


A6pamkesny A n ap. E11-99-262
Hogplit MeTon peuleHHs 3aga4yi Ha COOCTBEHHblE 3HaYeHHS

AN CHCTEMBI TpeX KYJOHOBCKHX 4acTHL B runepctepuyeckoM

anuabaTHYeCKOM NpeacTaBleHHH

B pamkax aguaGaTHYecKOro MpeacTaBIeHHs C HCIIONb30BAHHEM IHNIEPCHEPHIECKHX KO-
opavHaT opMynHpYeTCs KBAHTOBOMEXaHHYecKas 3afaya Tpex Tell ¢ KYJTOHOBCKHM B3aHMO-
neiictereM. CeefieHye MHOTOMEPHOH 3aa4i K OQHOMepHOH ocylecTsnsercd MeronoM Kan-
Topoeuya. [IpenoxeH HOBBI METOR JUIA BBIYMCIIEHHS NepeMEHHBbIX KoadduLMeHToB (T1o-
TEHUHATbHBIX MATPHYHBIX SJIEMEHTOB palUalbHOH CBA3H) pPe3yNbTHPYIOIUEH CHCTEMBI
OGBIKHOBEHHBIX AHGhepeHIHANBHBIX YpaBHeHHIT. MeToz N03BONSET BLIMHCIATE Koadduuu-
€HTHI C TOi Xe TOYHOCTBIO, YTO H aguabaTnyeckHe (PYHKLMH, NMOJMYYEHHbIE KaK pelleHHs
BCTIOMOTaTENLHON MapaMeTpHYeCKOoil 3alayH Ha coOCTBEHHBIE 3HaYeHHUsA. B npemtoxenHoM
nonxope . copMy/TpoBaHa HOBas IapaMeTpHyecKas 3aaya OTHOCHMTEIbHO HEH3BECTHRIX
MPOU3BOIHBIX OT cOGCTBEHHBIX (YHKLMIA Mo agnabaTHyecKoil nepeMeHHON (runeppanuycy).
TTpewtoxeH GbICTpBIit, 3¢hheKTUBHBIA M CTAGWIBHLIA ATOPUTM ISl PELIEHUS KpaeBoii 3aia-
4y C OOMHAKOBOM TOYHOCTBIO 1A aquabaTHYeCKUX cOOCTBEHHBIX (hYHKLHI M MX MPOH3BOL-
HBIX. Pa3BUTBI METOX TeCTHpYyeTCs Ha NapaMeTpHYeCKOH 3alaye Ha COOCTBEHHBIC 3HAYEHHS
I7is aToMa BOAOPOXa Ha TpexmepHoil cihepe, KOoTopasd HMeeT aHaTHUTHYECKUe perueHus. le-
TATLHO MCCENOBaHa TOYHOCTD, 3thheKTHBHOCTL U paboTOCOCOGHOCTs anropuTMa. Meron
TaKXe MPUMEHEH JUIA BHIYMCIIEHNS 9HEPrMH OCHOBHOTO COCTOSIHMS aTOMa reJuAd M OTpHLa-
TENbHOrO HOHa BOJOPOAA.

Pa6ota BbinonHeHa B JJaGopaTopuy BbIYUCITHTENbHOM TEXHUKH M aBTOMATH3aLMH H Jla-
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A New Method for Solving an Eigenvalue Problem for a System of Three
Coulomb Particles within the Hyperspherical Adiabatic Representation

The quantum mechanical three-body problem with Coulomb interaction is formulated
within the adiabatic represention method using the . hyperspherical coordinates. The Kan-
torovich method of reducing the multi-dimensional problem to the one-dimensional one is
used. A new method for computing variable coefficients (potential matrix elements of radial

-coupling) of a resulting system of ordinary second-order differential equations is proposed.
It allows one to calculate the coefficients with the same precision as the adiabatic functions
obtained as solutions of an auxiliary parametric eigenvalue problem. In the method pro-
posed, a new boundary parametric problem with respect to-unknown derivatives of eigenso-
lutions in the adiabatic variable (hyperradius) is formulated. An efficient, fast and stable
algorithm for solving the boundary problem with the same accuracy for the adiabatic eigen-
functions and their derivatives is proposed. The developed method is tested on a parametric
eigenvalue problem for a hydrogen atom on a three-dimensional sphere which has an ana-
lytical solution. The accuracy, efficiency and robustness of the algorithm are studied in de-
tail. The method is also applied to the computation of the ground state energy of the helium
atom and negative hydrogen ion.
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1 Introduction B
During the last few decades, excitation and ionization processes in a system of three charged
particles have been actively studied in atomic and moleculaf physics [1, 2].. Curgent_ly, an
ongoing work is carried out at the CERN on experiments ASACUSA and ATHENA study-
ing properties of exotic antiprotonic Coulomb systems in traps at léw. tempefat_uges using
new abilities of modern lasers [3, 4]. These experiments require various data on charac-
‘teristics of the Coulomb systems, such as helium atom He and antiprotonic helium atom

‘pHet, and also on collision processes, leading to the formation of antiprotonic pH et and
antihydrogen H atoms. Detailed calculations of energy levels and widths of metastable
states, radiative and Auger transition rates, collision cross sections, etc., are necessary for

-planning and interpretation of the above experiments. Hence, the development of appro-
priate numerical methods for computing the desired spectroscopic and collision data with a
sufficient accuracy is an important step on the way of better understanding elementary pro-

- cesses taking place in exotic as well as in regular atomic and molecular systems; of charged
particles. ,

One of the most popular and widely used approaches for solving the quantum mechanical
three-body problem with Coulomb interaction is the adiabatic representation method (1,
2, 5].- In the framework of the hyperspherical coordinates formulation of this method [2,
6, 7], the hyperradius R is treated as a slowly varying adiabatic variable, analogous to the
internuclear distance in the Born-Oppenheimer approximation for molecules [1]. From the
mathematical point of view this approach.is well known as the Kantorovich method for
the reduction of a multi-dimension boundary problem to the one-dimensional one by using
a set of ‘solutions of an auxiliary parametric eigenvalue problem [8]. These solutions are

- obtained for a given set of values of the adiabatic variable, which plays here a role of an
external parameter.

This'method has been successfully applied for calculating energy levels and wave func-

" tions of two-electron atoms within the adiabatic hyperspherical approach (see, e.g., [6, 9]),
as well as for computing energy spectra of negative positronium ion Ps~ [7, 10] and var-
ious muonic molecules [7, 11] (see also [5, 12]). An essential part in the impleméntation
of the Kantorovich method ‘is the computation of variable coefficients (potential matrix
elements) for the final system of the ordinary second-order differential equations. These

coefficients are the integrals over eigenfunctions and their derivatives with respect to the
. H
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adiabatic variable. In real applications, an efficient and stable computation of derivatives of
the adiabatic eigenﬁ;nctions and the corresponding integrals with the accuracy comparable
with the one achieved for adiabatic eigenfunctions presents a serious challenge for most
of the numerical approaches involved in various types of calculations within the adiabatic
representation method.

