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A6pall!KeBI1q A.r. u np. Ell-99-262 
HoBbifi MeTon pell!eHllil 3anaqu Ha co6crneHHhJe 3HaqeHllil 
,!VU! CHCTeMbl Tpex KynoHOBCKHX qacrnu B rnnepccpepuqecKOM 
anua6aTuqecKoM npencTaBJieHHH 

B paMKax anua6aTuqecKoro npencTaBJieHllil c ucnonh3OBauneM rnnepccpepuqecKHX KO
opnttuaT cpopMynupyeTc» KBllHTOBOMexauuqecKa» Janaqa TPex Ten c KynoHOBCKHM B3aHMO
neficrnHeM. CBeneuue MHOroMepuofi 3anaqu K onuoMepuofi ocYlllecrnn»eTc» MeTonoM Kau
roponttqa. IlpennmKeH HOBblH Meron nn» BbJqHcJieHH» nepeMeHHblX K03cpcpHUHeHTOB (no
TeHUHanbHblX MaTpHqHblX 3neMeHTOB panHaJibHOH CB»3H) pe3yJibrnpyromefi CHCTeMbl 
o6bIKHOBeHHblX nucpcpepeHUHaJibHbIX ypaBHeHHH. Meron IlO3BOJI»eT BbJqHcJI»Tb K03q>q>HUH
eHTbl c TOH )Ke ToqnocTblO, qTo H anua6aTnqecKHe cpyuKUHH, nonyqeHHbie KaK peweHH» 
BcnoMoraTenbnofi napaMeTpuqecKofi 3anaqu Ha co6crneHHbie 3Haqeuu». B npenno)[(eHHOM 
nonxone ccpopMynnpoBaHa HOBa» napaMeTpHtJeCKa» 3anaqa OTIIOCHTeJibllO HeH3BeCTHbIX 
npOH3BOllHbIX OT co6cTBeHHbIX cpyHKUHH no anua6aTuqecKOH nepeMeHHOH (rnneppanuycy). 
Ilpenno)Ke!I 6bICTpblfi, 3cpcpeKTHBllblH H CTa6HJibHblH anropHTM nn» peweHH» KpaeBOH 3ana
qu C onmiaKOBOH roq11OCTblO nn» anua6aTuqecKHX co6crneHHbIX cpyHKUHH H HX npOH3Bon
HblX. Pa3BHThifi MeTon TeCTHpyeTc» 11a napaMeTpuqecKofi 3anaqe 11a co6crne11ub1e 311aqe11H» 
nn» aToMa Bonopona na TpexMep11ofi ccpepe, KOTopa» HMeeT auanuTuqecKue pewenn». )].e
Tanb11O HccnenOBa11a Toq11OCTh, 3cpcpeKTHBHOCTb H pa60Tocnoco6nocTb anropHTMa. MeTon 
TaK)Ke npHMeHeH nn» BbJqHCJieHH» 3HeprnH OCHOBHOro COCTO»HH» aTOMa reJillil H OTpHua
Tenworo Hona Bonopona. 

Pa6ora BblTTOJIHeHa B Jla6opaTopHH BblqHCJIHTeJibHOH TeXHHKH H aBTOMaTH3au1rn H Jla-
6oparopHH TeopernqecKofi cpH3HKH HM.H.H.Eoron1060Ba OJUilf. 

ITpenpHIIT 061,e11H11e1111oro HIICTHTyra lUlepHblX HCCJle/lOBaHHii. Jly611a, 1999 
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A New Method for Solving an Eigenvalue Problem for a System of Three 
Coulomb Particles within the Hyperspherical Adiabatic Representation 

The quantum mechanical three-body problem with Coulomb interaction is formulated 
within the adiabatic represention method using the hyperspherical coordinates. The Kan
torovich method of reducing the multi-dimensional problem to the one-dimensional one is 
used. A new method for computing variable coefficients (potential matrix elements of radial 
coupling) of a resulting system of ordinary second-order differential equations is proposed. 
It allows one to calculate the coefficients with the same precision as the adiabatic functions 
obtained as solutions of an auxiliary parametric eigenvalue problem. In the method pro
posed, a new boundary parametric problem with respect to·unknown derivatives of eigenso
lutions in the adiabatic variable (hyperradius) is formulated. An efficient, fast and stable 
algorithm for solving the boundary problem with the same accuracy for the adiabatic eigen
functions and their derivatives is proposed. The developed method is tested on a parametric 
eigenvalue problem for a hydrogen atom on a three-dimensional sphere which has an ana
lytical solution. The accuracy, efficiency and robustness of the algorithm are studied in de
tail. The method is also applied to the computation of the ground state energy of the helium 
atom and negative hydrogen ion. 

The investigation has been performed at the Laboratory of Computing Techniques and 
Automation and at the Bogoliubov Laboratory of Theoretical Physics, JINR. 
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1 Introduction 

During the last few decades, excitation and ionization processes in a system of three charged 

particles have been actively studied in atomic and molecular physics Jl, ~]. Cur~ently, an 

ongoing work is carried out at the CERN on experiments ASACUS~ and ATHENA study

ing properties of exotic antiprotonic C_oulomb systems in traps at low temperatu!es using 

new abilities of modern lasers (3, 4]. These experiments require various data on charac

teristics of the Coulomb systems, such as helium atom He and antiprotonic helium atom 

pHe+, and also on collision processes, leading to the formatioti.of antiprotonic pHe++ 3:nd 

antihydrogen H atoms. Detailed calculations of energy levels and widths of metastable 

states, radiative and Auger transition rates,.collision cross sections, etc., are necessary for 

planning and interpretation of the above experiments. Hence, the development of appro

priate numerical methods for computing the desired spectroscopic and collision data with a 

sufficient accuracy is an important step on the way of better understanding elementary pro

cesses taking place in exotic as well as in regular atomic and molecular systems of charged 

particles. 

One of the most popular and widely used approaches for solving the quantum mechanical 

three-body problem with Coulomb interaction is the .adiabatic representation method [1, 

2, 5]. In the framework of the hyperspherical coordinates formulation of this metho_d (2, 

6, 7], the hyperradius 'R, is treated as a slowly varying adiabatic variable, analogous to the 

internuclear distance in the Born-Oppenheimer approximation for molecules (1]. From the 

mathematical point of view this approach is well known as the Kanforovich method for 

the reduction of a multi-dimension boundary problem to the one-dimensional one by using 

a set of'solutions of an auxiliary parametric eigenvalue problem [8]. These solutions are 

· obtained for a given set of values of the adiabatic variable, which plays here a role of an 

external parameter. 

This•method has been successfully applied for calculating energy levels and wave func

tions of two-electron atoms within the adiabatic hyperspherical approach (see, e.g., [6, 9]), 

as well as for computing energy·spectra of negative positronium ion Ps- [7, 10] and var

ious muonic molecules [7, 11] (see also [5, 12]). An essential part in the implementation 

of the Kantorovich method is the computation of variable coefficients (potential matrix 

elements) for the final system of the ordinary second-order differential equations. These 

coefficients are the integrals over eigenfunctions and their derivatives with respect to the 
I 



adiabatic variable. In real applications, an efficient and stable computation of derivatives of 

the adiabatic eigenfunctions and the corresponding integrals with the accuracy comparable 

with the one achieved for adiabatic eigenfunctions presents a serious challenge for most 

of the numerical approaches involved in various types of calculations within the adiabatic 

representation method. 

In the present paper we· propose a new numerical method for computing these deriva

tives with the same accuracy as obtained for the eigenvalues and eigenfunctions of the para

metric eigenvalue problem. This circumstance guarantees the calculation of the variable 

coefficients (potential matrix elements of radial coupling) of a system of ordinary differen

tial equations with the same precision as adiabatic eigenfunctions. This goal is achieved 

by means of formulating a new boundary parametric problem with respect to unknown 

derivatives of eigenvalueS' and eigenfunctions in the adiabatic variable. An efficient, fast 

and stable algorithm for solving this boundary problem with the same precision for the 

adiabatic eigenfunctions and their derivatives is elaborated. 

