to describe the system. The extrapolation to zero
ionic strength reduced the number of the constants to nine. But as
Silién has pointed out /5 , this procedure is far from being saféty.
He has given the Gﬁtelberg s investigation /20/ gs an example
showing that by using different equations for theactivity coefficients
the value for fog 8, ranges from 1.0-1.5. (Note that this will give a
difference of about 75% in the values of the theoretical F -function
calculated in the ligand range from 1-3 M).

As it has been mentioned above, the last data point in the F,
at each ionic strength had been obtained with a full exchange of the
NaClOy; with NaBr . So, if the values of F, at these points are
taken from each Fp -functionateachionic strengtha new complexity
function can be obtained which is actually the complexity function
of the system fo. variable ionic strength of the solution. We have
found that this function denoted as F; .. obeys strictly Eq. (21)
and this is visualized in Fig. 5 in a semilogarithm scale, where the
full circles represent the experimental Fy(,., function as taken
from Ref. /17/ . They coincide with the open circles, which represent
the theoretical Fgross¢vay function calculated up to (L) = 8 M from
Eq. (21). As could be seen these points are on a straight line which
is an indication thatan exponential function F goseqvan= T - ©°F
( T and ¢ are constants) is a sufficiently accurate approximation
for the complexity function of the system for variable ionic strength
of the solution. Such approximation could be very useful in all case

14




where Eq. (21) could be applied and the knowledge of the exact
values of g, is not necessary and has already successfully used
in two of our earlier publications /21, 22/

In Ref. /77/ Kivalo and Ekarl had compared the values of the
stability constants obtained by them with those reported by Leden / 23/
and Eriksson /%% for the same system studied at # = 3. The fol-
lowing B, values are reported by

B B2 B3 By
Kivalo and Ekiri /7 45 250 1890 3170
Leden /23/ 57 220 2100 5000
‘Eriksson /%4/ 58 275 1600 5400

Here we think that one can get a better impression about the
complexity of the system if not the £, values are compared but
the corresponding F, functions. We have made such comparison
and found that the F, functions obtained by Leden /?*/ and Eriks-
son /24/lay nearly on one curve, while the F, function obtained
by Kivalo and Ekari /17/ 15 somewhat lower. Nevertheless, all the
three functions strictly obey Eq. (20) with the following values of
the coefficients

A a (7] g*
Kivalo and Ekari / 7/ 6.80 5.3  42.00 0.25
Leden /23// o 7.27 55 52.74  0.25
Eriksson 727 55 5294  0.27

In calculation the constants for the data reported by Leden
and Eriksson the values of 4 and a constants obtainedin the course
of the analysis of Kivalo and Ekari’s data were used as initial
guesses and they were then refined by successive approximations.
As could be seen, there is a smalldifference between the correspon-
ding parameters 4, a , ¢ and qg* found for thesystem studied
by the authors of the three above cited papers. The ebserved discre-
pancies in the values of the corresponding B8, could be ascribed
to some small systematic error, which further in the course of the
graphical extrapolation applied is accumulated and causes these
differences especially high for S8,
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Fig. 1. Lo& Fy as a function "of the bromide concentration of the
solution.
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Fig. 2. Fp as a function of the bromide concentration of the solution.
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Fig. 3. Fy as a function of the bromide concentration of the
solution. The theoretical F -function, calculated by using Eq. (17)
is presented as a solid line. The experimentalvalues of Fy; obtained
at p - 0.5 are presented as ©. The experimentalvaluesof Fy ob-
tained at ¢ = Q.75 are presentedas @ .
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Fig. 4. The variation of the constant Q with the ionic strength of
the solution.
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Fig. 5. Logarithm of the complexity function vs. the bromide concen-
tration of a solution with non-constant ionic strength. The open
circles are representative values of Fgrosscvay calculated by using
Eq. (21) up to a concentration 8 M. To a concentration of 3 M they
coincide with the experimentally obtained values denoted as full
circles. The solid straight line is an exponential function.
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Table 1
Comparison of the experimental and calsculated complexity functions

for o =
This work

(L) ?, P.alc P R

| 4n %
0,05 3.271 3.060 6,45
O.IO 6.442 5.150 —10.74
0015 Ioooo 9023 ‘7010
0025 2’1.24 19046 -8038
0,30 28,48 26,75 -6,07
0.40 50,32 47.16 6,28
0445 64.69 61.03 ~5.66 -
0.5 79.84 77.87 2,47

(,,,c is not calculated because only B, value is reported
in Ref. /17/ B =40;

