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MareMaTiyeckoe MonenHpoBaHHe NpolLecca nepeHoca Temia
W BNarH B MOPHCTLIX MaTtepHanax

Ipeanoxena KOHEYHO-PA3HOCTHAs CXeMa LI YHCJIEHHOTO pELUEHHs! ORHOM
HeJIMHEHHOH MaTeMaTH4ecKOH MOIENM nepeHoca BAarH M Tenna B MOPUCTBIX Ma-
tepuanax. CcopMynHpoBaHa COOTBETCTBYIOLad  HayanbHO-KpaeBad  3amaya
Ansg CTEHKH M3 nopoOeToHa W OMpefesieHbl TEXHWYECKHE XapaKTePUCTHKH —
KO/nM4eCTBO BlAarM M e€ CpelHee COINEpPXaHHE MO BpeMeHH. PacueTbl MOKa3bIBaIoOT,
YTO MOMYYEHHBIE XaPAKTEPHCTHKM HE 3aBUCAT OT BPEMEHHOTO H MPOCTPAHCTBEHHOTO
IIArOB MPEMIOKEHHOH pa3sHOCTHOH cxeMbl. [lpemnoxeHa HesiBHai copMyna
Ans ONpeNeneHHs SHTAILNMM A, TadHHS JIbjA.

Pa6Gora BeinonHena B JlabopaTopud BBIYHCAWTENBHONH TEXHHKM M aBTO-
maTtH3aunn OUSAH.

Mpenpunt OGBENMHEHHOTO MHCTHTYTA SACPHBIX McKIeaoBaHui. [JybHa, 1999

Pavlus M., Pavluiovi E. E11-99-8
On the Mathematical Modelling of the Process of the Heat :
and Moisture Transfer in the Porous Materials

The finite difference scheme is suggested for the numerical solution of a non-
linear mathematical model which described the simultaneous transfer of the heat
and moisture in the porous materials. An appropriate initial-boundary value problem
is formulated for a wall of the aired concrete and the technical characteristics like
the quantity of the moisture and its mean-time value are determined.
The calculations show that the resulted charcteristics do not depend on the time
and space steps of the suggested difference scheme. An implicit formula
for the determination of the enthaply h, of the ice melting is suggested.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1999



1 INTRODUCTION

The most building materials have a part of their volumes filled with small pores
connected by narrow channels. This porous structure is able to absorb, save, transport
and discharge moisture, which consists of water in the form of ice, liquid and gas. The
amount of moisture in the porous structure, which is closely related to temperature, is
essential for the durability of materials and stability of building constructions. Hence,
there is an extensive need for modelling of the process of moisture and heat transfer in
porous materials. Because of this need, several mathematical models of this process
have been developed. The first successful attempts appeared in Philip de Vries [1]
and Glaser [2] in the late fifties; more historical information can be found in {3} and
[4].

In this article we pay attention to the non-linear mathematical model ‘used by Kiinzel
[5] in 1994. We give a short description of the model in Section 2. In Section 3 we
formulate needed initial and boundary conditions. We suggest the numerical solution
in Section 4 for the created initial-boundary value problem. This numerical solution is
based on the finite-difference method. Section 5 describes the technical characteristics
hke a quantity of the moisture and its mean-time value. We verify numerical results
of the problem solution in Section 6 through these technical characteristics if an
1mportant civil-engineering mater1a1 aired concrete is cons1de_red

2 MATHEMATICAL MODEL

Let us consider the following two differential equations

dufe = Z(D5e+8,%8m),  0<z<dt>0, (1)
4108 _ 0(\89) 4 p, 2 (5,0et) 0<z<dt>0, 2)

where ¢ and ¥ are respectively relative moisture [], 0 < ¢ < 1 and temperature [K]
given for each point (z,t) : 0 < z < d, t > 0. ¢ and 9 are unknown functions. The
notation [—] means a measureless value. -
w is a quantity of moisture [kg/m?) in the given porous material including all phases
of the water such that

w=w fi—%lﬂ, (3)
where wy is a free saturation by the water in the porous material [kg/m?), and b is a
coefficient of approximation [—], b > 1.
D, is a coefficient of transport of moisture [kg/ms] glven by the formula