The accuracy and stability of the method developed .are studied on a test parametric 

problem describing a hydrogen atom on a three-dimensional sphere. This problem has .an 

analytical solution which allows a direct comparison of appro:ximate eigensolutions with the 

exact ones. To show the efficiency and reliability of our implementation of the Kantorovich 

method we apply it to the calculation of the ground s~ate energy of the helium atom and 

negative hydrogen ion. This is a popular problem for three-body Coulomb systems which 

serves usually as a benchmark for new numerical algorithm and methods. For simplicity, 

we consider in this paper a system with total angular momentum J = 0. This allows us 

to demonstrate all essential numerical peculiarities of our method when applied to a rather 

complex atomic system without unnecessary complications connected with accounting for 

additional angular variables for J > 0. The generalization of the present approach for 

three-body systems with arbitrary total angular momentum is straightforward and will be 

considered elsewhere. 

The paper is or~anized as follows. The Schrodinger equation for three-dimensional 

eigenvalue problem for a system of three charged particles is considered in Section 2. The 

Kantorovich method is briefly described in Section 3. Three steps of implementation of the 

Kantorovich method are considered in Sections 4-6, respectively. In Section 7 our method 

is applied to three eigenvalue problems. Numerical solution of a parametric eigenvalue 
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problem for a hydrogen atom on a three-dimensional sphere is presented in Sl\bsection 7J. 

The results of our calculations of the ground state energy of the helium_atom and negative 

hydrogen ion are presented in subsection 7.2 where they are compared to the results' of other 

theretical calculations. The conclusions and possible future developments of the method 

are discussed in Section 8. 

2 The Schrodinger equatiol! 

Time-independent Schrodinger equation for a system of. three charged particles with total 

angular momentum J = 0 in the conventional hyperspherical coordinates {n, a, 0} [13] can 

be written 'as an eigenvalue problem for the following 3_-D elliptic equation: ' 
.· 1 . ' '. . 

TiJ!(n, a, 0) + n W(a, 0)\J!(n,_a, 0) = £\J!(n, a, 0), (i) 

where £ is the energy and iJ!(n; a, 0) is the total wave function of the system; .• .The 

differential operator T and the Coulomb potential W are defined in Eq. (1) as follows 

(e = 1i = m, = 1): 

, 1a1 2 a, 
T = - n 2r an 2n 7 an+ t, 

t = -- --nsm asm0- + --nsm0- , , 1(a1 . 2 • a a1 .. a) 
T aa4 aa a04 a0 

, ZaZc ZbZc [ • ]-1/2 W = --:-
12 

+ --
1
- + ZaZb 1- smacos0 , 

sma cosa 2 

r = i'R.3sin2 asin0. 

In the above, Za = Zb = -1 and Zc = Z = 2 Zc = Z are the charges of particles a, b, 

and c with masses Ma = 1, Mb = 1, and Mc = oo, respectively. Note Z = 1 for a 

negative hydrogen ion n- and Z = 2 for a Helium atom He. Hyperradi_us n E [0, oo), 

hyperspherical angles (a,0) E n = {0::; a::; n, 0::; 0::; n}, i.e. total set of variables 

(n, a, 0) E QI = Q x [0, oo). 

Total wave function iJ!(n, a, 0) satisfies the following boundary conditions: 

r . 2 aiJ! o r · iiJ! o (2) 1m sm aa = , 1m sm a0 = , 
o-+0,1r a 8-+0,,r 

r n 5 aiJ! -0 Jim n 5 iJ! = 0, (3) 'li~o an - ' 1?.➔oo 
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and is normalized by condition 

I I I n 2
riI!

2
dad8d'R, = 1. 

3 Kantorovich method 

Consider a formal expansion of the solution of Eqs. (1)-(3) over an infinite set of two

dimensional basis functions { <1>; ( a, 8; n)} ~ 1: 

00 

w(n,a,8) = LX;(n)<I>;(a,8;n). (4) 
i=I 

In Eq. (4) functions x(n)T = (x1(n),x2(n), ... ) are unknown, and adiabatic functions 

4>(a,8;n)T = (<1> 1(~,8;n),<1>2(a,8;n), ... ) form an orthonormal basis for each value of 

hyperradius n which is treated here as a slowly varying adiabatic parameter. 

•In the· Kantorovich approach [8) functions <l>;(a, 8; n) are determined as solutions of the 

following two-dimensional eigenvalue problem 

(i + ! w) <1>(a,8;n) = E(n)<I>(a,8;n) 

with boundary conditions derived from Eq. (2): 

I. . 2 a<I> o i· . 8a<1> o 
tm S!Il a-

8 
= , Im Sln 

88 
= . 

a-+0 1,r o: 8-+0
1
1r 

(5) ' 

Since the operator in the left side of Eq. (5) is self-adjoint, its eigenfunctions are orthonor

mal: 

J J r<l>;<I>idad0 = ,5ii· 

In the equation above; ,5ii is Kroneker's '5-symhol. Problem (5) is solved for each value of 

nk E Wn, where Wn,:::: (n1, n2, ... , nk, .. . ) is a given set of values of hyperradius n. 

After substitution of expansion (4) in the Rayleigh-Ritz variational functional (see [71) 

{ 1 (a1J1)
2 

n [ (aw)
2 

(a1J1)
2

] R(iI!) = l, n2 2T an + 4sin0 sin2a aa + a0 

+; iI!TWiI! }d0dadn X {l, 7?,2 iI!2Td0dad'R. }-I - -

and subsequent minimization of the functional, the solution of Eqs. (1)-(3) is reduced to 

a solution of an eigenvalue problem for an infinite-set of ordinary second-order differential 

4 

equations for determining energy & and coefficients (radial wave functions) XT = x(nf = 
(x1(n), x2(n), .. . ) of expa~ion (4): 

1 d 
2 

d dx 1 d'R,2Q(n)x 
-1n2 dn n dn x + V(n)x + Q(n) dn + n2 dn =. 2&Ix, (6) 

1. '"2 ax 1m ,.., - =0 
n-+o an ' 

lim n 2x=O. 
'R--+oo 

(7) 

Here I, V(n), and Q(n) are infinite matrices, elements of which are given by relations 

I;i = '5;;, 
- 2 

U;(n) = 2E;(n) = 2(E;(n) + n 2 ), 

1 
v;j(n) = U;(n)t5;; -

4
n 2 '5;; + H;;(n),. 

ff 8<1>;8<1>; 9 
H;;(n) = H;;(n) = Tan an dad0 - 41?,2'5;;, 

(8) 

Q;;(n) =
1 

-Q;;(n) = / /r<I>; 8::,dad0- 2~'5;;, i,j = 1,2, .... 

Thus, the solution of Sturqi-Liouville problem (1)-(3), is reduced to solution of the following 

three problems: 

1. Calculation of potential curves E;(n) and eigenfunctions <l>;(a, 0; n) of the two

dimensional problem (5)-(2) for a given set of n E wn,. 

2. Computation of matrix elements of radial coupling (8) necessary for Eq. (6). 

3. Calculation of energies & and radial wave functions x(n) as eigensolutions of one

dimensional eigenvalue problem (6)-(7). 