In the present paper we propose a new numerical method for computing these deriva-
tives with the same accuracy as obtained for the eigenvalues and eigenfunctions of the para-
metric eigenvalue problem. This circumstance guarantees the calculation of the variable
coefficients (potential matrix elements of radial coupling) of a system of ordinary differen-
tial equations with the same precision as adiabatic eigenfunctions. This goal is achieved
by means of formulating a new boundary parametric problem with respect to unknown
derivatives of eigenvalues and eigenfunctions in the adiabatic variable. An efficient, fast
and stable algorithm for solving this boundary problem with the same precision for. the
adiabatic eigenfunctions and their derivatives is elaborated.

The accuracy and stability of the method developed are studied on a test parametric
problem describing a hydrogen atom on a three-dimensional sphere. This problem has an
analytical solution which allows a direct comparison of approximate eigensolutions with the
exact ones. To show the efficiency and reliability of our implementation of the Kantorovich
method we apply it to the calculation of the ground s_iaaté energy of the helium atom and
negative hydrogen ion. This is a popular problem for three-body. Coulomb systems which
serves usually as a benchmark for new numerical algorithm and methods. For simplicity,
we consider in this paper a system with total angular momentum J = 0. This allows us

to demonstrate all essenttal numerical peculiarities of our method when applied to a rather

complex atomic system without unnecessary complications connected with accounting for .

additional angular variables for J > 0. The generalization of the present approach for
three-body systems with arbitrary total angular momentum is straightforward and will be

considered elsewhere.

The paper is organized as follows. The Schrédinger equation for three-dimensional

eigenvalue problem for a system of three charged particles is considered in Section 2. The

Kantorovich method is briefly described in Section 3. Three steps of implementation of .the

Kantorovich method are considered in Sections 4-6, respectively. In Section 7 our method

is applied to three eigenvalue problems. Numerical solution of a parametric eigenvalue

problerh for a hydrogen atom on a three-dimensional sphere is presented in subsection 7.1.
The results of our calculations of the ground state energy of the helium atom and negative
hydrogen ion are presented in subsection 7.2 where they are compared to the results of other

theretical calculations. The conclusions and possible future deve{l(l)pmervl_lv:_S of the method

are discussed in Section 8.

2 The Schrédinger equation

Time-independent Schrédinger equation for a system of three charged'particles with total
angular momentum J = 0 in the conventional hyperspherical coordinates {R, «, 0} [13] can

o

be written as an elgenvalue problem for the followmg 3—D elliptic equation:

\II('Ra9)+RW(a 0)\1/('Ra9) £\Il(Ra0) L 1)
where-€ .is the energy -and ¥(R,a,0) is the total wave function of the system. .The
differential operator T and the Coulomb potential W are defined in Eq. (1).as-follows
(e=h=m.=1) ‘
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T= %R3 sin® asin 6.
In the above, Z, = Z,=—1and Z, = Z = 2 Z, = Z are the charges of particles a, b,
vand ¢ with masses M, = 1, M, =1, and M, = oo, respectively. - Note Z =1 for a
negative hydrogen ion H~ and Z = 2 for a Helium atom He. Hyperradius R € [0, 00),
hyperspherical angles (a,0) €e 2 ={0<a <7 06 < 7}, i.e. total set of variables
(R, ,8) € Q) = x [0,00). '
Total wave function ¥(R, , §) satisfies the following boundary conditions:

v . v
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and is normalized by condition

/ / R*r¥2dadddR = 1.

3 Kantorovich method

Consider a formal expansion of the solution of Egs. (1)-(3) over an infinite set of two-
dimensional basis functions {®;(a, 8; R)}2;: -
¥(R,,0) = Zx.(R ®;(a, 0; R). : 4
- . i=1 .
In Eq. (4) functions x(R)T = (x1(R), x2(R),...) are unknown, and adiabatic functions
&(a,;R)T = (®1(@, 0;R), @2(e, 6; R),...) form an orthonormal basis for each value of
hyperradius R which is treated here as a slowly varying adiabatic parameter.
‘In the Kantorovich approach [8] functions ®;(a, #; R) are determined as solutions of the

following two-dimensional eigenvalue problem

(¢+ lW) (o, 05 R) = E(R)®(c,0;R) . CE

R
with boundary conditions derived from Eq. (2):

. . ad o
1 2 7= _ —
a_lg}r sin aaa =0, 91_1}511r sm060 0.

mal:

[ [ 7@:t;dads = 5.

In the equation above, §;; is Kroneker’s 5-symbol. Problem (5) is solved for each value of
Ri € wr where wgr = (Ry, Ry, ..., Rys,...) is a given set of values of hyperradius R.

After substitution of expansion (4) in the Rayleigh-Ritz variational functional (see [7])

R(T) = /Rz{l (27\1;) +§Sie0[sin2a(g—z—)2+;(a>a§)}

oo N\
+——\IITW\II}d0dadR x { / Rzlllzrdead‘IZ}
R m v )

and subsequent minimization of the functional, the solution of Egs. (1)-(3) is reduced to

a solution of an eigenvalue problem for an infinite.set of ordinary second-order differential

Since the operator in the left side of Eq. (5) is self-adjoint, its eigenfunctions are orthonor-

equations for determining energy £ and coefficients (radial wave functions) X" =xR)T =

(x1(R), x2(R), . ..) of expansion (4):

(LA a1 dRPQR)x V
dx , 1 aRAWIX _ ¢ 6
Imm™ d’RX +VRIX+ QR gp + e~ = %1% ®)
dx . :
1 2'—- -_— 2 —
71{1_1}})71 E7 =0, | 11m Rx =0. )

Here I, V(R), and Q(R) are infinite matrlces, elements of which are glven by relatlons

Iij = 6ij, ,-(R) = 2E-‘('R) = 2(Ey(R) + Rg)’

Vii(R) = Ui(R)6ij — 3% + Hi;(R), .

4722

(8)
Hy(R) = Hy(R) = [ o, O Ot ~ 261 -~

Q,,(R) -Q,,(R) // d; ’dad0 2715"’ i=1,2....
Thus, the solution of Sturm-Liouville problem(l)-(3) is reduced to solution of the following

three problems:

1. Calculation of potential curves E;(R) and eigenfunctions ®;(a,8;R) of the two-

dimensional problem (5)- (2) for a given set of R € wz.
2. Computatlon of matrix elements of radlal couplmg (8) necessary for Eq. (6).

