


I. INTRODUCTION

Several nonperturbative methods such as Floquet [1], Sturmian-Floguet [2], and
R-matrix-Floquet [3] methods, have been developed to treat the time-dependent
Schroedinger equation (TDSE) for an atom interacting with the classical laser field. These
methods are particularly suited moderate intensities and long laser pulses. However, ex-
perimental techniques now move towards generating super-intense and super-short laser
pulses. New theoretical methods have to be developed to accommodate these experimen-
tal conditions. The numerical solution of the TDSE on a time-space grid is a recognized
powerful method. This approach has been found particularly important for the adequate
description of such processes as multiphoton ionization (MP1), stabilization and high-
harmonics generation (HHG). The TDSE calculations on atomic hydrogen [4-6] and on
atomic helinm [7] have been recently reported. Despite marked success of the TDSE
calculations certain limitations of the method have now become apparent.

Usually, the time-dependent quantum-mechanical problem

18,9 (x, 1) = H(E)¥{x,1) {1.1)

is formulated as an initial value problem in an infinite domain of the configuration space
® with the requirement that the wave function vanishes at an infinitely far surface,

[Tt} =0, [x] = +oe. (12)

The Hamiltonian H(%) in (1.1} is,

1
Ht) =5 (- AV +V(x), (13)
where x and p = —iV, are the position and momentum vectors of the electron, V(x)is

the atomic potential and A is the vector-potential. In the dipole approximation which
will be considered in this paper, A is a funciion of time ¢ only. The electric field E(1)
corresponding to A is given by £(3) = —8:A(t).

Tn numerical applications, the zero-value boundary condition is usually replaced by
one imposed at a finite distance from the atom. Once the space-domain is chosen to
be finite, retaining some rigid boundary conditions causes unphysical reflection of the
wave packet at the boundary and the reflected part of the packet is fed back into the
system. Various techniques have been developed in order to compensate the effect. The
correction is achieved by either introducing an absorbing component into the potential 8],
using mask functions [9], or introducing complex coordinate contours (10]. However, by
its nature, these corrections have to be made at a large distance from the atom and they
are approximate. Moreover, the domain of the configuration space where the solution has
to be accurately obtained, may be large for ionization rate problems and even larger for
treating MPI [11]. Therefore, though absorbing boundaries and mask-functions work as
2 practical prescription, they do not relieve the pumerical integration methods from the
necessity of using over-extended space-grids.

A possible way of resolving these difficuities is to re-formulate the problem and im-
pose some conditions on an intermediate surface. For time-independent. quantum prob-
lems, there is known a vaziety of theoretical methods such, for instance, as the R-matrix
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methed [12] and the finite-range method [13], where either paxtial or full scattering prob-
lem is formulated within a finite domain of R®. We also note an extension of the RB-matrix
method to time-dependent problems [14]. The present work also uses a partition of the
configuration space though in a context different from one of the above methods.

In a recent paper, Boucke et al [15] have suggested a particular way of imposing
integral boundary conditions (IBC). They applied the IBC to a one-dimensional atom
with a short-range potential in a strong laser field, within the electric-dipole approxima-
tion. Their results demonstrate a certain advantage of the method for calculating ioniza-
tion probability and energy spectrum. Their treatment, however, assumes the field-free
asymptotic motion of the electron which is not a very accurate assuruption, particularly
for strong fields and long-range potentials. Also, as a consequence of their approach, 1t
was Becessary to carry out all calculations in the Kramers-Henneberger frame [16] where
the interaction is localized.

In the present paper, we consider a more general IBC approach based on a theory
of the parabolic potentials of the simple and double layers. We note that the reduction
of the original differential equations to an integral form using the Green’s funciions, is a
method which has been known in mathematical physics for 2 long time. Though it had
been applied before to elliptic, hyperbolic and parabolic equations [17], apparently, it bas
not been used yet for the time-dependent Schrodinger equation. In our formulation, we
use the integral form of the equation to impose a constraint on the solution of the initial
value problem. The choice of the surface where the constraint has to be applied should be
made sach that it would assure the correct asymptotic behavior of the TDSE solation. In
principle, the proposed method is free from some restrictions imposed in {15]. Moreover,
it can also be psed for the general quasi-classical construction of the asympiotic Green’s-
functions [18,19]. As an example, a construction of the Green’s function in the Coulombic
case is considered within the frame of the eikonal approximation. The efficiency of the
method is demonstrated by numerical calculations on a model one-dimensional atom with
a short-range potential subjected to a pulsed laser field, similar to one discussed in [15].