4 Solution of eigenvalue problem {5) 

Two-dimensional parametric eigenvalue problem (5)-(2) can be solved directly [7] using the 

finite element ,method (14, 15]. ]n this paper we propose more efficient method of sqlving 

this problem. Because of the symmetry. of equation coefficients with respect to a = 1r /2, 

problem (5) will be considered for a E [O, 7f /2]. , · 

Consider the foll~wing expansion of adiabatic surfa,ce function <l>;{a, 0; 'R,): 

00 

<l>;(a,0;n) = L'Pii>(a;n)P,(cos8), (9) 
1=0 

·5 



where cpfil(a;n) are expansion coefficients depending parametrically on n and Pi(cos0) 

are the Legendre polynomials. These polynomials are the eigensolutions of the following 

eigenvalue problem 

d . dPi(cos0) . 
- dllsm0 dB = >.sm0 Pi(cos0) 

with .>., = l(l + 1) being the corresponding eigenvalues. The Rayleigh-Ritz variational 

functional for problem (5) can be written as follows 

r12 .r,r [n (a<P)
2 n (a<P)

2 

R(<P) = lo lo 4 sin
2

asin0 fJa + 4 sin0 
80 

n2 _ ] [ 1r/2 'fr n3 ]-1 
+ 8 sin2asin0W<P2 d0da x 1 k 8 sin2~sin0<I>2d0da 

(10) 

Expansion (9) is substituted next into functional (10). After minimization of the variational 

functional we get that eigenfunctions·cpT = cp? = rp(il(a; n)T = (cpii\a; n), cp~i)(a; n), ... ) 

and eigenvalues E(n) = E;(n) satisfy the following eigenvalue problem for an infinite set 

of ordinary differential equations 

L(cp,E)= [n(-d~Dd~ +A)+n2W-E(n)~n3D]cp=O, 

l. . 2 fJcp 0 
1m sm a-a= . 

o.➔0,1r/2 a 

In the above, D, A, and W are infinite matrices elements of which are defined by 

D11 =~sin2 a, Dll'=0, l-:/=l', Au=~(l(l+l)+sin2a), All'=0, l-:/=l', 

(11) 

Ww = {' Pi(t)W(a,0)Pi,(t)rd0 = -Z~sina (cosi +sini) 611' + ~sin2aW1~fP, 

~ 11 PiW~W ll' ¾'II' = . dt, t=cos0, , =0,1,2, .... 
-1 Jl - tsma 

Thus, the solution of the two-dimensional eigenvalue problem (5)-(2) is reduced to the 

solution of eigenvalue problem (11) for a system of the ordinary second-order differential 

equations. Note that to write eq.(11) we add term 2/n2 to Hamiltonian (5) to calculate 

instead of the original eigenvalue E;(n) the shifted eigenvalue E(R) = E(n) + 2/n2 whkh 

has been introduced previously in definition (8) and corresponded to eigenvalue of the 

conventional parametric eigenvalue problem [21]. 

6 
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5 Solution of eigenvalue problems (6) and (11) 

For numerical solution of one-dimensional eigenvalue problems (6) and (11) Sl\bject to the 

corresponding boundary conditions, the high order approximations of the finite element 

method [14, 15] elaborated in our previous papers [16, 17] have been used. One-dimensional 

finite elements of order p = 1, 2, ... , 10 have been implemented. Using the standard finite 

element procedures (15], problems (6) and (11). are approximated by the generalized alge

braic eigenvalue problem 

AFh = EhBFh' (12) 

where A is the stiffness matrix, B is the mass matrix, Eh is the corresponding eigenvalue, 

and Eh is the vector approximating solutions of (6) or (11) on the finite-element grid. For 

problem (6), A= K1 + K2 + Ka and B = M, where matrices K1 , K2 and Ka correspond 

to the first, the second, and the third and fourth terms in the left hand side of Eq. (6), 

respectively, and matrix M corresponds to the term in the right hand side of Eq. (6). For 

problem (11), A= nK1 + n 2K 2 and B = n 3M, where matrices K 1 , K2, and M correspond 

to the first, the second, and the third terms in Eq. (11), respectively. The A and B matrices 

are symmetric and have a banded structure, and B matrix is also positive defined. The 

algebraic eigenvalue problem (12) is solved using the subspace iteration method (15]. 

Let En,'Pn are the exact solution of (11) and E~,F~ are the numerical solution of (12). 

Then the following estimates are valid [14] 

IEn - E!I :S c1(En)h2P, ll'Pn - F~llo s; c2(En)hP+1, C1 > 0, C2 > 0, (13) 

where h is the grid step, pis the order of finite elements, n is the number of the corresponding 

eigensolution, and constants c1 and c2 do not depend on step h. The same estimates are 

valid for the approximate solutions of problem (6). 

6 Calculations of matrix elements of radial coupling 

Calculation of potential matrices V(n) and Q(n) (see Eq. (8)) with sufficiently high 

accuracy is a very important step of solving a system of radial equations ( 6), since otherwise 

it is practically impossible to get the desired energies and wave functions of three-body 

Coulomb systems with required precision. This implies that derivati,ves :: should be 

7 



computed with the highest possible accuracy, which presents a difficult problem for most of 

numerical methods usually used in the adiabatic representation calculations. In the most 

of applications the following formulas 

-1 /"/2 
Q;;('R-) = ['R-(E;('R.) _; E;('R-))] lo . cpf'R-2Wcp;da (14) 

and 

H;;(n) = - :E Q;,(n)Q,;(n), Q;;(n) = o, (15) 
I 

are usually used. Note that Eq. (15) has a rather slow convergence which means that in 

order to get a high level of accuracy one should include-a sufficiently large number of terms 

in a sum over l . . Th.is circumstance can present a serious problem from the computational 

point of view; especially in regard to demands for required computational resources and 

computation tim!J. 

The main goal of this paper is to develop an effective numerical method that will allow 

one to calculate. derivative :~ with the same accuracy as. ~chieved for eigenfunctions of 

(11) and to use it to compute matrix elements defined by formulas (8). Taking a derivative 

of (11) with respect ton, we get that :~ can be obtained as a solution of the following 

boundary problem 

L ( :~, E) ~ [ d: D d: - A - 2nw + ~ E('R,)'R,2D + ~ E'('R,)'R,3D] cp = G. (16) 

The boundary conditions for function :~ are th~ same as for function cp. Taking into 

account that E('R-) is an eigenvalue of operator L, problem (16) will have a solution if and 

only if the right hand side term G is orthogonal to the eigenfunction cp. From this condition 

we find that 

E'(n) = fo~~2 [~:TD~:+ cpT(A +_27?:W)cp] da- !E(n). (17) 

Now the problem (16) has a solution, but it is not unique. From the normalization condition 

L
,r/2 1 . . 

. cpT -'R,3Dcpda = 1 
. 0 2 . . 

we obtain the required additional condition 

["/2 r!n3D dcp d' = _2_ 
h cp 2 dn ° 2n· (18) 

8 
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Thus, problem (16) with additional conditions (17)-(18) has now a unique solution. It is 

necessary to mention that the second estimate of Eq. · (13) is valid also for solution :~ 

of problem (16)-(18). This fact guarantees the same accuracy for adiabatic functions and 

their derivatives within the present method. 

Let us consider a numerical algorithm for the computation of derivative :~. It follows 

from Eq. (12) that we should solve the following linear system of algebraic equations 

Ku = (A -EhB)u = b, u = : , • (19) 

where 

A = 'R-K1 + n2K2, B = 'R,3M, 

b = [-Ki - 2nK2 + (3Eh + n(Eh)')'R.2M]Fh, 

(Eh)'= (Fh)r[K1 + 2nK2]Fh - ~Eh. n 
In these expressions K1 , K2 and M are the finite element matrixes which corresponded to 

the first, second and third terms in equation (11) with n = 1. Since Eh is an eigenvalue 

of (12), matrix K in Eq. (19) is degenerate. The algorithm for solving Eq. (19) can be 

written in three steps as follows: 

Step 1. The additional condition (18) has the form 

T h 3 
u BF = - 27?,. 