3. Calculation of energies £ and radial wave functlons x(R) as elgensolutlons of one-

~ dimensional eigeevalue problem (6)-(7).

4 Solution of eigenvalue problem (5)

‘Two-dimensional parametric eigenvalue problem (5)-(2) can be solved directly [7] using the
“finite element.method [14, 15). In this paper we propose more efficient method of solving
this problem. Because of the symmetry. of equation coefficients with respect to a = 7/2,
“problem (5) will be considered for & € [0,7/2]. .

Consider the follewing expansion of adiabatic surface function ®;(a, 8; R):

Bo8R) = S o @ RIACos0), o

1=0



where <p§')(a; R) are expansion coefficients depending parametrically on R and P(cos §)
are the Legendrg polynomials. These polynomials are the eigensolutions of the following

eigenvalue problem

_isinedﬂ(cos 9)

T T = Asin6 Py(cos8)

with A, = [(I + 1) being the corresponding eigenvalues. The Rayleigh-Ritz variational

functional for problem (5) can be written as follows

/2 2 2
R(®) = / / [ sin asma(gi) R sin 0(?;;)

o S o
+— sin? a:sin 0W<I>2] dfda x [ / / —_ sm a sin 0¢2d0da]
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Expansion (9) is substituted next into functional (10) After minimization of the variational

functional we get that eigenfunctions o7 = ;T = @ (a; R)" = (¢ (')(a R), <p(')(a"R) )
and eigenvalues E(R) = E;(R) satisfy the followmg elgenvalue problem for an infinite set
of ordinary differential equations
L(p,E)= R —iDi +A|+REW - E(R)-l-’R,aD =0
do’ da 2 =5
11
e (11)
lim sin“a_— =0.
a—0,m/2 Oa

In the above, D, A, and W are infinite matrices eleménts of which are defined by

1 1y «
Du = ZSln2 «, D“/ = 0, l # l', A“ = Z (l(l + 1) + sin2 (1') s Aul = 0, l # l’,
) .
Wi = /0 P(t)W (a, 0) Py (t)7df = —Z sina (cos 5+ sin ) Sy + gsm ZaWi?,

TE, P 4
Wit = (6P (1) —mme———dt. t=cosl, LI=0,1,2,.... .

~-1y/1—tsina

Thus, the solution of the two-dimensional eigenvalue'problem (5)-(2) is reduced to the
solution of eigenvalue problem (11) for a system of the ordinary second-order differential
equations. Note that to write eq.(11) we add term 2/R? to Hamiltonian (5) to calculate
instead of the original eigenvalue E;(R) the shifted eigenvalue E(R) = E(R)+2/R? which
has been introduced previously in definition .(8) and corresponded to eigenvalue of tﬁe

conventional parametric eigenvalue problem [21].

5 Solution of eigenvalue problems (6) and (11)

F(;r numerical solution of one-dimensional eigenvalue problems (6) and (11) subject to the
correspondmg boundary conditions, the high order approx1mat10ns of the finite element
method [14, 15] elaborated in our previous papers [16, 17] have been used One-dimensional
finite elements of order p = 1,2,..., 10 have been implemented. Using the standard finite
element procedures [15], problems (6) and (11)‘are approximated by the generalized alge-
braic eigenvalue problem - ,

AFh - EhBFh, ¢ [ . " ' (12)

where A is the stiffness matriﬁ, B is the mass matrix, E® is the corresponding eigenvalue,
and F* is the vector approximating solutions of (6) or (11) on the finite-element grid. For
problem (6), A = K; + k} +K; and B = M, where matrices K, K} and K3 correspond
to the first, the second, and the third and fourth terms in the left hand side of Eq. (6),
respectively, and matrix M corresponds to the term in the rlght hand side of Eq. (6). For
problem (11), A = RK;+R?K, and B = R3M, where matrices K;, K2, and M correspond
to the first, the second, and the third terms in Eq. (11), respectively. The A and B matrices
are symmetric and have a banded structure, and B matrix is also positive defined. The
algebraic eigenvalue problem (12) is solved using the subspace iteration method [15].

Let E,, ¢ are the exact solution of (11) and E", F} are the numerical solution of (12).

Then the following estimates are valid [14]
|En — B} < cl(Ea)B?, lon = Fallo < c2( BB, >0, e >0, (13)

where h is the grid step, pis the order of finite elements, 7 is the number of the corresponding
eigensolution, and constants ¢; and ¢; do not depend on step h. The same estimates are

valid for the approximate solutions of problem (6).

6 Calculations of matrix elements of radial coupling

Calculation of potential matrices V(R) and Q(R) (see Eq. (8)) with sufficiently high
accuracy is a very important step of solving a system of radial equationé (8), since otherwise
it is practically impossible to get the desired energies and wave functions of three-body

dp
Coulomb systems with required precision. This implies that denvatlves & should be

dR



computed with the highest possible accuracy, which presents a difficult problem for most of
numerical methods usually used in the adiabatic representation calculations. In the most

of applications the following formulas
Qi(R) = [R(E, R / ¢! R?Wsp,da , (14)
and N . . .
EQ:: )Qi;(R), Qii(R) =0, o : - (15)

are usually used. Note that Eq. (15) has a rather slow convergence which means that in
order to get a high level of accuracy one should 1nclude'a sufﬁcrently large number of terms
in a sum over l ‘This clrcumstance can present a serious problem from the computatronal
point of view; especrally in regard to demands for requlred computatronal resources and
computation time. ‘ ) .

The main goal of thrs paper is to develop an eﬂ'ectlve numerlcal method that will allow
one to calculate derivative :—;: with the same accuracy as, achleved for elgenfunctlons of
(11) and to use it to compute matrlx elements deﬁned by formulas (8) Taking a derivative
of (11) with respect to R, we get that %: can be obtained as a solutron of the followrng

boundary problem

dyp _|4pd _ 2 ' Vs =
L(dR,E). [daDd A—-2RW+32 E(’R)’RD+ E('R.)’R 0=G. -

(16)

The boundary conditions for function ::—7‘: are the same as for function ¢. Taking into
account that E(R) is an eigenvalue of operator L, prohlem (16) will have a solution if and
only if the right hand side term G is orthogonal to the eigenfunction . From this condition
we find that _

/2 T
B®R)= [ ’ [%,‘—Z, %f“’T-(Af?_RW)V’l da_-%E(n). o

Now the problem (16) has a solution, but it is not umque From the normallzatlon condition
/ @ —R3D<pda = 1
we obtain the required additiona‘.l condition

[ T]- P 3 R ' L =
/0 'R.Dde ~57 )