The layout of the paper is as follows. In Section II, the derivation of the boundary
conditions with help the integral equation for a Green’s function is carried out for the
general three-dimensional case. The cases of a spherical boundary and the Coulorabic case
are considered separately. In Section III, we consider the 1D case and formmlate some
relations needed for calculating the final spectral densities for the electron via the solution
obtained in a finite region of space. In Section IV, a numerical (Crank-Nicolson-Galerkin)
method is formulated which uses a finite difference representation of the integral boundary
conditions. In Section V, we apply our IBC theory to the solution of a model-1D TDSE
and discuss the results, in comparison with the CC, the rigid boundary, and the Boucke
et al [15] methods. Section VI concludes the paper.

II. BOUNDARY CONDITIONS

A. Parabolic potentials

We are considering the general case of a three-dimensional space R®. Let us denote via
G(x,1;x',¢') the the time-dependent Green’s function of the original TDSE (1.1). This
function is the solution of the problem

Lo Glx,:x' 1Y =0, t>¢, xx eR, {2.1)
where L,, = i8, — H(x, ), and the conjugated problem

LuoGlx X,y =0, t>1, xx€ B, (2.2j
where L}, , = —i8s — H"(x',#'). The same initial condition

Clx, 6%, 1) = ¥ (x—x), 't t>t. (2.3)

is applied in both cases. Here the operaior H* is complex conjugated to Hermitian
Hamiltonian H. Note that for arbitrary functions u{x,t) and w(x,t) the expression
u(x', 1) Ly pv{x' ') — v(x', '} L% pu(x', ') can be transformed into the divergence form

1
'MLx-',f'b" - ’UL;_-t:‘tL = iBy(uv) =+ Edivx’ (qu"f'U - 'UD;:‘ta‘LL), (2.4)

where the differential operator Dy, is given by
D, =V, —iA(x, 1) {2.3)

The integration of the relation (2.4) over a domain of the space R® and time gives the
well-known Green’s identity.

Let W be an arbitrary finite region of B bounded by a piecewise smooth surface o,
may be disconnected. The exterior to W will be denoted via R\ W. Let us take in
eq. {2.4) the function u(x',t') to be the Green’s function G(x,t + &%, %'}, ¢ > 0, and the
function v(x’, ") to be the square-integrable solution ¥(x", ) of the original TDSE,

L g¥(x,1) = 0. (2.6)

We integrate the identity (2.4) with respect to coordinate x’ over the domain R\ W and
with respect to time & from o to {. The left hand side of (2.4) is identically zero due to
(2.2) and (2.6), and the right hand side can be integrated by parts. After taking the limit
£ — (0, one finds

0= 00w (x) =i [ EXEE X, W), )
RNW

t
-3 f ar [ do' [CD'U(X,, ) — U(x, YD”'G}, (27)
tg T



where do is a vector-element of the surface ¢ which is pointed outward W. Here it has
been used that the wave function at large distances tends to zero sufficiently fast so that
the surface integral taken over the outer surface at infinity vanishes.

The function yw in (3.2) is a characteristic function discontinucus in R*, which is
defined [20] as follows™:

, xER\W,x¢a,

XEGQg, (2—8)

e-+0

1
xow(x) = lim f EXCK, t+ex,5) =4
RAW 2

0, xeW,x¢o,

Let us denote by u and v the values of the wave function and its normal derivative on g,
thus

= v{Xs, 1}, {2.9)

‘I’|a= “(xa" t)s g - Dz,t‘ll -

where n, is 2 unit vector normal to the surface o and directed outward W. We introduce
functions v, w, and F associated with these quantities, according to

vw(x, 1) = — fdt/da v(x,, ) G(x, §, %, 1), (2.10)
wie, ) = [ at [ a0 ulat,)mt DL Gt 3, (211)
ta o
F(x,) = f & U, to)G(x, B, X', o). (2.12)
RAWW

Here the time moment #; is the initial time moment for the initial-value problem (1.1).