Denote by k a number determined by the condition 

IBFhlk = max IBFhli, ck = (BFh)k, 
l:,;i~N 

where N is the order of matrices above. 

Step 2. Solve two systems of algebraic equations 

Kv=b, Kw=c, 

where 

CT= (Klk, K2k, ... 'KNk), Ck = 0, b; = b;, bk = o, 

K;; = K;;, ii= k, j :/= k, K;k = o, i :/= k, Kk; = 0, j i= k, Kkk = 1. 

In this way we have Vk = 0 and wk = 0. 

,. 9 



Step 3. Find constants,, 11 and 12 as 

3+2n,1 ,=- . 
2n(ck -.,2) 

,1 = vTBFh, 12 =wTBFh, 

After that derivative u = ~~ is obtained using formula· 

u; = v; - ,w;, i =I= k, uk = ,. 

From the consideration above it is evident, that th_e _derivative ~omputed has the same 

accuracy as tl;e calculated eigenfunction. 

7 Numerical results 

In this Section we apply our approach to three problems which allow us to demonstrate high 

accuracy, efficiency and stability of the algorithm developed. The first test problem solves 

the eigenvalue problem for a hydrogen atom on a three-dimensional sphere. This problem 

has an analytical solution which allows a direct comparison of approximate eigensolutions 

obtained by our method to the exact solutions. The other two problems are devoted' to 

the· computation of the ground state energy· of the helium· atom and negative hydrogen 

ion, respectively. Such eigenvalue problem is usually used as a benchmark for testing 

the accuracy of numerical methods for solving three-b~dy Coulomb problems since high 

precision variational calculations are available for comparison. 

7.1 Hydrogen atom on a three-dimensional sphere 

Consider the following eigenvalue problem 

1 d . d . 1 
(--

2
. 2 -d sm2 o-d - ncoto)'lj,(o;R) = E(R)'lj,(o;n), 

smoo o . 

1. . 2 8'1j, 0 
Im Slil o-

8 
= , 

o-+0 O 
l. . 2 8'1j, 0 
Im Slil o-

8 
= . 

a➔71'" a 

(20) 

To preserve the form of operators used in previous Sections, we rewrite equation (20) as 

(-n d~ sin2 o d~ - R 2sin2o) 'lj,(o;R) = E(R)2R3 sin2 o'lj,(o;R). 

Problem (20) has an analytical solution 

1 [ 1 n
2 

-11 
En(R) = -2 n2 -~ ' n= 1,2, ... 

10 

with eigenfunctions 'lj,n(o; R) which are the radial functions of a hydrogen atom on a three

dimensional sphere (18, 19] 
'lj,n(o, R) = Cn('R)Re{exp(-m(n - 1 - ia))2F1(-n + 1, 1 + ia, 2, 1- exp(2m))}, 

Cn('R) = 2 Jan2 + a2' 
J1 - exp(-21ra) · 'R-

3 

where 2F1 is a full hypergeometric function. 

n 
(7 = -, 

n 

Denote the exact solutions of problem (20) by (En, 'lj,n) and the numerical ones by 

(E~, 'lj,~)- First, we present the results of the computation of eigenvalues and their \leriva

tives, which were obtained using 100 finite elements of the fifth order (501 nodes). Twenty 

eigenvalues were calculated simultaneously at two values of hyperradius n = 1 and· 15 a.u. 

Some of them are presented in Tables 1 and 2 together with quantities t = E~ - En and 

o = (E~)' - E~ which show the actual accuracy achieved for the approximate eigenvalues 

and their derivatives. From the T;bles, one can see an excellent agreement (10-10 or better) 

of our numerical results with the exact solutions. 

In order to compare the accuracy of radial matrix elements computed from the analyt

ical and numerical solutions, we denote matrices Q and H calculated using exact solutions 

(En, 'lj,n) with the help of expressions (8) and (14)-(15) by Q1, H 1 and Q2
, H 2

, respec

tively, and the ones calculated from (E~, 'lj,~) by Q1h
, H 1h and Q2

h, H 2
h, respectively. 

To simplify the comparison between the analytical and numerical solutions we introduce 

the following quantities 

q1 = max IQ1
. -Qlhl 

I :,i,j :,20 •J ij , 
q2 = max IQ2

. _ Q2hl 
. 1::,iJ:,20 •J ij , 

q3 = max IQ1h _ Q2hl 
1::Si,j::S20 tJ ij , 

h1 = max IH1- - H1hl h2 = max IH2-- H2hl h3 = max IH1
h - H2hl 

l:,iJ:,20 tJ tJ ' l::,iJ:,20 tJ •J ' l::,i,j:,20 tJ tJ 
0 

In Table 3, we compare the results of our computations with the analytical solutions ob-

tained for n = 1 and 15 a.u. One can see that radial matrix elements calculated within 

the present approach agree very well (10-8 or better) with the exact ones for giwn values 

of n. Note that our numerical results are also in an excellent agreement with theoretical 

estimates (13). 

Consider next the convergence of formula (15) with respect to the size of the adiabatic 

basis set (number of parametric eigenvalues E;('R)). In order to do tliat we have calculated 

the following constructs 
m 

H2h,m _ '°'Q·,Qr ij - - L. ' ,, 
l 

1::; i,j::; m, m = 1, 2, ... , 20. 
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Table 1: Approximate eigenvalues E! of problem (20) and their derivatives (E!)' calc~lated 
at 'R, = 1 a.u. The accuracy of the E! and (E!)' with respect to the exact solutions is 
presented by quantities€= E! - En and 8 = (E!)' - E~. 100.finite elements.of the fifth 
order (501 nodes) have been used. The number in parentheses denote power of ten. 

n 

1 
2 
3 
4 
5 
6' 
8 
10 
12 
14 
16 
18 
20 

Eh 
n 

-.4999999999( +00) 
.1375000000( +01) 
.3944444444( +01) 

.. 7468750000( +01) 
.1198000000( +02) 
.1748611111( +02) 
.3149218750(+02) 
.4949499999( +02) 
. 7149652777( +02) 
. 97 497 44897 ( +02) 
.1274980468( +03) 
.1614984567( +03) 
.1994987500( +03) 

·€· 

.266(-11) 

.253(-11) 
,986(-12) 
.476(-12) 
.125(-12) 
.137(-12) 
.122(--:13) 
.301(-13) 
.793(-i3) 
.114(-12) 
.105(-12), 
.310(-13) 
.464(-12) 

(E!)' 

-.5748734821(-11) 
C.: .3000000000( +01) 
-.8000000000( +01) 
- . 1500000000(+02) 
- . 2400000000 ( +02) 
-.3500000000( +02) 
-.6300000000( +02) 
-.9900000000( +02) 
- .1429999999 ( +03) 

· - , 1949999999 ( +03) 
-.2549999999( +03) 
-.3229999999( +03) 
-.3990000000( +03) 

0 

.575(-11) 
., ..:..264('-11) 

-.101(-11) 
-.490(-12) 
-.111(-12) 
-;154(-12) 
-.246(-13) 
-.144(-14) 
...:.761(-13) 
-.108(-12) 
-.100(-12) 
-.191(-12) 
-.107(-09) 

Table 2: Approximate eigenvalues E! of problem (20) and their derivatives (E!)' calculated 
at 'R, = 15 a.u. ·The accuracy of the E! and (E!)' with respect to the exact solutions is 
shown by quantities€= E! - En and 8 = (E!)',- E~. 100 firiite elements of the fifth order 
(501 nodes) have been used. The number in parentheses denote power of ten .. 

n 

1 
2 
3 
4 
5 
6 
8 
10 
12 
14 
16 
18 
20 

Eh 
n 

-.4999999999( +00) 
--1183333333( +00) 
-.3777777777(-01) 

.2083333333(-02) 

.3333333333(-01) 

.6388888888(-01) 

.1321875000( +00) 

.2i50000000( +00) 

.3143055555( +00) 

.4307823129( +00) 

.5647135416( +00) 

. 7162345679( -t-00) 

.8854166666( +00) 

€ 

.857(-11) 

.353(-11) 

.377( ,...n) 

.431(-10) 

.261(-11) 

.144(-11) 

.761(-12) 
. .496(-12) 
.352(-12) 
.252(-12) 

.. 247(--,12) 
.363(-12) 
.823(-12) 
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(E!)' 