D,=D.2, @

where D, is a diffusion coefficient [m?/s].
dp is a permeability of water vapour into the porous material [kg/msPa]
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where u is a water vapour diffusion resistance factor {—], p. is a pressure of the
surroundings [Pa] and p,q is a pressure of the saturated water vapour [Pa]

oot = { 6llemtitia if 9 > 273.15 ©
611e7244+%  otherwise.
H is an enthalpia [J/kg] of the porous material that is the sum
| H=H,+H,, (7
of the enthalpias for dry and moist material. We suppose that
H, = pic49, , )]
for the dry material and
H, = { gcwﬂ L 109227315 (©)
.((w — We)Cw + WeCe — he Tt} otherwise,

for the moist material that can contain beside a water, an ice as well. Here c,, cy, Ce
are respectively heat capacities of dry porous material, of water and of ice [J/kgK],
05 is a density of dry porous material [kg/m?], h. is an enthalpia of the ice melting
[J/kg], and w, is a quantity of the ice in the porous material. This quantity can be
obtained by substituting from (10)

pe=kD+q,  253.15 <9 < 273.15, ' (10)

to the (3). The relation (10) is received as a result of the experimental data given in
[5]. * and q are some constants. Then substituting from w, to (9), from (9) and (8)
to (7) and deriving H with respect to ¥ we have

0sCs + wcw if 9 > 273.15
dag __ ) 9sCs +wy(b— 1){ [‘P+ ,,ﬁ’;%el
@ =) (g + kY + ; umw] (11)
—g- :
(,,-Em)—z[l + ,,_"Z‘"k,,]} . otherwise.
Next, V
A= do(l +22), (12)

is a thermal conductivity [W/mK], where ) is a thermal conductivity of dry material,
p is a coefficient of the increment of the thermal conduct1v1ty [=]. Finally hy is an
enthalpia of the water [J/kg].

3 INITIAL AND BOUNDARY CONDITIONS

Let us consider the following initial conditions for unknown functions y and ¥

o(z, 0)-‘—2——£z+a¢, 0<z<d, (13)
and
9(z,0) = —"—d—"-z+a,9, 0<z<d, (14)

where a,, by, ag, by are some real constants and d is a thickness of the material [m].
Boundary conditions are as follows

¢(0,t) = ay, t>0, (15)

9(0,t) =ag, t>0, ’ (16)
o(d, t) = c; + dpsin(3 (s + 1)), t.>0, (17)
I(d, t) = co + dysin(3 (55 — 1)), ‘t >0, . (18)

where ¢,, d,, ¢g, dy are some real constants.

4 NUMERICAL SOLUTION OF THE PROBLEM

For the domain (z,t) : 0 < z < d, t > 0 let us consider the following discretization
(zi,tn) © i = (i — 1)h, to = n7, where 1 =1,2,..., NN+ 1 n=0,1,. .and h >0
is a space step of discretization and 7 > 0 is a tlme step of dlscretlzatlou Ve denote

f" and 19 as the approximate values of the exact values ¢(2:,¢,) and (@i )
Using common finite-difference approximation for derivatives in equations (1), (2) we
obtain two following difference equations

(n+1)_ (n)
%(wﬁ”)#—*—“’ A = (19)

1 ) (n+1) (+\)

LD (0 ) (@Y — o) — Dy ) (" ),

P _gm)

(20)

+1
L0, o)A
1 +1 +1) S +1) (7 +11
AT EEY - 870 - Al ) (0 )8
that can be rewritten to the form
Do (™) ,5) De(ei™, ) | Delelt),) .
EZJ{I)[ V’(V;I.z-1£2 ]_Lpgn+l)[ v“";z 2l h2+l/l +$$Tg'(9’:('"))]+ (21)
Dy(e3h/2) ) g (n
T[] = e (oY),
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A(pinth) A
191(_21-1)[ (w.h_np)] 19(n+1)[ (“’.-1/1) + -+1p + iz(iilg (ﬂ(n)1“0;n+l))]+ (22)
1 i ) 1
IR - a0, ),
,N;n=0,1,... and, for example,

Dy(6"2) = [Do(0{™) + Dyo(l™)]/2,

where 1 = 2,3,...

Mt = eitt) + M) 2.

Equations (21), (22) under fixed n lead to the two systems with three-diagonal ma-
trices which can be solved by well known methods of linear algebra.