Due to the singularity of G, the quantities defined by egs. (2.10-2.12) can be considered
as potentials generated hy some surface and volume mass distributions. Similar potentials
appear in the gemeral theory of parabolic equations [20]. In the present case of the
Schrédinger equation, we shall use the same terminology as in [20] and refer to (2.10-
2.12) as to parabolic potentials. Then v is a simple-layer parabolic potential with the
surface density v, w is a double-layer parabolic potential with the surface density u, and
F is the initial-value parabolic potential. Making use of these quantities, equation {2.7)
can be re-written as follows:

U(x, tlxw = Fx,t) + -;-{v(x, B +wixt)}, xeB, {2.13)

for any ¢ > ;. This formula is a general relation satisfied by the solution of eq. (1.1) foran
arbitrarily region W enclosed by a surface o. It has a form of an integral equation which
determines the wave function ¥(x,t) through the parabolic potentials {2.10-2.12). As
these potentials are defined in terms of the full Green’s function, eq.{2.13) can be used for
constructing the solution of (1.1) only within some method of successive approximations.

*The convergence of the integral is assured by endowing the time variable ¢ with an infinitesimal
imaginary part which has the proper sign, { —+ te™°
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B. Integral boundary conditions

Now we shall discuss an application of (2.13) which is important in the numerical
solution of (1.1). Let us consider the special case where the point x is on the surface o.
Then the equation (2.13) takes the form:

(%o, 1) = 2F (%,, 1) + i{v(xe, t) + wixe, 2)}, (2.14)

This relation expresses the fact that values of the wave function y and its normal deriva-
tives v on the surface o cannot to be an arbitrary functions but must to satisfy the integral
constraint (2.14).

The latter can be also obtained by considering the limiting passage in the eq. (2.13)
as X = X,, x ¢ 0. Then the continuity of the simple-layer potential and the discontinuity
of the double-layer potential in the limit should be taken into account. For the potential
w we have thus:

m w(x, £) = Fipxe 1) + w(xe ), (2.15}
XX

where the upper sign (—) corresponds to approaching the surface from outside and the
lower sign {+) corresponds to approaching it from inside the internal region W. Due to
the continuity of the wave function, the limits of the (2.13) from inside and outside of the
surface ¢ give, of course, the same result (2.14).

The numerical solution of the TDSE proceeds, ideally, within the full configuration
space R?. I we partition it, in an arbitrary manner, into two parts (interior, which
contains the atomic nucleus, and exterior) separated by a surface &, it would be impossible
to impose the exact zero-value conditions on ¥ on such g. However, eq. (2.14) represents
a continuity condition which the solution satisfies on this surface and as such it can be
used to formulate the integral boundary condition for a suitable surface.

Let us comsider a surface & which is sufficiently remote from the atom. Then an
asymptotic form G, can be used instead of the full Green’s function G(x, ¢;x,¢') as will
be shown below. The choice of ¢ and the asymptotic form depends on the properties of
the atomic potential V{x).

First, we shall consider the case of a short-range potential V and choose the domain
W large enough for V to be neglected outside it. Then in the outside region the motion
of the particle can be deseribed by an asymptotic Hamiltonian H,,(¢),

Ho(t) = ( iV, — A(t)) (2.16)

The explicit form of the Green's function G,, of the TDSE with the Hamiltonian (2.16)
i
oy LISt F) ;
. — — 217
Gus(xJ t? !t ) [27i’i(t— t,)}s/z! t > ) { )
where 5 is the classical action for a pariicle in the field A(f) taken to be a function of the
initial and the final position and time (the Hamilton principle function), that is