.6063205493(-12) 
-.8888888888(-03) 
-.2370370370(-02) 
-.4444444444( .:...02) 
-. 7111111111('-02) 
-.1037037037(-01) 
-.1866666666(-01) 
-.2933333333(-01) 
-.4237037037(-01) 
-.5777777777(-01) 
- . 7555555555( --:01) 
-.9570370370(-01) 
- .1182222222 ( +oo) 

0 

.606(-12) 
-.600(-10) 
-.689(-11) 
-.179(-11) 
-.113(-12) 
-.555(-12) 
-.305(-13) 
-.459(-12) 

· -'-.938(-13) 
-.294(-12) 
-.125(-12) 
~.173(-12) 
-.782(-10) 

Table 3: Comparison between analytical and numerical matrix elements calculated using 
exact solutions (En, t/Jn) and the approximate ones, (E!, tfJ!). Quantities Q1, Q2, q3, hi, and 
h2 are defined in the text. The numerical scheme parameters are the same as in Table 1. 

'R, 

'R, = 1 
'R, = 15 

Ql 

.308(-08) 

.663(-08) 

Q2 

.593(-11) 
.. 178(-14) 

q3 

.732(-11) 

.696(-13) 

h1· 

.381(-08) 

.787(-08) 

h2 

.461(-08) 

.817(-08) 

Table 4: Convergence of the h'j' as a function of the number of the adiabatic eigensolutions 
m (m = 5, 10, 15, 20). h'j' is.defined in the text. The numerical sche~e parameters are the 
same as in Table 1. · 

'R, 

'R, = 1 
'R, = 15 

hs 
3 

.473(-06) 

.195(-04) 

hlO 
3 

.342(-05) 

.195(-04) 

fi½5 
.133(-04) 
.195(-04) . 

h20 
3 

.162(-02) 

.127(-02) 

Table 5: Eigenvalues (adiabatic potential curves) E;('R) and their derivatives dE;('R-}/d'R-, 
i = 1, ... , 6, of problem (11) computed at 'R, = 7.65 a.u. The results of the calculations of 
the Ef and (Ef)' performed by the present method are presented in the second and fifth 
columns, respectively. Seven differential equations (11) (lma.x = 6} have been solved using 
68 finite elements of the seventh order (477 nodes}. For comparison, the results of the 

computations of the Ef and e: for two different sets of numerical parameters carried out 
by the method of Ref. [21) are given in the third and fourth columns, respectively. The Ef 
have been computed in [21) using 68 finite elements of the seventh order with lma.x = 6 and 

kma.x = 8 (lma.x and kma.x are defined in the text). The E~, i = 1, ... , 80, have been obtained 
using the same number and order of finite elements with lma.x = 6 and kma.x = 15 (only the 
first 6 eigenvalues are displayed}. · · 

E!' -h '-h 
. (Ef )' • . ,E; • E; 

1 -2.13590169 72.1358893 -2.1358894 .18574453(-01) 
2 -.698907137 -.69893960 -.69893964 .46093945(-01} 
3 ..:..617951769 -.61794757 -.61794766 .19973460(-01} 
4 - .422639095 -.42279391 -.42279421 -.22691387(-01} 
5 -.371634497 -.37170963 -.37171011 -.16109094(-01} 
6 -.269808873 -.26968352 -.26968483 -.21915412(-01} 
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The results for the h':f calculated from the H;~h and Hl;h,m for some values of m are shown 

in Table 4. · From the Table, one can see that matrix elements Hl;h,m calculated using 

formula {15) show poor convergence in m and therefore lower accuracy and computational 

efficiency in comparison with the .ones obtained from Eqs. (8). This result is importa_nt 

in the context of the next subsection since in order to get the desired level of accuracy of 

solutions of three-body problem within the adiabatic representation we need to calculate 

potential matrices Q('R) and V('R) with the same accuracy as surface functions <l>;(a, 0; 'R). 
. ' 

The fulfillment of this requirement is guaranteed in the proposed approach. • 

7 .2 Helium atom and negative hydrogen ion 

In this subsection we present numerical results of solving problem (1)-(3) for the ground 

state of the helium atom and negative hydrogen ion. First, let us examine the accuracy of 

the potential curves E;('R) and potential matrix elements Q;1(R) and H;1(R) within the 

present method for the helium atom. These calculations can be directly compared with 

the results of calculations for the helium atom performed in Refs. [20, 21] using another 

implementation of the adiabatic hyperspherical approach. In [20, 21], a different numerical 

method for constructing the adiabatic functions <I>;(a, 0; n) has been used. Matrix elements 

Q;1(R) were calculated in [20, 21] as 

Q;1(n) = ['R2 (E;('R) - E1('R))J-1(<I>;(a, 0; R)IW(a, 0)l<I>1(a, 0; 'R)) (21) 

and Hii(R) were obtained by Eq. (15). In order to compare our results with. the ones 

reported in [21], we have calculated potential curves E;('R.), i = 1, ... , 6, and potential 

matrix elements Q;1(R) and H;1(R), i, j = 1, ... , 6, at fixed value of hyperradius 'R = 7.65 

a.u. For solving Eq. (11) consisting of seven equations {lmax = 6), 68 finite elements 

of the seventh order (477 nodes) have been used. Our results for the E;('R = 7.65) and 

Qfj(R = 7.65) agree very well with the Q;j(R = 7.65) obtained by Eq. (21) in [21] with 

the same number and order of finite elements (477 grid points), l;,,ax = 6 and kmax = 8 

(kmax here is the number of eigenvalues of auxiliary o_ne-dimensional adiabatic Hamiltonian 

[21]). However, some of our matrix elements H;~h(R = 7.65) differ significantly (up to the 

factor 1.7) from the Hf;h(R = 7.65) elements obtained in [21]. Analysis of these results 

(presented below in Table 7) has showed that in order to get a better agreement between 

the two meth?ds for the H;1(R), it is necessary to increase the value of kmax from 8 up to 

15 and also increase the number of terms in sum (15) from 6 up to 80. Only using this 
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extended basis set matrix elements H;~h(R = 7.65) calculated by the method of Ref. [21] 

could approach the ones obtained by using Eq. (8). 

In Table 5 we present the results of our calculations of potential curves Ef' and their 

derivatives (Ef)', i = 1, ... , 6, with accuracy 10-10 a.u. at 'R = 7.65 a.u. These results are 

compared with the Ef' (the third column) reported in [21] and thee: (the fourth column) 

calculated using the extended set of numerical parameters described in the paragraph above. 

There is a very good agreement between thesE! three calculations. However, it is worth 

to mention, that eigenvalues Ef' are solutions of Eq. (11) obtained using zero-gradient 

(Neumann) b~undary conditions whereas Ef' and E~ have been obtained as solutions of 

the auxiliary _one-dimensional eigenvalue problem (see Eq. (12) of Ref. [21]) using zero

value (Dirichlet) boundary conditions. Also matrix elements ¼1 are calculated differently 

(compare Eq. (11) of Ref. [21] and Eq. (11) and formula for V;1 below Eq. (11) in 

the present work), which results in the different rate of convergence of the corresponding 

angular expansions. 