Thus, problem (16) with additional conditions (17)-(18) has now a unique solution. Ifi is
necessary to mention that the second estimate of Eq. (13) is valid also for solution d—’ﬁ
of problem (16)-(18). This fact guarantees the same accuracy for adiabatic functions and
their derivati\"es within the present method. do

Let us consider a numerical algorithm for the computation of derivative iR It follows
from Eq. (12) that we should solve the following linear system of algebraic equations
I (19)

—_ ~roh — —_
Ku=(A-BE'Blu=b, u=—z,

where
A =RK; +R?K;, B=RM,

b = [-K; - 2RK; + (3E* + R(E"))R?*MJF*,

3 .
(B = (F*)T[K, + 2RK,]F* — 'ﬁEh'
In these expressions K, Kz and M are the finite element matrixes which corresponded to
the first, second and third terms in equation (11) with R = 1. Since E* is an eigenvalue
of (12), matrix K in Eq. (19) is degenerate. The algorithm for solving Eq. (19) can be
written in three steps as follows:
Step 1. The additional condition (18) has the form
-3
TREh _ 2
u BF* = R

Denote by k a number determined by the condition
IBF*| = 2 IBF*|;, Ci=(BF"),

where N is the order of matrices above.

Step 2. Solve two systems of algebraic equations

Kv=b, Ku=c,
where A ‘
= (Kik, Koky- - Knk)y, =0, bi=b;, b =0,
Ky=Ky, i#k j#k Ku=0, i#k Ky=0, j#k Ku=L

In this way we have 7y =0 and w; = 0.



Step 3. Find constants 7, v and 7, as

34+ 2’R,’71

_ <Tpwph —Troh
7=V BF", ~ =w BF" —_——.
2R(Ck —:’72)

R dF* o C
After that derivative u = R is obtained using formula

U =T — Y0, TFEK ur=1.

From the consideration above it is evident, that the derivative computed has the same

accuracy as the calculated eigenfunction.

7 Numerical results

In this Section we apply our approach to three problems which allow us to demonstrate high
accuracy, efficiency and stability of the algorithrﬁ developed. The first test problem solves
the eigenvalue problem for a hydrogen atom on a thrée—dfmensional sphere. This problem
has an analytical solution which allows a direct comparison of approximate eigensolutions
obtained by our method to the exact solutions. The other two problems are devotedto
the computation of the ground state energy:of the helium atom and negative hydrogen
ion, respectively. Such eigenvalue problem is usually used as a benchmark for testing
the accuracy of numerical methods for solving three-body Coulomb:problems since. high

precision variational calculations are available for comparison.

7.1 Hydrogen atom on a three-dimensional sphere

Consider the following eigenvalue problem

1 d _, d 1 ’
(_2sin2aazsm e~ R oot a)Y(R) = E(R)V’(a R)
oY ] (20)
limsintazl =0, Jimsin?al =0.

To preserve the form of operators used in previous Sections, we rewrite equation (20) as

d ., .d . .
(_REE sin? a-= - RZsin 2(1) P(o;R) = E(R)2R3sin® ay(o; R). |

Problem (20) has an analytical solution

1[1 n?—1

10

with eigenfunctions ¥ (a; R) which are the radial functions of a hydrogen atom on a three-

dimensional sphere {18, 19]
Yn(a, R) = Cn(R)Re{exp[—1a(n -1 - 10’)]2F](—n +1,1410,2,1 - exp(212))},

2 0n2 +0? o= R
\/1 —exp(=2m0) ¥ - R n’
where 2 F is a full hypergeometric function.

Denote the exact solutions of problem (20) by (En,%¥,) and the numerical ones by

Cu(R) =

(E","). First, we present the results of the computation of eigenvalues and their deriva-
tives, which were obtained using 100 finite elements of the fifth order (501 nodes). Twenty
eigenvalues were calculated simultaneously at two values of hyperradius R = 1 and 15 a.u.
Some of them are presented in Tables 1 and 2 together with quantities ¢ = ER — F, and
6 = (EM)' — E, which show the actual accuracy achieved for the approximate eigenvalues
and their derivatives. From the Ta.bles, one can see an excellent agreement (10710 or better)
of our numerical results with the exact solutions.

In order to compare the accuracy of radial matrix elements computed from the analyt-
ical and numerical solutions, we denote matrices Q and H calculated using exact solutions
(En, %) with the help of expressions (8) and (14)-(15) by Q', H' and Q2?, H?, respec-
tively, and the ones calculated from (E%,%#) by Q'", H'™ and Q*", H?", respectively.
To simplify the comparison between the analytical and numerical solutions we introduce

the following quantities

lh 2h
Q= 1<i J<20 ‘Ql] 2= l< <20 |Ql] Q:] lv g3 = 1<i 32(20 l Q

h = 1sni?5x2olH"lj h H‘ljh » he= 15111'1,?%(20 |H’?j - H‘?jh » b= 13?%‘20 IH'J H%
In Table 3, we compare the results of our computations with the analytical solutions ob-
tained for R = 1 and 15 a.u. One can see that radial matrix elements calculated within
the present approach agree very well (1078 or better) with the exact ones for given values
of R. Note that our numerical results are also in an excellent agreement with theoretical
estimates (13).
Consider next the convérgence of formula (15) with respect to the size of the adiabatic
basis set (number of parametric eigenvalues E;(R)). In order to do that we have calculated

the following constructs

m
HP™ = -3 QuQy, 1<i,j<m, m=12...,20.
1

11



Table 1: Approximate eigenvalues E}: of problem (20) and their derivatives (E!)’ calculated
at R = 1 a.u. The accuracy of the E and (E")’ with respect to the'exact solutions is
presented by quantities € = E} — E,, and § = (E%)' — E’. 100 finite elements of the fifth
order (501 nodes) have been used. The number in parentheses denote power of ten.

n Eh RY- .. (EMY )

1 —.4999999999(+00) 266(—-11) *  ~.5748734821(—11) 575(-11)
2 .1375000000(+01) 253(-11)  "'~:3000000000(+01) - —.264(-11)
3 .3944444444(+01) = . :986(-12) . = —.8000000000(+-01) —.101(-11)
4 .-7468750000(+01) . .476(-12) ~.1500000000(+02) —.490(-12)
5 .1198000000(+02) 125(~12) ~.2400000000(+02) —.111(-12)
6 1748611111(+02) ~ - .137(—12) ~.3500000000(+02) —.154(-12)
8 -3149218750(+02) . .122(-13)  —.6300000000(+-02) —.246(—13)
10 4949499999(+02) . .301(-13) ~.9900000000(+02) —.144(-14)
12 -7149652777(+02) ©  .793(-13) ©  —~.1420999999(+03)  ~.761(~13)
14 .9749744807(+02)  .114(-12) . =.1949999999(+03) - -—.108(-12)
16 .1274980468(+03) 105(-12),  —.2549999999(+03) .  ~—.100(-12)
18 .1614984567(+03) .310(~13) —.3229999999(+03)  ~.191(-12)

20 .1994987500(-+03) 464(~12) - ~.3990000000(+03)  '~.107(—09)

Table 2: Approximate eigenvalues E" of problem (20) and their derivatives (EMY calculated
at R = 15 a.u. The accuracy of the E* and (E!)’ with respect to the exact solitions is
shown by quantities'e = E} — E,, and 6 = (E})'— E. 100 firiite elements of the fifth order
(501 nodes) have been used. The number in parentheses denote power of ten. .