S{x, ;% ¢} = b= §(t)(t _x;’—)}- £ / A%(r)dT, (2.18)




and £(t) is the classical displacement of the electron due to the field given by

E) = — fu " A(r)dr (2.19)

The form (2.17) of the G, is determined by the WEKB-approximation which gives the exact
resultt for the TDSE with the Hamiltonian (2.16) {see e.g. [21]). This Green's function
can also be easily obtained via an expansion in terms of the corresponding Volkov states
ek(x7 z"):l

Op(x, f) = el folk-A)idr_ (2.20)
Then
fopy d*k gt 9.9
Gus(x, 1%, 8) = ﬁw_)sek(x’t)ek(x’t)' (2.21)

Making use of the asymptotic Green’s function G, the integral equation for the full
CGreen’s function G can be wriiten as follows,

G(x, 1, %, 1) = Gu(x,, %, 1)

13
-—if dt”fd3x"GM{x, t,x", V(" G, X ), (2.22)
v

where integration over x” extended to all configuration space 3. Multiplying both sides
of this equation by density v(x',t) and integrating with respect to time # from 15 up to
t and keeping the surface o fixed, one finds that the simple-layer potential v satisfies the
integral equation

3
v(x, 1) = vas(x,t) — 1 f di” f B G (x, 8, x", W (x", Yo (x", 1"}, {2.23)
to

Here the zero-order term 1., is 2 simple-layer parabolic potential constructed as in (2.10)
but with the help of the asymptotic Green's function G-

13
Vas{X, 1) = —f di’/do"u(x",, )G (x, 8, %, ) (2.24)
i a

Similar integral equations can be obtained for the double-layer parabolic potentials w
and w,, as well as for the initial-value parabolic potentials F' and Fy,.

The asymptotic form of the formula (2.13} is then obtained by substituting in il the
asymptotic equations derived above. Thus:

B, ) = Far(, ) + 5 1)+ s, 1)]

t
_ i/ dt”.[dsx"Gas (x,t,x", t")V(x”,t”)lIl{x”, tn)XW{xﬂ)- {2.25)
to

If the potential V{x,t) is a short-range potential, and the domain W contains the entire
region of the action of V, then the last term in eq. (2.25) is negligibly small since due
to the presence of the characteristic function xw (2.8) the integration goes outside of
the region of the action of the interaction V. Thus, in this case the the equation on the
boundary has the form (2.14) where the parabolic potentials are simply replaced by the
asymptotic potentials, i.e.

g, 1) = 2Py (%, 1) + 1{ves(Xa, T} + oo (4, 1) }- (2.26)

Note, this boundary condition is a linear non-local in space and time relationship between
boundary and initial values of wave function. Otherwise, for the potentials decaying too
slow, the eq. {2.25) may peed the next iteration with respect to ¥ or some other methods
of solution.

C. Spherical boundary of domain W

Now we consider a particular case where the surface ¢ of the domain W is a sphere
of large radins R 3» ay where ap is an effective radius of interaction. For the sake of
simplicity we assume also that the initial wave function W{x,%,) is negligibly small in the
outer domain beyond ¢. Then the term F,,(x,t) in (2.26) can be dropped. Thus, our
task is to find the asymptotic expressions for the parabolic potentials v, and w,; on the
sphere of a large radius R. Let us denote & = R™'x,,

Ra — £(t) +£(Y)

Qt,t') = |Ra—&{t) + £(t")], ©(t,t) = . 2.27
(4,¢) = 1R - £0) + €0, S08) = =g e (227)
The Green’s function (2.17) in terms of these notations can be written as
ei%'% fearar e,
G, (Ra,t; RA' 1) = el T, (2.28)

[ri(t - 1)

Using the limiting expression [22] for the generalized functions, as A — +00, we write:
50 o I (505, 2) — oo, )} (2.29)

where (8, &) is the delta-function on the unit sphere. Then one can take easy the angular
integrals in (2.24). For the potential v,, it yields

t Reo—i Mo AMrgY [ ig-my? (@R
v, { R, 1) ~ —f e {e‘ =0 (@, 1) — e 2007 p(—@, t } 2.30
()= [ 5T (@,1) W-a,)}. (230