In Table 6 we present our calculations of matrix elements Qfj(R "." 7.65) and Q;j(n = 
7.65) obtained by formulas (8) and (14), respectively. The results of both calculations 

are practically identical within the given accuracy. For comparison, we show in Table 6 

matrix elements Q;j(R = 7.65) (the fifth column) obtained by formula (21) in [21] and also 

Q~t(n = 7.65) (the sixth column) calculated by the same method but using the extended 

basis set described above. One can see a very good agreement between all four calculations 

presented in the Table. 

In Table 7 we present our results for radial matrix elements Hf/(R = 7.65) and Hf;h(R = 
7.65) obtained within the present approach using formulas (8) a~d (15), respectively. The 

results for tM H;~h(R = 7.65) have been obtained using six terms in sum (15). One can 

easily see a big difference between these two calculations. A similar discrepancy is observed 

between the H;~h(R = 7.65) and the fl?;h(R = 7.65) (the fifth column in Table 7) taken from 

Ref. [21]. As one could expect, our Hf;h(n = 7.65) elements agree much better with the 

fl?;h(n = 7.65) obtained with the same number of terms in formula (15). Such disagreement 

between the H;~h and the H;~h and fl;~h is because of insufficient number of terms (six only) 

taken into account in sum (15) for the Hf;h and flf;h. In order to show that matrix elements 

H;~h are much more accurate than the Hf;h and fl?;h ones, we have calculated the H:; (see 

the sixth column in Table 7) using 80 terms in sum (15). Comparison of the third and 
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Table 6:, Matrix elements of radial coupling Q;i(n) computed at n = 7.65 ,a.u. The results 
of the present calculation of the Q:; and, Q:J obtain,ed by using formulas, (8) and (14) are 
presented in the third and fourth columns, respectively. The results of the calculation of 
the Q"fj and Q;; by the method of Ref. [21] using formula (21) for two different sets of 
numerical parameters are given in the fifth and sixth columns,.respectively. The numerical 
scheme parameters are the same as i,n Table 5. The number in parentheses denote power 
of ten. 

j Qlh Q2~ -2h -2h 
IJ IJ Qij Qij 

1 2 .586014(-01) .586014(-01) .585907(-01) .585893(-01) 
1 3 -.286341C-0l) -.286341(-01) ' .286413(-01) .286418( .C::01) 
1 4 .442209(-01) .442209(-01) .442198( .:..01) .442216(-01) 
1 5 -.336214(-01) -.336214(-01) .336215(-01} .33623~(-01} 
1 6 .161869(-01) .161869(-01) .162012(-01) .162002(-01) 
2 3 .250621 ( -01) .250621(-01) -=.250045(-01) - .250077( --.:01} 
2 4 .165765( +00) · .165765( +00) .165781( +00) .165782( +00} 
2 5 :-:--607837(-01} -.607837(-01) .607890(-01) .607908(-01) 
2 6 .172490(-01) .172490(-01) .172592( -01) .172573(-01} 
3 4 .457925(-01) .457925(-01) -.458364(-01} -.458311(-01) 
3 5 .134640( +00) .134640( +00) .134615(+00) .134617( +00) 
3 6 -.896893(-01} -.896893(-01) .897034(-01) .897034( -01) 
4 5 -.203183( +00) -.203183(+00) .202920( +00) .202961(+00) 
4 6 .155380(-01) .155380(-01) .155163(-01} .155172(-01} 
5 6 -.113957( +00} -.113957( +00} .113800(+00), .113799(+00} 

16 

il 
j, 

! 
I 

ij 

i 

/} 
·1 
l 
,' 

Table 7: Matrix elements of radial coupling H;j('R-) computed at 'R, = 7.65 a:u. The results 
of the present calculation of the H;}h a11,d H'f/ obtained by usingformulas (8) and,(15} are 
presented in the third and fourth columns, respectively. The results of the calculation of 
the fl;/ and H;; by the method of Ref. [21] using formula (15) for two different sets of 
numerical parameters are given'in the fifth and sixth columns, respectively. The numerical 
scheme parameters are the same as in.Table 5. The number in parentheses denote power 
~~ ' ' 

j Hf/., ,· m" -2h "-2h 
IJ H;i H;i 

1 1 .129180( -:-01} '.760195(-02) .760548(-02} .128801(-01} 
1 2 .126385(-01} ·.893549( -02) .947869(-02} .126303( .:..01) 
1 3 :..729629(-02} -.542228(-02} .648605(-02} .728683(.:..02) 
1 . . 4. · .376942(-02} -.132001(-02) -.129332(-02}. .375300( -02} 
1 5 -.105365( .,-01) .145577(-01} -.145408( :-01} -.105361(-01} 
1 6 -.599567(-02} - .8097 48(-02) -.825414(-02} ...:..599308(-02} 
2 2 .387063(-01} .355324( ...:01) .372254(-01} .387056(-01} 
2 3 -.450057(-02} -.381820(-02} .593952(-02} .449231(-02} 
2 4 .190126(:-01} .. 140620(-01} .244742(-01} .189969(-01} 
2 5 .238220(-01} .263704( .'..:01) -.156242(-01} -.238009(-01} 
2 6 -.538306(-02} -.630598(-02} -.799195(-02} -.537534(-02} 
3 3 .326976(-01} .297171 ( -01} . 731349(-01} .326953(-01} 
3 4 -.256900(-01} -.258621(-01} .251212(-02} .256612(-01} 
3 5 :226722(-01} '.189643(-01} -.677882(-02} .226588(-01} 
3 6 .119753(-01) .146004(-01} -.185494(-01} -.119490(-01} 
4 4 .814621(-01} .730553(-01} -=.374142( +00} .813717(-01} 
4 5 -.966072(-02} -.716772(-02} -.307431( +00} .965263(-02} 
4 6 -.231241(-01) -.236861(-01} .370903 ( +oo) -.230691(-01} 
5 5 .834146(-01} . 772227( -01) .264643( +00} .832770(-01) 
5 6 -.194731(-01} -.168255(-01} .402133(-01) .194682(-01) 
6 6 .273542(-01} .218313(-01} -.499955(-02} .273217( -01} 
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sixth columns in Table 7 clearly indicates that the n;; computed with the extended basis 

set parameters agree much better with the Hff obtained by Eq. (8) than with the H'ff 
and iI'ff computed by Eq. (15). This confirms our conclusion about the higher accuracy 

and efficiency of formulas (8) and the necessity to use a rather large number of terms in 

Eq. (15) (and therefore excessive computational·resources) in order to get a comparable 

accuracy of matrix elements Hth. In all our calculation~ presented below matrix elements 

Q;; and H;; are calculated using formulae (8). 

In order to study the convergence of.potential curves E;(n) and radial matrix elements 

Q;;(n) and H;;(n) we have performed a set of computations of these quantities as functions 

of numerical scheme parameters, namely, number of isoparametric Lagrange elements Ne1, 

their order Npol and maximum number of terms lmax in the angular basis set expansion in 

l (see Eq. (9). The results of some of these calculations for the E;, E;, Q;;, H;; and H;;, 

i = 3, j = 5, computed at n = 7.65 a.u. are presented in Table 8. In the present work, the 

desired accuracy of the ground state energy of He and H- is set to 10-6 a.u. This requires 

the same accuracy of radial matrix elements, as well. From Table 8, the following set of nu-- . 
merical parameters has been chosen for the He 1se state: N01 = 210 (1471 grid points with 

h = 0.00053), NpoI = 7, and lmax = 11 (12 equations in Eq. · (11)). The grid in n has been 

chosen as follows, 0.02(0.02)0.32(0.01)1(0.02)3(0.05)5(0.08)9(0.1)20(0.2)30(0.25)50 (num

ber in parentheses denotes the step in n). A banded system of 17652 linear algebraic 

equations, (Eq. (12)], has been solved with relative error tolerance E = 10-10 at each value 

of hyperradius n with the mean half bandwidth MHB = 54 (maximum 96). In Fig. 1 we 

show the He. 1S• potential curves E;(n), i = 1, ... , 28, correlating with the n = 1 - n = 7 

hydrogenic~like states of He+ as a function of hyperradius n. Clearly seen are points of 

avoided crossings (2, 6] where the radial non-adiabatic coupling terms are known (2, 6, 7] 

to peak. Such peaks are clearly seen from Fig. 2 where the diagonal matrix elements H;;, 

i = 1, 2, 3, 4, 5, 8, 28, are presented. For instance, matrix elements H 22 and H 33 and also 

H44 and H55 in Fig. 2 show pronounced maxima in the avoided crossing regions. 