By e - (BY s

n

1 —.4999999999(+00) 857(—11) .6063205493(—12) .606(~12)
2 —.1183333333(+00) 353(~11) —.8888888888(—03) ~.600(—10)
3 = 3T7T7T7777(-01). . .377(-11) | —.2370370370(=02) —.689(-11)
4 .2083333333(—02) 431(-10) —.4444444444(-02) ~.179(~11)
5 .3333333333(—01) 261(-11)  —7111111111(-02) ©  -.113(~12)
6 .6388888888(—01) .144(-11) —.1037037037(-01) . . —.555(~12)
8 . -1321875000(+00) = .761(-12)  —.1866666666(-01) ~.305(~13)
10 .2150000000(+00)  .496(—12) —.2933333333(—01)  —.459(~12)
12 .3143055555(+00) .352(—12) —.4237037037(-01)  * =.938(~13)
14 -4307823129(+00) . . .252(-12) - —.5777777777(~01) ~.294(~12)
16 -5647135416(+00)  .247(<12) —.7555555555(—01) —.125(~12)
;g T162345679(+00)  .363(-12) ~.9570370370(01) .173(=12)°

.8854166666(-+00) 823(—12) —.1182222222(+00) - —.782(~10)
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Table 3: Comparison between analytical and numerical matrix elements calculated using
exact solutions (E,,%,) and the approximate ones, (E%, ). Quantities q1, g, g3, b1, and
h, are defined in the text. The numerical scheme parameters are the same as in Table 1.

R ' Q q2 a3 hy hy
R=1 308(—08)  593(—11)  .732(~11)  .381(—08) .461(—08)
R=15  .663(—08)  '.178(~14)  .696(-13) - .787(—08).  .817(—08)

Table 4: Convergence of the kT as a function of the number of the adiabatic eigensolutions
m (m = §,10,15,20). hf* is.defined in the text. The numerical scheme parameters are the.

same as in Table 1.

R R - B ‘ ps [
R=1 ~ .473(-06) .342(—05) T 133(—04) .162(—02)
R =15 .195(—04) . 195(~04) . .195(—04) 127(-02)

Table 5: Eigenvalues (adiabatic potential curves) E;(R) and their derivatives dE;(R)/dR,
i=1,...,6, of problem (11) computed at R = 7.65 a.u. The results of the calculations of
the E" and (E!)’ performed by the present method are presented in the second and fifth
columns, respectively. Seven differential equations (11) (lyax = 6) have been solved using
68 finite elements of the seventh order (477 nodes). For comparison; the results of the
computations of the E{‘ and Ef for two different sets of numerical parameters carried out
by the method of Ref. {21] are given in the third and fourth columns, respectively. The E}
have been computed in [21] using 68 finite elements of the seventh order with I, = 6:and
kmax = 8 (Imax and kmay are defined in the text). The —E’:’ ,i=1,...,80, have been obtained
using the same number and order of finite elements with lmay == 6 and Kmax = 15 (only the
first 6 eigenvalues are displayed). - T ‘

i E} . B . .E . (BRY

1 ~2.13590169  -2.1358893  -2.1358894 .18574453(—01)

2 —.698907137 -.69893960 -.69893964 .46093945(—01)

3 ~.617951769° -~ - -.61794757 -.61794766 .19973460(—01)
-4 —~.422639005 -.42279391 -.42279421 —.22691387(—01)

5 —.371634497 -37170963  -.37171011 —.16109094(—01)

6 —.21915412(-01)

—.269808873 -.26068352 -.26968483
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The results for the hT' calculated from the HY* and H,-"}""" for some values of m are shown
in Table 4.  From the Table, one can see that ‘matrix elemehts H,%""" calculated using
formula (15) show poor convergence in m and therefore lower accuracy and computational
efficiency in comparison with the ones obtained -from 'Eqs. (8). This result is important
in the context of the next subsection since in ordérvto'get the desiréd level of accuracy of
solutions of three-body problem within the adiabatic representation we need to calculate
potential matrices Q(’R) and V(R) with the same accuracy as surface functions'tb,-(az 6;R).

i

The fulfillment of this requirement is guarariteed in the proposed approach.

7.2 Helium atom and negative hydrogen ion

“In this subsection we present numerical results of solving problem (1)-(3) for the ground
state of the helium atom and negative hydrogen ion. First, let us examine the accuracy of
the potential curves E;(R) and potential matrix elements Qi;(R) and H;;(R) within the
present method for the helium atom. These calculatibné can be directly compared with
the results of calculations for the helium atom performed in Refs. [20, 21] using another
implementation of the adiabatic hyperspherical approach. In [20, 21}, a different numerical
method for constructing the adiabatic functions ®;(c, 6; R) has been used. Matrix elements
Qi;(R) were calculated in [20, 21] as :

Qu(R) = [RUB(R) - B, (RN (®ile, 6, W (a, 0100 52) (1)

and H;;(R) were obtained by Eq.. (15). In order to Con{pare our results with the ones
reported in [21], we ha?e calculated potential curves Ey(R), ¢ = 1,...,6, and‘potential
matrix elements Qi;(R) and H;;(R), i,5 =1,...,6, at fixed value of hyperradius R = 7.65
a.u. For solving Eq. (11) consisting of seven equations /(l;n.;x = 6), 68 finite elements
of the seventh order (477 nodes) have been used. Our results for the E;(R = 7.65) and

(R = 7.65) agree very well with the QZR = 7.65) obtained by Eq. (21) in [21] with
the same number and order of finite elements (477 grid points), lmax =6 and k. = 8
(Fmax here is t_he number of eigenval.ues of auxiliary o»ne-dimensic'mal adiabatic Hamiltonian
[21]). However, some of our matrix elements HIMR = 7.65) differ significantly (up to the
factor 1.7) from the H,%-"(R = 765) elements obtained in [21]. Analysis of these results
(presented below in Table 7) has showed that in ofder to get a better agreement between
the two methods for the H;;(R), it is necessary to increase the value of kmax from 8 up to