Here we restrict our attention to such electric fields that the classical displacement (2.19)
£(t) is bounded for all times. It means that the function (X(t,%') in the last expression
takes values close to R but it is never zero, provided that R is sufficiently large. Then
second term in the integral (2.30) can be neglected because it contains a rapidly oscillating
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exponential at ¥ — ¢. To estimate the neglected quantity, let us consider the leading term
of the asymptotic expansion of the following integral

t

IN) = f dt'(t — 1) %M g, @< 2, {2.31)
ty

where A — 400, and g{t') is a smooth nonsingular function in the segment [tg, 7). By

changing variables, o = (¢ — ), this integral transforms to

+06
I = f p*2dpeMg(t — p7'). (2.32)
{t—tg)~!

Integrating by parts gives the leading asymptotic term, thus:

(t—to)* iA[t—to}~! -2
I{(A) = 5 gite) + O(A72). (2.33)
Taking o = 1/2 and A = 2R? in (2.33), one finds that the absolute value of the estimated
term in (2.30) is of order

(t — t0)*2v(—2(1, o), to)
RQ(t, t0) '

Here it should be taken into account that the values of p and v at the initial time #; are
negligible small, hence the second term in (2.30} can be neglected.

The case of the potential w,, can be dealt with in a completely analogous manner. As
a result, the the relation (2.26) has the asymptotic form

(2.34)

Q-2 it sz,
tRex zﬂ_”—-ift.Ad.dtj

Sl ) Vo —1)

In the particular case of A = 0, this relation was obtained in [15].

{,;,(a,, #) (% - c::A(t')) - (@, z*)}. (2.35)

B. Coulomb potential

Now we shall consider the case of a Coulomb potential. Due to a slow rate of decay,
it causes the specific phase distortion in the time-independent Coulomb Green’s function
at Jarge distances, in comparison with the short-range potentials [22). This effect should
be taken into account while deriving the boundary corditions. In fact, we need to ob-
tain at large distances an approximation to the time-dependent Coulomb Green function
Ge(x,#;x', ') which satisfies the following equation

G (2.36)

together with the initial condition (2.3). As follows from the physical arguments (see,
e.g. [23}), the motion of the particle is semiclassical at distances much larger than Bohr

18,6, = %(—iv_x - A)ZGC +

8

radius. Thus, for our purposes, it should be possible to apply the WKB techniques [18].
The function G, is sought as a product:

G, = C(x, t;x, ¥)elStntxt), (2.37)

where C and S are arbitrary real-valued functions. Substituting (2.37) into (2.36) yields
the following system:

8,C? + div{CHV,S — A)} =0,

1 ., o AL
6,3+§(V,:S—A} +lxl =

(2.38)

The first line in (2.38) is the continuity equation for the density C. The second line,
with the right-hand side set to zero, is the Hamilton-Jacobi equation for the action
describing the classical motion of the atomic electron. The left-hand side of this equation
is identically zero if the functien 5 is taken to be the integral of the Lagrange function
caleulated along the classical trajectory of particle X(7;x, x}, with the end points x and
x for T = and 7 = t, respectively. That is

L [XmrXmar) | e
S= j,, d‘T{ . IX(T)I}' (2.39)

We note that if the Coulomb potential is absent in (2.38) then the exact trajectory Xa(7)
is

Xotr) = 28X HEO (- p) 4 gy - gtt) %, (2.40
and the action (2.39) evaluated along this trajectory is exactly the expression (2.18).
Moreover, if the density function C is taken to be independent of the space variables,

C = [2mi(t - )] (2.41)

then both equations of (2.38) are identically satisfied if & = 0. The resulting function
coincides with the Green’s function (2.17).

o the case of o 3 0, we shall introduce an approximation which is similar to the
eikonal approximation for the time-independent case (see [22]). Namely, the solution of
(2.38) is obtained by evaluating the action S in (2.39) along the free trajectory Xol7)
given by {2.40), Le

Sx~58 -2, (2.42)

where 5, is the expression (2.18). In eq. (2.42), the phase distortion Z is defined as

t dr

o [ Xo(T)] (243)

Zx5x N =a



and the density C is ihe same as above (2.41). Note that this approximation does not work
if the classical trajectory Xo{7} passes through the Coulomb center because in the latter
case the integral (2.43) is not defined. Below we exclude this case from eonsideration.