In Fig. 3 we plotted radial coupling matrix elements Q;;(n) for some values of i and 

j as functions of hyperradius n. As can be seen from the Figure, the matrix elements 

displayed also show maxima in the quasi-crossings points. Note that singular behaviour\ 

of the radial matrix elements near avoided crossings can be eliminated by passing into the 

diabatic representation (22]. However, in this work we use the finite element scheme which 
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Table 8: Convergence of potential curves E;, E; (in a.u) and matrix elements Q;;, H;; and 
H;;, i = 3, j = 5, as functions of maximum number ot terms lmax in expansion (9), number 
of finite cle~ents N~1 and their order Npol evaluated at n = 7.65 a.u. 

lmax Ne, Npol E3 Es ·Q35 835 Hss 

5 68 7 -.6179400 -.3716334 .134666 .022636 .083357 
6 68 7 -.6179518 -.3716345 .134640 .022672 .083415 
7 68 7 -.6179578 -.3716348 .134630 .022690 .083444 
8 68 7 -.6179611 -.3716348 .134626 .022700 .083460 
9 68 7 -.6179632 -.3716349 .134624 .022705 .083470 
10 68 7 -.6179645 -.3716349 . .134622 .022709 .083477 
11 68 7 -.6179654 -.3716349. .134622 .022712 .083481 
12 68 7 -.6179660 -.3716349 .134621 .022713 ;083484 
13 68 7 -.6179664 -.3716349 .134621 .022714 .083486 
14 68 7 -.6179667 -.3716349 .134621 .022715 .083487 

6 68 4 -.6179550 -.3715759 .134659 .022683 .. 083528 
6 68 5 -.6179539 -.3715960 .134652 .022679 .083489 
6 68 6 -.6179523 -.3716254 .134643 .022674 .083432 
6 68 7 -.6179518 -.3716345 · .134640 .022672 .083415 

6 40 7 -.6179546 -.3715826 .134656 .022682 .083515 
6 80 7 -.6179512 --:,3716456 .134637 .022670 .083393 
6 120 7 -.6179500 -.3716667 .134630 .022666 .083353 
6 160 7 -.6179494 -.3716772 .134627 .022664 .083333 
6 200 7 -.6179491 -.3716836 .134625 .022663 .083321 
6 240 7 -.6179489 -.3716878 .134624 .022663 .083313 

Table 9: Comparison of the numerical potential curves E;(n) with the dipole asymptotics, 
Ef'(n), for the 1S• state of He calculated at n = 40, 60 and 80 a.u. up to the n = 3 
threshold. 
---
Curve n = 40 a.u. n = 60 a.u. n = 80 a.u. 

number, i -E;(n) -Ef'(n) -E;(n) -Ef'(n) -E;(n) -Ef'(n) 

1 2.02516 2.02516 2.01674 2.01674 2.01254 2.01254 
2 0.52627 0.52620 0.51722 0.51720 0.51281 0.51280 
3 0.52413 0.52411 0.51628 0.51627 0.51228 0.51228 
4 0.25103 0.25073 0.24052 0.24045 0.23563 0.23560 
5 0.24735 .0.24693 0.23888 0.23876 0.23470 0.23465 
6 0.24437 0.24447 0.23765 0.23766 0.23403 0.23403 
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Figure 1: Potential curves E;('R) (in a.u.) plotted vs hyperradius n up to the. n = 7 
threshold for the 1 S• state of He. 
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Figure 2: Radial matrix elements H;;('R) for the 1S• state of He for i = 1, 2, 3; 4, 5, 8, and · 
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allow
s us to solve the eigenvalue problem

 for system
 of radial eauations (6) w

ithin the 

adiabatic representation. 

In T
able 9 w

e com
pare potential curves E

;(R
) calculated num

erically w
ith the asym

p

totic ones, 
E

f'(R
), com

puted analytically using the dipole approxim
ation [23] for three 

values of n =
 40, 60 and 80 a.u. up to the n =

 3 threshold. It is evident th
at these results 

agree very w
ell. 

F
or instance, the five significant digits are obtained for the ground state 

potential curve (i =
 1). T

his confirm
s the high_ accuracy of our num

erical procedure. 

F
or H

-
the follow

ing set of num
erical param

eters has been chosen: N
.1 =

 220 (1541 grid 
points w

ith h =
 0.00051), N

p
o

l =
 7, lm

ax =
 11, t =:= 1

0
-

10
, and th

e
n

 region has been divided 

as follow
s, 0.02(0.08)0.98(0.02)1(0.025)3(0.05)5(0.075)7.1(0.1)20(0.2)30{0.25)50. 

T
he size 

of a banded system
 of linear algebraic equations, 

[E
q. 

{12)], w
as 18492 w

ith the m
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half bandw
idth M

H
B

 =
 54 (m

axim
um

 99). 
In Fig. 

4 the H
-

1S
' potential curves E

;(R
), 

i. =
 1, ..• , 28, up to ,the. n ':':' 7 hydrogenic threshold .are show

n as functions of hyperradius 

n. 
F

rom
 the F

igure, one can see a lot of quasi-crossing points, as w
ell as several exact 

crossings. 

T
he system

 of coupled radial equations (6) has been solved subject to boundary con

ditions (7) 
by the finite elem

ent m
ethod using schem

es of high-order accuracy [16, 
17]. 

lsoparam
etric L

agrange elem
ents of the third order have been used w

hich provide an ac

curacy of O
(h

~
) order w

ith respect to eige~values and of O
(h

~
) order w

ith respect to 

eigenfunctions. 
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esh step of the finite-elem
ent grid on the in
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ax]-
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s a result of num

erical experim
ents, the follow

ing values of num
erical 

schem
e param

eters have been chosen: 
(i) Rm

ax =
 40 a.u. and N

.1 =
 1500 (4501 grid points 

w
ith step h

n
 =

 0.0089) for the H
e atom

; and (ii) Rm
ax =

 30 a.u. and N
.1 =

 1200 (3601 grid 
points w

ith h
n

 =
 0.0082) for the H

-
ion. 

T
he size of a banded system

 of linear algebraic 

equations, [E
q. 

{12)], approxim
ated a system

 of 28 radial equations w
as 125972 w

ith M
H

B
 

=
 70 (m

axim
um

 112) for the H
e and 100772 w

ith M
H

B
 =

 70 (m
axim

um
 112) for the H

-, 

respectively. E
rror tolerance has been set to 10-

12 a.u. 

A
 convergence study of the ground state energy of H

e and H
-

w
ith the num

ber of 

radial equations is presented in T
able 10. O

ne can see th
at the energy eigenvalues converge 

m
onotonically from

 above, w
ith the 28-channel value being Ette == -2.90372266 a.u. 

and 

E
tt-

=
 -0.52774970 a.u. A

s show
n in T

able 11, these values are very close to the precision 

variational results [26]: E
~~R

 == -2.90372437 a.u. and E
~~R

 =
 -0.52775102 a.u. Since the 
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allows us to solve. the eigenvalue problem for system of radial eauations (6) within the 

adiabatic representation. 

