
El 1-99-231

A.M.Raportirenko

LISP-BASED SYSTEM FOR THE LOGIC ANALYSIS

AND VISUALIZATION OF THE DATA

(Description of the System Dynamics)

Panoprn:pettKo A.M.
LISP-cttcTeMa wrn nornqecKoro attanHJa 11 BHJYaJIHJaQHH .uaHHbIX
(OnncaHHe ,IlHHaMHKH CHCTeMbl)

El 1-99-231

Ilpe.ucrnBJieHa Mo6HJibHllil cncTeMa UNIX .um1 norntiecKoro aHaJIHJa H BHJYaJIHJa
UHH JWHHblX, pa6ornIOmllil B cpe.ue Xl 1/Motif. norntieCKH CIICTeMa COCTOHT m Tpex
KOMIIoHeHTOB - rpacptttiecKoro pe.uaKTopa, HHTepnpernrnpa SIJbIKa Standard LISP II
Mo.uynsi: HHTepcpeiica Me)K.Ily rpacptttiecKHM pe.uaKTopoM H LISP-HHTepnpernrnpoM. C
IIOMombIO rpacpII'leCKOro pe.uaKTopa, HCIIOJ1b3YSI 6aJOBblH Ha6op rpacpH'leCKHX o6'beK
TOB, TaKHX KaK JIHHHSI, IIpSIMOYTOJibHHK, 3JIJIHIIC, TeKCT II T.,Il., MO)KHO COJ,IlaBaTb 6onee
CJIO)KHble COCTaBHble o6'beKTbl - IIIKaJibl, rHCTOrpaMMbl, KOMIIOHeHTbl JIOrH'leCKHX
cxeM, 11 coxpaHSITb IIX B cpaiinax KaK LISP-nporpaMMbl. 3TO IIOJBOJISleT COJ,IlaBaTb 6II-
6JIIIOTeKH HJ tiaCTO HCIIOJibJyeMblX CJIO)KHblX rpacpH'leCKHX KOMIIOHeHTOB. llHHaMII'le
CKHe CBSIJH Me)K,Ily rpacpHtieCKHMH aTpII6YTaMH ofueKTOB peaJIII3YIQTCSI qepe3
LISP-nporpaMMbl. AHaJIH3 OT06pa)KaeMblX ,IlaHHb!X MO)KeT ocymecTBJISITbCSI KaK aHa
JIHTH'leCKH, C HCIIOJib30BaHHeM LISP-nporpaMMbl, TaK H 'IHCJieHHO, C HCIIOJibJOBaHHeM
nporpaMM C HJIH FORTRAN. KoMn11n11poBaHHh1e LISP, C II FORTRAN nporpaMMbI
MOryT Jarp~aTbCSI B naMSITb KOMIIbIOTepa ,IlHHaMII'leCKH BO BpeMSI pa60Tbl CHCTeMbl.

Pa6orn BblIIOJIHeHa B na6opaTOpHH Bbl'IHCJIIITeJibHOH TeXHHKII II aBTOMaTII3aUIIII
Ollillf.

Coo6mem1e 06'1,emrneHHoro HHCTHTyra ll!lepHl>IX Hccne11oaaHHH. lly6tta, 1999 ,

Raportirenko AM.
LISP-Based System for the Logic Analysis and Visualization
of the Data
(Description of the System Dynamics)

El 1-99-231

The portable UNIX system for the logic analysis and visualization of the data
working in X 11/Motif environment is presented. The system consists of three log
ical components - the graphics editor, Standard LISP interpreter and the interface
between the graphics editor and LISP interpreter module. With the help of the
graphics editor and using a base set of graphics objects - lines, rectangles, el
lipses, texts, etc. it is possible to create more complex compound objects - scales,
histograms, logic circuits components, and to store them as LISP programs. It al
lows one to create libraries from a frequently used complex graphics components.
The dynamic links between the graphics attributes of objects are realized via LISP
programs. The analysis of the displayed data can be carried out as algebraically,
using LISP programs, as numerically using C or FORTRAN programs. Compiled
LISP, C and FORTRAN programs can be loaded into computer memory dynami
cally at run time.

The investigation has been performed at the Laboratory of Computing Tech
niques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1999

1. Introduction

The portable UNIX system for the logic analysis and visualization of the
data working in Xl 1/Motif environment is presented. The system consists of
three logical components-the graphics editor, Standard LISP interpreter [3] and
the interface between the graphics editor and LISP interpreter module. With
the help of the graphics editor and using a base set of graphics objects-lines,
rectangles, ellipses, texts, ... (fig. 1.) it is possible to create more complex
compound objects-scales, histograms, logic circuits components, ... (fig. 2.) and
to store them as LISP programs. It allows to create libraries from a frequently used
complex graphics components. The dynamic links between the graphics attributes
of objects are realized via LISP programs. The analysis of the displayed data can
be carried out as algebraically, using LISP programs, as numerically using C or
FORTRAN programs [4]. Compiled LISP, C and FORTRAN programs can be
loaded into comput:r memory dynamically at run time.