F* e_ is calculated by using Eq. (17) of the present paper,
where ﬂ 8and a = 5.3.
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Table 2
Comparison of the experimental and calculated complexity functions

for p = 0.5
Kivalo snd Ekari This work
(L) r, ,e:le sp " ,czc a7 ™
| in % in %
0.03 2,226 2397 | 131 z.082 | -1.95
0,045 2.856 2,887 1.07 2,828 | 0,98
0,075 4,409 4473 0.55 4,339 | 2,46
0.15 9.952 9.859 | =0.93 9.546 | =~4.07
0,225 17.46 17,19 ~1.53 17.51 0.26
0.30 29.63 29,50 0,43 29.33 -1.01
0,375 45.98 45.95 -0.06 46,27 0.63
045 69.02 68,67 ~0,51 69.84 1.18
0.525 100.1 ' 99,36 -0.74 | 101.0 0.91
0.60 144.2 131.0 ~2,94 | 143.5 -0,51
"0.75 265.6 259.9 ~2.15 | 265.4 -0.07

- calculated by using the Sn  values reported in Ref. 117/

—36 {32=125 B3 = 143; B4 = 340;
culated by uslsng Eq (20) of the present paper, where
=6.8; a =53 = 5.18; 25.
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Table 3
Comparison of the experimental and calculated complexity functions

for p =

Kivalo and Pkari This work
(x) r, b Tl ar® B ar =

n in g ing

0.04 2.489 2,617 5.15 2,612 4.94
0,06 3,636 3,578 -1,58 3.581 =-I1.49
0.1 $5.801 5,865 1.30 5.943 2,45
0,2 14.48 14.52 0,31 15.29 557
0.3 | 29,56 29,70 0.48 32,10 8.60
O.4 55,26 55.22 -0.07 59.98 8,54
0.5 98.86 96,00 ~2.89 103.25 4.44
0.6 157.2 I58.1 0.5 166.8 6,11
0,7 253.0 248,5 =I1.77 255.8 I.JII
0.8 383.2 375.6 ~1.,98 376.6 =1.73
0.9 545.8 548,6 0,52 536.1 -1.77
1.0 749.9 778,0 3.75 732.9 -2.27

* - calculated by using the Bn values reported in Ref. 117/
<« B;=136;82=104; Bs = 1719; By =
;* - calculated by usingoEq (20) of the present paper, where

= 6.8; = 5.3; gt =
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Table 4
Comparison of the experimental and %alculated complexity functions

for p =
Kivalo and Exari Thie work

(L) r, Poe | o7" ?ale ap™
| | in % {n %
0.08 5.492 5.536 0.80 5,146 =6.30
0.I2 9.436 9,206 -2.44 9.204 «2,46
0,2 22,20 22,17 =-0,I4 22,67 2,12
0428 44.45 44,98 I.I9 48.71 9.59
0.4 102.7 108.7 5.85 I23,2 19.99
0.6 354.7 346,6 ~2.27 390.2 10,02
0.8 924.7 860,2 =6,97 938.3 I.47
1.0 1893 1812 -~4,28 1896 0,16
1.2 3457 h 3403 =1.57 3455 ~0,05
1.4 5992 5871 -2,0I 5787 =342
I.6 9412 9495 0.88 9134 2,95
I.8 13880 14590 5611 13758 ~0.88
2.0 21470 21509 0.18 19995 -1 «6.87

- calculated by using the S, values reported in Ref. /17!

*
B,=38; Bo =180; B3y = 597; B4 = 995;
** . calculated by usmg Eq (20) of the present paper, where
A 5.3; 0 22.3 0.25.

~6.8; a = 0;
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Table 5
Comparison of the experimental and calculated complexity functions

for p = 3.0
Kivalo and Bkari This work
12 r, ’e::l.e ar® 'e== ap™
N in $ in §
0.12 13.32 13.93] 4.58 12.74) =8.32
0.18 28,39 31.55] 1I.12 30,53 7.53
0.3 116,70 113.70] =2.56 117,73 0,88
0,42 294,00 02,68] 2,95 313.% 6,77
0.6 914.1 937.1 2,51 941,6 3,00
0.9 3736 3702 =0.92 3509 -6,08
1.2 10486 10254 =221 9361 «10,73
1.% 22280 22058 .68 2071 =6,83
1.8 #6380 5192 -2.56 0792 12,05
2,1 3720 803%2 8,99 74077 0.48
2.4 135400 132848 =1,88 129255 ~4,54
2.7 203100 207612 1.22 208061 1,84
3.0 300900 310186 0.42 32969A 6,73
* - calculated by usmg the Ba va_lues reported in Ref. fr2/
B = 45; B, = 250; B; = B,=
~ calculated tar usmg Eq. (20) of the present paper, where
=6.8; a = 5.3 2.0; = 0.25.