15 and also increase the number of terms in sum (15) from 6 up to 80. Only using this
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extended basis set matrix elements H2*(R = 7.65) calculated by the method of Ref. [21]
could approach the ones obtained by using Eq. (8). :

In Table 5 we present the results of our calculations of potential curves E! and their
derivatives (E!')', i = 1,...,6, with accuracy 1071° a.u. at R = 7.65 a.u. These results are
compared with the E (the third column) reported in [21] and the EZ' (the fourth column)
calculated using the extended set of numerical parameters described in the paragraph above.
There is a very good agreement between these three calculations. However, it is worth
to mention, that eigenvalues E} are solutions of Eq. - (11) obtained using zero-gradient
(Neumann) bo\lundary cénditions whereas EP and _E'-:' have been obtained as solutions of
the auxiliary one-dimensional eigenvalue problem (see Eq. (12) of Ref. [21]) using zero-
value (Dirichlet) boundary conditions. Also matrix elements V;; are calculated differently
(compare Eq. (11) of Ref. [21] and Eq. (11) and formula for V;; below Eq. (11) in
the present work), which results in the different rate of convergence of the corresponding
angular expansioﬁs. »

"In Table 6 we bresént our calculations of matrix elements Qi}(R = 7.65) and QI}(R =
7.65) obtained by formulas (8) and (14), respectively. The results of both calculations
are practically identical within the given accuracy. For comparison, we show in Table 6
matrix elements Q2 (R = 7.65) (the fifth column) obtained by formula (21) in [21] and also
'Q?;'(R = 7.65) (the sixth column) calculated by the same method but using the extended
basis set described above. One can see a very good agreement between all four calculations
presented in the Table. ’ _ : » :

In Table 7 we present our results for radial matrix elements H}}‘(R = 7.65) and H}(R =
7.65) obtained within the pfesent approach using formulas (8) and (15), respectively. The
results for the HZ*(R = 7.65) have been obtained using six terms in sum (15). One can
easily see a big difference between these two calculations. A similar discrepancy is observed
between the HY(R = 7.65) and the H2'(R = 7.65) (the fifth column in Table 7) taken from
Ref. [21]. As one could expect, our HZ*(R = 7.65) elements agree much better with the
fIi"’J-"(’R, = 7.65) obtained with the same number of terms in formula (15). Such disagreement
between the HX* and the H2* and HZ" is because of insufficient number of terms (six only)
taken into account in sum (15) for the H2* and H2:. In order to show that matrix elements
H}* are much more accurate than the H? and 2" ones, we have calculated the _17?;' (see

the sixth column in Table 7) using 80 terms in sum (15). Comparison of the third and
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Table 6: Matrix elements of radial coupling Q,J( ) computed at R = 7.65 a.u. The results
of the present calculation of the Q}* and Q2" obtained by using formulas (8) and (14) are
presented in the third and fourth columns respectrvely The results of the calculation of
the Q”‘ and Q by the method of Ref. [21] using formula (21) for two different sets of
numerrcal parameters are given in the fifth and sixth columns,.respectively. The numerical
scheme parameters are the same as in Table 5. The number in parentheses denote power
of ten.

i i 2 o

1.2 .586014(—01) .586014(—01) .585907(—01) .585893(—01)
1 3 —.286341(~01)  —.286341(-01) ".286413(—01) .286418(-:01)
I 4 -.442209(—01) .442209(—01) -~ ..442198(-01)- .442216(—01)
1 5 . —.336214(-01)  -.336214(—01) .336215(—01) - .336233(—01)
1 6 .161869(—01) .161869(~01) .162012(—01) .162002(—01)
2 3 .250621(—01) 250621(~01) ~ —.250045(—01) - —.250077(—01)
2 4 ~.165765(+00) ~.165765(4-00) .165781(+00) .165782(+00)
2 5  —.607837(—01) .  —.607837(—01) . .607890(—01) .607908(—01) .
2 6 .172490(—01) .172490(—01) .172592(—01) .172573(—01)
3 4 .457925(—01) 457925(-01)  —.458364(—01) = —i458311(—01)
3 5 .134640(+-00) .134640(+00) .134615(+00) .. .134617(+00)
3 6  —.896893(—01)  —.896893(—01) .897034(—01) .897034(—01)
4 5  —.203183(+00)  —.203183(<-00) .202920(+00) .202961(+00)
4 6 .155380(—01) .155380(—01) .155163(—01) .155172(—01)
5 6  —.113957(+00)  —.113957(+00) ..113800(+00). .113799(+-00)
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Table 7: Matrix elements of radial coupling H;;(R) computed at R = 7.65 a.u. - The results
of the present calculation of the H) and HZ* obtained by using formulas (8) and (15) are
presented in the thll‘d and fourth columns respectwely The results of the calculation of
the A2 and H,J by the method of Ref. [21] using formula (15) for two different sets of
numerical parameters are given in the fifth-and sixth columns, respectively. The numerical
scheme parameters are the same as in Table 5. The number in parentheses denote power
of ten.

;i , H% ' az ’ ﬁfj"
.129180(-01) .760195(— 02)  .760548(-02) .128801(—01)
.126385(~01)  -893549(—02) .947869(—02) .126303(~01)

1.729629(—02) © —.542228(—02) .648605(—02) .728683(-02)
..376942(-02)  —.132001(—02).  —.129332(—02). .375300(—02)
—.105365(—01) 145577(~01)  —.145408(—01)  —.105361(—01)
—~.599567(—02)  —.809748(—02)  —.825414(—02)  =.599308(-02)
.387063(—01) .355324(—01) .372254(=01) .387056(—01)
~.450057(-02) .  —.381820(—02) = .593952(—02) .449231(-02)
190126(—01) .140620(-01) .244742(—01) .189969(—01)
.238220(—01)  .263704(—01)  —.156242(—01)  —.238009(~01)
—.538306(—02) = —.630598(—02)  —.799195(—02)  —.537534(—02)
.326976(—01) 297171(—01) .731349(—01) .326953(—01)
—.256900(—01)  —.258621(—01) 251212(—02) 256612(—01)
:226722(-01) :189643(—01) = —.677882(—02) .226588(—01)
.119753(—01) .146004(—01) -~ —.185494(—01) = —.119490(~01)

Lo

.814621(~01) 730553(-01)  —.374142(+00) .813717(—01)
—.966072(~02)  —.716772(—02)  —.307431(+00) .965263(—02)

- —.231241(—01)  —.236861(—01) .370903(+00)  —.230691(~01)
' .834146(—01) 772227(~01) .264643(-+00) .832770(—01)

—.194731(—01)
273542(=01)

—.168255(—01)
218313(~01)

.402133(—01)
—.499955(—02)

.194682(—01)
.273217(—01)