2. Description of the system dynamics

The ·interaction between the system and external data sources is accomplished
via the input data objects -p(p). Each of these objects is defined with some set

of attributes d;p). On object creations each of its attributes is assigned some

default value d;p) r- <>;p). During the system work the acquired data update the
attributes' values.

Each screen graphics image corresponds to some graphics object g(q). The
graphics objects g(q) are defined by some dynamic g}q) and static s)q) attributes

and by the information on available shapes, defined by shape objects s(s), for their
representation. Like the previous case, on graphics object creation its attributes
are assigned some default values g;q) r- ~1}q), s)q) r- a)q).

Depending on attributes' values, one of shape objects s(s) for representation
of graphics object on the screen is created.

The difference between dynamic and static attributes is that the values of the
first depend on input data objects attributes values and graphics objects attributes

2

© O6beA1,,1HeHHb1ill 1,,1Hcrn1y1 51,riepHblX 1,,1ccneAOBaH1,,1ill. Ay6Ha, 1999

~-

'i'

•

values, and the values of the latter may be changed by a user with the help of a
mouse or keyboard.

As from one side, the areas of allowed values of input data objects attributes
and graphics objects dynamic attributes differ significantly. In the first case it
might be arbitrary LISP expressions, and in the second-only integers, strings
or functional definitions (lambda expression or addresses of compiled functions).
And from the other side-there is no "one to one" correspondence between input
data objects attributes and dynamic attributes of graphics objects. Thus dynamic
links objects e,(r} are used to set dynamic links between attributes.

Each of such objects is defined: by some set of attributes zt); by assigning a
correspondent graphics object g(q) and input data object 1J(P); by assigning links

b h .b · (q) d z(r). d d d . ,1..(r)(d(p) z(q)) ·, etween t e attn utes 9; an i , an epen enc1es 'I'; i , ... , k , . • • -'----t

zt>. On dynamic links object creation each of its attributes is defaulted ttl r
.xt> or ct>t)(<>?>, ... ,Akq), ...).

As well as the correspondent graphics object g(q) is created. The default val
ue.,; of attributes of dynamic links object are used to set the default attributes values

for all of the objects being created. The dependencies <t>t\dt), ... , lkq), .. .) can
be implemented as LISP, C or FORTRAN programs [1-3].

Shape objects s(s) are defined with some attributes st> and by setting its

content components-primitive shape objects sis) .
And at last primitive shape objects sis) realize the base set graphics primitives

(see fig. I.) which are used to construct compound graphics objects with dynamic
parameters (see fig. 2).

3. Primitive shape objects

_ Presently the system has 14 types of primitive shape objects-a rectangle,
rounded rectangle, square, rounded square, polyline, polygon, -regular polyline,
regular polygon, scale, circle, ellipse, arch, elliptical arch and text. If necessary
this list can be extended.

For texts displaying Type! fonts and LISP interpreter built-in Typel fonts
rasteriser from X 11 are used.

Each of objects is characterized by some set of XI l graphic attributes and
geometry attributes (x, y, w, h, </>), where _x, y-are the coordinates of the bounding
box rectangle top left corner, </>-is the angle between the·x axis and rectangle.

Height h and width, w of a rectan~le lll~Y have negative values. In which
case the drawing direction is changed, resulting to its flipping in shifted by (x, y)
and rotated by angle <f> coordinates system.

,--~ -...,,,,
j Dti'U!iiiltt;a,.iil t1li::t!"\1]":. (
~i an~~nMz ucc.,t?trt,\»~rmn I
~ 5vJSJlt10TEKA ~ ,..._.., _,___ .,

...
.-~

"'O

:s:

ri
 m

><
 3 "O

0 0 ...,

(I
Q

 ; "O

•
::

r ;;·

&

0 !::?
.

.
:,

: 0 ...,

:,
:

'<

:,
: ;;

3

4. Conclusion

This system is a by-product of the author work on development of the GUI
for the compu!er algebra system REDUCE (2). In principle, some additional
efforts being spent, it can be used in expert systems. This work was supported
in part by the INT AS grant No. INT AS-96-0842.

JIHTEPA TYP A

I. J. B. Marti, A. C. Hearn, M. L. Griss, C. Griss,
/

The Standard lisp Report, SIGPLAN Notices, ACM, 14, (10), 48-68, (1979).

2. A. C. Hearn,
REDUCE User's Manual, Version 3.6, RAND, Santa Monica, 1995.

3. A. M. Raportirenko,
GSL: A portable Standard USP interpreter, In Proceedings of the Third Inter
national Workshop on Software Engineering, Artificial Intelligence and Expert
Systems for High Energy and Nuclear P,hysics, 1993.

' tJ

4. A. M. Raportirenko,
Jfcno11bJ06aHue GSL ti CUM60JlbHblX u •wc11eHHbtX 6w-1uc11emU1X, OH51H
Pl 1-99-230, lly611a, 1999.

tj