5 IMPORTANT TECHNICAL CHARACTERIS-
TICS

The quantity of the moisture in the wall of the thickness d at the fixed moment ¢ > 0
can be determined according to the following formula

W) =} Ofw(z, f)dz (23)

where function w(z, t) is expressed by the formula (3). If £ = 0 then substituting from
the initial condition (13) to the (3) we can calculate exact value

W(0) = —w M[Hb znib_%n (24)

b,, ayp

However, if t > 0 the integral (23) can be computed only numerically, for example,
by the trapezoidal rule

W(t) = h[4Z § w(zy, 1) + w(zs, t) + ... + LAt (25)

where w(z,t) and w(zy41,t) are determined by substituting from boundary condi-
tions (15) and (17) respectively to the (3). The rest of values w(z;, tpt1) i = 2,3,..., N
we determine approximately according to the formula

(n+1)
w(i, tag1) = wy(b— 1) By (26)
The final formula is
a, N (n+1) dysin ¢ l
W(tan) = wp(b—~1) h[%b__L + E ¥; wmoo + %b_c_‘;:_::ﬂi(( (36:+)1)))] (27)

Other important characteristics is a mean-time value of the quantity of the moisture
in the porous material. It can be calculated by-the formula

Wltar) = g ] WD, (28)

A
J

6 CALCULATION RESULTS

We have calculated an example with the following input data for aired concrete:

d = 0.3m, b = 1.022, wy = 340kg/m?, D,, = 107®m?/s, p = 8, p;, = 10°Pa, g, =
600kg/m?, ¢, = 850J/kgK, c, = 2090J/kgK, c,, = 4190J/kgK, h, = 25.10°J/kgK,
k = 0.008K-1, g = —1.1852, Ao = 0.14W/mK, p = 3. The value h, can be chosen
from the relation v

Z{9(—wee + wece — RN =0, 9 <273.15. (29)
However, relation (29) provide different values h, that depend on the fixed point cho-
sen on the line (10). For a fixed point on the line (10) we have just one value of k..
The correctness of the technical characteristics (27), (28) as well as of the difference.
scheme (21), (22) we have verified by space and time step changing. The results for
the space step h changing are given in the Table 1 if fixed total time is one year
(t = 365 days, 7 = 1/24 day ).

h [ d/10 | d/20 | d/30 | d/40
W) | 15.13 [ 15.19 [ 15.21 | 15.22

Table 1. The dependence of W(t) on the space step h

The results for the time step 7 changing are given in the Table 2 if the thickness of
the material is divided into 30 equal parts (h = d/30) and the time unite is one day.

T 1 174 [ 1/i2 | 1/24
W(t) | 15.211 | 15.206 | 15.205 | 15.205

Table 2. The dependence of W(t) on the time step 7

Tables 1 and 2 show that the numerical method suggested here for the solution of
equations (1) and (2) is stable.

The following figures were drawn for the case of 7 = 1 day, h = d/30 and a total
time of 3 x 365 days. The figure 1 shows the boundary condition (17) for the relative
moisture ¢ if ¢, = 0.71, d, = 0.13. The figure 2 shows the boundary condition (18)
for the temperature 9 if ¢y = 5, dy = 20.
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The figure 3 displaies the initial condition (13) for the relative moisture ¢ denoted by
crosses if a, = 0.6, b, = 0.84. The same figure displaies the distribution of the relative
moisture ¢ after three years - ovals. The figure 4 displaies the initial condition (14)
for the temperature 9 if ay = 20, by = —15. The same figure displaies the distribution
of the temperature after three years - ovals.
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The figure 5 indicates the quantity of ‘moisture in the wall for different time values
according to the formula (27). The figure 6 indicates the mean-time value of the
quantity of the moisture that was calculated according to the formula (28).

7 CONCLUSION

The calculation results prove that the suggested difference scheme (19) — (20) gives
the satisfactory numerical solution of the problem (1) — (2) under the initial and
boundary conditions (13) — (14) and (15) — (18) respectively. We verified the formula
(29) for choosing the enthalpy A not only in the case of aired concrete constants but
in the other cases as well. The formula (29) works also satisfactory in these other
cases and is a good supplement to the work [5]. The difference scheme, presented in
this article, was programmed in Fortran and concerns the modelling total time that
is equal to three years (1095 days). The total computational time takes about 12
minutes on the PC with MMX 166MHz processor. We computed also the cases when
the modelling total time was five and ten years. The obtained results are similar to
the results that we present here.
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