OO UT U R R R WWWWNNNDNDN M= =
OO U AU RWDTT R WNOC AW =S,
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sixth columns in Table 7 clearly indicates that the ﬁfjh computed with the extended basis
set parameters agree much better with the H}j" obtained by Eq. (8) than with the H,?j"
and fl,?j" computed by Eq. (15). This confirms our conclusion about the higher accuracy
and efficiency of formulas (8) and the necessity to use a rather large number of terms in
Eq. (15) (and therefore excessive computational resources) in -order-to get a comparable
accuracy of matrix elements H ??'. In all our calculations presented ‘below matrix elements
Qi; and Hy; are calculated using formulae (8). ) ‘

In order to study the convergence of potential curves E;(R) and radlal matrix elements
Qi;(R) and H;;(R) we have performed a set of computations of these quantities as functions
of numerical scheme parameters, namely, number of isoparametric Lagrange elements Na,
their order Npot and maximum number of terms I, in the angular basis set expansion in
! (see Eq. (9) The results of some of these ca]culatiens for the E;, E;, @, Hyj and Hjyj,
i=3,j =25, computed at R = 7.65 a.u. are pfesented in Tab1e 8. In the present work, the
desired accuracy of the ground state energy of He and H~ is set to 10~% a.u. This requires
the same accuracy of radial matrix elements, as well. From Table 8, the followmg set of nu-
merical parameters has been chosen for the He 1G¢ state: Ng = 210 (1471 grid pomts with
h = 0.00053), Npot = 7, and Imax = 11 (12 equations in Eq.’ (11)). The grid in R has been
chosen as follows, 0.02(0.02)0.32(0.01)1(0.02)3(0.05)5(0.08)9(0.1)20(0.2)30(0.25)50 (num-
ber in parentheses denotes the step in R). A banded system of 17652 linear algebraic
equations,r [Eq. (12)], has been solved with relative error tolerance € = 1070 at each value
of hyperradius R with the mean half baudwidfh MHB = 54 (inaximum 96). In Fig. 1 we
show the He 1S° potential curves E,~(’R); i=1,...,28, correlating with then =1-n=7
hydrogenic-like states of Het as a functiou of hyperradius R. Clearly seen are points of
avoided crossings [2, 6] where the radial non-adiabatic coupling terms are known [2, 6, 7]
to peak. Such peaks are cleafly seen from Fig. 2 where the diagonal matrix elements Hj;,
i=1,2,3,4,5,8,28, are presented. For instance, ruatrix elements Hy; and Hj; and also
Hy, and Hss in Fig. 2 show pronounced maxima in the avoided crossing regions.

In Fig. 3 we plotted radial coupling matrix elements Q;;(R) for some values of 7 and

j as functions of hyperradius R. As can be seen from the Figure, the matrix elements

displayed also show maxima in the quasi-crossings points. Note that singular behaviour .

of the radial matrix elements near avoided crossings can be eliminated by passing into the

diabatic representation [22]. However, in this work we use the finite element scheme which
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Table 8: Convergence of potential curves E;, E; (in a. u)) and matrix elements Qij, Hi; and
Hj;, i =3, j =5, as functions of maximum number ot terms l, in expansion (9), number
of finite elements N, and their order Ny, evaluated at R = 7.65 a.u.

Imax Ne Nyol E; Es o Qs Hjys " Hss

5 68 7 —.6179400 —.3716334 .134666 022636 .083357
6 68 . 7  —6179518  —.3716345 134640  .022672  .083415
7 68 7 —.6179578 —.3716348 .134630 .022690 .083444
8 68 7 —.6179611 - 3716348 .134626 .022700 .083460
9 68 7 —.6179632 — 3716349 . .134624 .022705 .083470
10 68 7 —.6179645 - 3716349 - .134622 .022709 .083477
11‘ 68 7 —.6179654 —.3716349 134622 022712 .083481
12 68 7 —.6179660 —.3716349 ) 134621 022713 .083484
13 68 7 —.6l79664  —.3716349 © .134621  .022714  .083486
14 68 7 —.6179667 —.3716349: .134621 .022715 .083487
6 - 68 4 —-.6179550 —.3715759 134659 022683  ..083528
6 68 5 —.6179539 —.3715960 .134652 .022679 .083489
6 68 6 —.6179523 —-.3716254 - .134643 .022674 .083432
6 68 7 —.6179518 —.3716345 . .134640 022672 - .083415
6 40 7 6179546  —.3715826  .134656  .022682  .083515
6 80 7 6179512  —3716456  .134637  .022670  .083303
6 120 7  —.6179500  —.3716667  .134630  .022666  .083353
6 160 7  —.6179404  —.3716772  .134627  .022664  .083333
6 200 7 —.6179491 —.3716836 .134625 .022663 .083321
6 240 7 —.6179489 -.3716878  .134624 .022663 .083313

Table 9: Comparison of the nuinerical potential curves E;(R) with the dipole asymptotics,
E®(R), for the !S° state of He calculated at R = 40, 60 and.80 a.u. up to the n = 3
threshold.

Curve R =40 a.u. R=60au. - R = 80 a.u. .
number, i —E;(R) = —E¥®(R) -E(R) -EP(R) —-E(R).. -EP(R)
1 2.02516 2.02516 2.01674 2.01674 2.01254 2.01254
2 0.52627 - - 0.52620 0.51722 0.51720 0.51281 . 0.51280
3 0.52413 0.52411 0.51628 0.51627 0.51228 ° 0.51228
4 0.25103 ‘ 0.25073 0.24052 0.24045 0.23563 0.23560
5 0.24735 0.24693 0.23888 '0.23876 0.23470 0.23465
6 0.24437 0.24447 0.23765 0.23766 0.23403 0.23403
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Figure 1: Potential curves E;(R) (in a.u.) plotted vs hyperradius R up to the n = 7
threshold for the 19¢ state of He. -
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allows us to solve the eigenvalue problem for system of radial eauations (6) within the
adiabatic repfesentation. ’ v o .

In Table 9 we compare potential curves E;(R) calculated numerically with the asymp-
totic ones, E#*(R), computed analytically using the dipole approximation [23] for three
values of R = 40, 60 and 80 a.u. up to the n = 3 threshold. It is evident that these results
agree very well. For instance, the five 51gn1ﬁcant dlglts are obtained for the ground state
potentlal curve (i = 1). This confirms the high accuracy of our numerical procedure.