In Table 9 we compare potential curves E;('R) calculated numerically with the asymp

totic ones, Ef'('R), computed analytically using the dipole approximation [23) for three 

values of n = 40, 60 and 80 a.u. up to then = 3 threshold. It is evident that these results 

agree very well. For instance, the five significant digits are obtained for the ground state 
' : ' ' 

potential curve (i = 1). This confirms the high accuracy of our numerical procedure. 

For Jt- the following set of numerical parameters has been chosen: N.1 = 220 (1541 grid 

po.ints with h = 0.00051), Npol = 7, lmax = 11, € =:== rn-10
, and then region has been divid.ed 

as follows, 0.02(0.08)0.98(0.02)1(0.025)3(0.05)5(0.075)7.l(0.1)20(0.2)30(0.25)50. The size 

of a banded system of linear algebraic equations, [Eq. (12)), was 18492 with the mean 

half bandwidth MHB = 54 (maximum 99). In Fig. 4 the H- 1S• potential curves E;('R), 

i. = 1, ... , 28, up to ,the n ~. 7 hydrogenic threshold. are shown as functions of hyperradius 

n. From the Figure, one can see a lot of quasi-crossing points, as well as several exact 

crossings. 

The system of coupled radial equations (6) has been solved subject to boundary con

ditions (7) by the finite element method using schemes of high-order accuracy [16, 17). 

Isoparametric Lagrange elements of the third order have been used which provide an ac

curacy of O(h~) order with respect to eige~values and of O(hk) order with respect to 

eigenfunctions. Here hn is the maximum mesh step of the finite-element grid on the in

terval [0, 'Rmax)- As a result of numerical experiments, the following values of numerical 

scheme parameters have been chosen: (i) 'Rmax = 40 a.u. and N.1 = 1500 (4501 grid points 

with step hn = 0.0089) for the He atom; and (ii) 'Rmax = 30 a.u. and N.1 = 1200 (3601 grid 

points with hn = 0.0082) for the H- ion. The size of a banded system of linear algebraic 

equations, [Eq. (12)), approximated a system of 28 radial equations was 125972 with MHB 

= 70 (maximum 112) for the He and 100772 with MHB = 70 (maximum 112) for the H-, 

respectively. Error tolerance has been set to 10-12 a.u. 

A convergence study of the ground state energy of He and H- with the number of 

radial equations is presented in Table 10. One can see that the energy eigenvalues converge 

monotonically from above, with the 28-channel value being Ene = -2.90372266 a.u. and 

En- = -0.52774970 a.u. As shown in Table 11, these values are very close to the precision 

variational results [26): Ert~R = -2.90372437 a.u. and Ert~R = -0.52775102 a.u. Since the 
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Table 10: Convergence of the ground state energy (in a.u.) for He and H- with the number 
of coupled channels n. 

n He H-

1 -2.88791168 -0.52241442 
2 -2.89137991 -0.52472087 
3 -2.90287002 -0.52732522 
6 -2.90300448 -0.52751473 

10 -2.90363613 -0.52768020 
15 -2.90370549 -0.52773607 
21 -2.90372264 -0.52774928 
28 -2.90372266 -0.52774970 

Table 11: Comparison of the present ground state energy (in a.u.) of He and H- with other 
theoretical calculations. 

Method He 

HACCa -2.903723 
ACMb -2.903611 
HSCC0 -2.903594 
VAR<I -2.903724 
MCHF• -2.902909 
CII -2.90323 
RMM9 -2.8961 
CCMh -2.8934 

a Present 28-channel hyperspherical adiabatic coupled-channel calculation 
b 17-channel hyperspherical artificial channel method calculation (20) 

H-

-0.527750 
-0.527642 
-0.52773 
-0.527751 
-0.527542 
-0.527542 
-0.52403 
-0.52775 

c Hyperspherical close-coupling calculation: 28-channel computation for H- (24) and 21-
channel calculation for He (25] 
<I Variational method calculation (26] 
• Multiconfigurational Hartree-Fock calculation: using 32 configurations for H- (27] and 
10 configurations for He (28] 
f Configuration interaction method calculation: using 130 configurations for H- (29] and 
fu~ . 
9 R-matrix method calculation: using 158 configurations for H- (31] and 79 configurations 
for He (32] 
h Close-coupling .method calculation with pseudostates a.µd correlation terms: nine 
Hylleraas-type functions for H-_ (33] and seven correlation functions for He (34] 
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calculation accuracy for eigenvalues equals O(h~) and the basis step of the grid amounts 

to :::: 0.009, our results have errors in the 12th digit. However, as follows from Table 
• ,.,.: <' 

11, our energy values lie above the variational en~rgies by approximately 10-5 a.u. This 
:; ~ f ~ • . 

is consistent with the accuracy of the radial ma"trix elements and used approximations. . . 

Comparison with some other calculations are also•given in Table 11. It is evident that our 
~ ;. ~ 

results are more accurate than the 17-channel hyperspherical ·artificiai channel method [20] 

and the hyperspherical close-coupling method [~41 25], Both of these m~thods use the sector

diabatic representation in which adiabatic basis' exp~nsion has a slower convergence than 
' ' ' 

in the adiabatic representation used in the present work. We also compare our calculations 

with the results of the multiconfigurational Ha;tree-:Fock .method (27, 28], configuration 

interaction method (29, 30], R-matrix method [3~; 32], and close-coupling method [33; 34]. 

All these methods use a large number of electronic co~figuration~ as deen from Table 11. 

Analysis of the Table shows that our ground state energies are as accurate or superior to 

the results of most ab initio methods widely used iµ atomic _and molecular calculations. 

8 Conclusions 

In the present work, the quantum mechanical three-body problem with Coulomb interaction 

has been formulated within the adiabatic representation method using the hyperspherical 

coordinates. The reduction of the three-dimensional problem to the one-dimensional one 

has been performed using the Kantorovich method. A new method for computing variable 

coefficients (potential matrix elements of radial coupling) of a final system of ordinary 

second-order differential equations has been proposed. In this method, a new boundary 

parametric problem with respect to unknown derivatives of eigensolutions in the adiabatic 

variable (hyperradius) has been formulated. An efficient, fast and stable algorithm for 

solving the boundary problem with the same accuracy for the adiabatic eigenfunctions and 

their derivatives has been suggested. As a result, matrix elements of radial coupling can be 

calculated with the same precision as the adiabatic functions obtained as solutions of an 

auxiliary parametric eigenvalue problem. 

The method developed has been thoroughly tested on a parametric eigenvalue problem 

for a hydrogen atom on a three-dimensional sphere. This problem has an analytical solution 

which allowed a direct comparison of our results with the exact solutions. An excellent 

agreement between the analytical and numerical results has been obtained. The accuracy, 
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efficiency and robustness of the algorithm have been studied for this problem in details. 

The method has been further applied to the computation of the ground state energy of the 

helium atom and negative hydrogen ion. The results obtained show an excellent agreement 

with the results of calculations by other methods. 

This study constitutes a major improvement over the standard techniques of the calcu

lation of potential matrix elements of radial coupling within the adiabatic representation 

method: It guarantees the high accuracy of computing radial matrix elements which is 

comparable with the accuracy that can be achieved for the adiabatic eigensohitions of the 

auxiliary parametric eigenproblem. The approach proposed can be easily extended to sys

tems with arbitrary (finite) masses of particles; total angular momentum J > 0; and for any 

appropriate systerri of coordinates. The method can be also used for atom-diatom reactive 

scattering and photodissociation. Work on studying spectral characteristics and properties 

of the exotic atoms. (35] within the present approach is currently underway (36]. 
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