For H- the following set of numerical parameters has been chosen: N, = 220 (1541 grid
pomts with h = 0.00051), Npoi = 7, lmax = 11, € = 107'%, and the R region has been d1v1ded
as follows, 0.02(0.08)0.98(0.02)1(0.025)3(0.05)5 (0.075)7.1(0.1)20(0.2)30(0.25)50. The size
of a banded system of linear algebraic equations, [Eq. (12)], was 18492 with the mean
half bandwidth MHB = 54 (maximum 99). In Fig. 4 the H™ 8¢ potential curves Ej(R),
4=1,...,28, up to the.n = 7 hydrogenic threshold are shown as functions of hyperradius
R. From the Figure, one can see a lot of quasi-crossing pbints, as well as several exact
crossings. . v

The system of coupled radial equations (6) has been solved subject to boundary con-
ditions (7) by the finite element method using schemes of high-order accuracy (16, 17].
Isoparametric Lagrange elements of the third order have been used which provide an ac-
curacy of O(h%) order with respect to eigeﬁValues and of O(h%) order with respecﬁ to
eigenfunctions. Here hz is the maximum mesh step of the finite-element grid on the> in-
terval v[O,Rmu]. As a result of numerical experiments, the following values of numerical
scheme parameters have been chosen: (i) Rmax = 40 a.u. and N = 1500 (4501 grid points
with step hzr = 0.0089) for the He atom; and (ii) Rmax = 30 a.u. and Ny =1200 (3601 grid
pomts with hr = 0.0082) for the H™ ion. The size of a banded system of linear algebfaic
equations, {Eq. (12)], approxlmated a system of 28 radlal equations was 125972 with MHB
= 70 (maximum 112) for the He and 100772 with MHB = 70 (maximum 112) for the H™,
respectively. Error tolerance has been set to 10~'2 a.u. o

- A convergence study of the ground state energy of He and H™ with the nummber bf
radial equations is presented in Table 10. One can see that the energy eigenvalues converge
monofonically from above, with the 28-channel value being Eye = —2.90372266 a.u. and
Ey- = —0.52774970 a.u. As shown in Table 11, these values are very close to the precision
variational results {26]: EYAR = —2.90372437 a.u. and E,‘{’)R = ~0.52775102 a.u. Since the
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Table 10: Convergence of the ground state energy (in'a.u.) for He and H~ with the number
of coupled channels n.

n He H-

1 —2.88791168 -0.52241442

2 : —2.80137991 - —0.52472087

3 —2.90287002 —0.52732522

6 —2.90300448 —0.52751473
10 —2.90363613 —0.52768020
15 —2.90370549 -0.52773607
21 —2.90372264 —0.52774928

28 ' -—-2.90372266 —0.52774970

Table 11: Comparison of the present ground state energy (in a.u.) of He and H™ with other
theoretical calculations.

Method He H-

HACC® —2.903723 —0.527750
ACM? 22.903611 ; ~0.527642
HSCCe —2.903594 : —0.52773
VAR¢ —2.903724 —~0.527751
MCHFe —2.902909 —0.527542
cr —2.90323 : —0.527542
RMM? . —2.8961 _ —0.52403
CCM* T —2.8934 , —0.52775

¢ Present 28-channel hyperspherical adiabatic coupled-channel calculation

b 17-channel hyperspherical artificial channel method calculation [20]

¢ Hyperspherical close—coupling calculation: 28—channel computatlon for H™ [24] and 21-
channel calculation for He [25]

4 Variational method calculation [26]

¢ Multiconfigurational Hartree-Fock calculation: using 32 conﬁguratlons for H™ [27] and
10 configurations for He [28]

-/ Configuration interaction method calculation: using 130 configurations for H~ [29] and
He [30]

9 R-matrix method calculatlon usmg 158 conﬁguratlons for H [31] and 79 configuratxons
for He [32] - :

b Close-coupling -method calculation with pseudostates and correlatlon terms: nine
Hylleraas-type functions for H~ _ [33] and seven correlation functions for He [34] ‘
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calculation accuracy for eigenvalues equals O(hS, ) and the basis step of the grid amounts

2 0.009, our results have errors in the 12th diglt However, as follows from Table
11, our energy values lie above the variational energies by approx1mately 107 a.u. This
is consistent with the accuracy of the radla] matrix elements and used approximations.
Comparison with some other calculations are also glven in Table 11. It is evident that our
results are more accurate than the 17—channel hyperspherlcal artificial channel method [20]
and the hyperspherical close-coupling method [24 25] Both of these methods use the sector-
diabatic representation in which adlabatlc basm expansmn has a slower convergence than
in the adiabatic representation used in the present work. We also compare our calculations
with the results of the multiconfigurational Hartree-Fock method [27, 28], configuration
interaction method [29, 30], R-matrix method [31 ; 32] and 'close—c'oupling method l33‘ 34].
All these methods use a large number of electronic conﬁgurations as seen from Table 11.
Analysis of the Table shows that our ground state energies are as accurate or superior to

the results of most ab initio methods w1dely used in atomic and molecular calculations.

8 Conclusions

In the present work, the quantum mechanical three-body problem with Coulomb interaction
has been formulated within the adiabatic representation method using the hyperspherical
coordinates. The reduction of the three-dimensional problem to the one-dimensional one
has been performed using the Kantorovich method. A new method for computing variable
coefficients (potential matrix elements of radial coupling) of a final system of ordinary
second-order differential equations has been proposed. In this method a new boundary
parametric problem with respect to unknown derivatives of eigensolutions in the adiabatic
variable (hyperradius) has been formulated. An efficient, fast and stable algorithm for
solving the boundary problem with the same accuracy for the adiabatic eigenfunctions and
their derivatives has been suggested. As a result, matrix elements of radial coupling can be
calculated with the same precision as the adiabatic functions obtained as solutions of an
auxiliary parametric eigenvalue problem.

The method developed has been thoroughly tested ona parametric eigenvalue problem
for a hydrogen atom on a three-dimensional sphere. This problem has an analytical solution
which allowed a direct comparison of our results with the exact solutions. An excellent

agreement between the analytical and numerical results has been obtained. The accuracy,
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efficiency and robustness of the algorithm have been studied for this problem in details.
The method has been further applied to the computation of the ground state energy of the
helium atom and negative hydrogen ion. The results obtained show an excellent agreement
with the results of calculations by other methods. ‘

This study constitutes a major improvement over the standard techniques of the calcu-
lation of potential matrix elements of radial coupling within the adiabatic representation
method. It guarantees the high accuracy of computing radial matrix elements which is
comparable with the accuracy that can be achieved for the adiabatic eigensolutions of the
auxiliary parametric eigenproblem. The approach proposed can be easily extended to sys-
tems with arbitraryv(ﬁnite) masses of particles; total angular momentum J > 0; and for any
appropriate system of coordinates. The method can be also used for atom-diatom reactive
scattering and photodissociation. Work on studying spectral characteristics and properties

of the exotic atoms [35] within the present approach is currently underway [36].
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