In order to estimate an error in such a model, we first note that the function Z satisfies
(within the assumptions stated above) the Laplas equation

AZ =D (2.44)

Thus, the continuity equation (2.38) holds exactly. Secondly, the action 5, eq. (2.42),
satisfies the Hamilton—Jacobi equation in (2.38) only approximately. After some manip-
ulations one finds that the ervor (thus, it is relative error for the solution of eq. (2.36} in
the form {2.37)), is

ot — 1)’

pto

S (Ve2f ~ o (2.45)
where p is the distance of the nearest approach, from the Coulomb center tb"the"'trajeé.tory
Xo(r;x,x'). This estimate can be useful for choosing the grid size for the numerical
integration of the TDSE if one uses the approximation to G, considered above.

The phase distortion Z depends on the particular form of the electric field A(f) and it
should be considered in each case separately. However, in the field-free case it is evaluated
explicitly to give

=t Pxljx — x| + (x,x — x)
he— x| 7 |l — x4+ (%, x — '}

ZO0x, 47, ) = o {2.46)
1t is interesting to notice the formal correspondence between this expression and the
asymptotic distortion term in the phase of the stationary Coulomb Green’s function
G.{x,x', E +1i0) [22] provided that one treats the factor ?&t':thl in {2.46) as (2E)7'/2

Considering the field-free case for the spherical boundary of radius R 3> 1 in just the
same way as it has been done at the Sec. IIC, one finds the asymptotie form of the
boundary equation (2.26) with the Coulomb corrections as follows

t migit=t) o
s, = [ S dE {““(t )

1o /271 — 1) S5 “(ﬁ=f}—i1’(ﬁ,t’)}- (2.47)

Here we note that the asymptotics of the G, in the singular direction &' = —a for
approximation (2.47) is not required.

III. APPLICATION TO 1D PROBLEM

A. Boundary conditions

We assume that the potential V(z) of a modet 1D atom operates in the domain W € R
which is a finite interval a_ < z < a,. Adjacent to it are two half-open intervals: z < a_
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(region I} and T > @, (region II). Let us denote the values of the functic-m U(z,t) and its
derivative D, ;¥(z,t) = (8; — iA(#))¥(z,?) at the boundaries of the regions I and II as

V(as, ) = p17(t), Duy¥loz,t)=v"" () (3.1)

The Green’s function G, in the 1D case is

s gts (z.4;2" &)
Gos(z, 47, 1) = ==y
ez 52, ¢) W/ 2@t -t

where the action S is given by (2.18). The boundary equations (2.26) are then written as
follows

> 1, (3.2)

pHT () = 2K (0, 8) + 1 {ol (a5, 1) + wil {az, 1}, {(3.3)

where the parabolic potentials ate defined by

© TN sz pas )
= [ oy o
v (i) = t0 /27t — 1)
T LLI AT 4 (BS e

1T i pwrwar oo __A(ta)) eiS[z,t-.ﬂ:P,t’)! (3.5)
ves (521) "",[o SmiE-t) \or' ¢

‘I‘{Ir tg)d:z:’ iS5zt o)
1 ,t — 3 e =5z to) (36)
Fos (1) 11 A/ 2wt — fo)

Generally, the surface o can be chosen in an arbitrary way. 1t is instructive to conﬁif!er
a special case where V{z) is a zero-range potential determined by the boundary condition

at the origin
V70, 8) — o7 (0,8) = 25eu(0, 7). (3.7)

This condition corresponds to the potential V of the form 6(x). In this case, the domain
W consists of one point, z = 0, that is W = {0}. It is easy fo check that the half-sum
of egs. (3.3) gives, on account of (3.7}, a Volterra equation for ¥(0,t), thus:

—+o0 L ,
w(0,1) = f A7’ Cas (0,1, 7' ta) UL, 1g) — 3¢ [ WG (0,4,0,032(0,).  (38)

This equation provides the complete solution T(x,t). Alternatively, it can be obtained
directly from the original TDSE (for details see [24]). '

This limiting case is a good illustration of our general conclusion: in the IBC method,
the size of the region W where the numerical solution is to be found, dep{?nds only on
the decaying properties of the potential V. As will be shown in the numem_cal exftmple
below, the suggested method of imposing boundary conditions allows the region W to be
chosen sufficiently small, despite the presence of a strong elgctric field.
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B. Evaluation of spectrum

We shall now calculate the transition amplitudes A, for the electron that initially
are found to be in the bound state ¥; = ¢, {z) to final state with the determined value
of the kinetic momentum g at the remote future, ¢ = ++/2E, via the solution of (1.1)
known in the internal region. It is assumed, that the pulse of the electric field has 8nite
duration. The corresponded vecior potential A(f) can be chosen zero before the field is
turned on. Thus, the vector potential tends to some constant value A_ after the feld is
turned off. In this case, the final state should be chosen

By = eyl (3.9)
where wg’;}g is the scattering eigenstate of the Hamiltonian (1.3), where 4 = 0. Here the
subscripts 1 and 2 are correspond to positive and negative direction of the momentum
=+g, respectively. Thus, the transition amplitude is

Azgn = (TL10(1), (3.10)

where U{t) is solution of the TDSE (1.1} after the laser pulse has been turned off. The
spectral distribution of ejected electron p,(E) as a function of the energy F is 2 sum
~ 1
n(E) = o (Mal* +1A-5f?) - (3.11)
_ T
The factor (27) ! fixes the normalization of the functions 7,0{_239(:::) Also, the probability
Pars, Of the transition to bound final state ¥, = -y, (z) is given by

Pnin = |{1I’n'!qj(ﬂ)lg' . (3'12)

By virtue of completeness of the basis set of functions \Ifg‘_z)g (z) and ¥, (7}, the conservation
law for the total probability has the form

o dE )
'/0‘ ﬁpn('g) + gpn'n =1 (3.13)

The amplitudes A+ m are a sum of three integrals, for regions I, II, W, correspondingly:

G 00 a4 -
Asgn = (/ —:f +f )mﬁ;’E dz. (3.14)
—~o0 Gy -

If the solution of the problem (1.1) is known in the internal region W, e.g. as a result
of the numerical calculations with the boundary conditions (3.3), ther ore can evaluates
the integrals for regions I and 1I by continuing the internal solution o these regions with
the help of the relations:

Ui, 1) = FE(5,8) + 5 {05 (5.8) + wl(=,0)}, (3.15)

and using the asymptotic form of the functions W”g.'z):'-:' = u’)éjig These are well-known and

listed in the following table:
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Uy ¥

1 e Lgp 9 goies

II ﬁeiqz e—iq: +,),Eiqx’
where coefficients o(E), #(E) and v{E) are the S-matrix elements for scattering on the
potential V7.

Let us introduce for convenience two transforms:

(g, 1) =[ i dz e 12 G (g, 1) (3.16)
and
W= [ e, (3.17)

+
where the k; ;; are canonical momenta that correspond to the kinetic momenta Fg after
electric field is turn off,

k}J[: :Fq-i-:'lA (318)
Making use of (3.16-3.17) and (3.14} one finds the fullowing expression for the amplitudes
o)

Jor e s

(gt} fap /‘f’}(ﬂq,t)

8 v ] \ ¥ (—g,1)

.(A'q” (3.19)
\4m | 5709 '

In turn, the substitution of the solution T(z,t) continued by (3.15} in the expres-
sions {3.16) and (3.17) represents W7 (q, ) as a sum of transformed parabolic potentials,

T, 1) = L5000 + L g, ), (5.20)
where
24
7 g ) = i/ aev™ T (#)GL (g, 1 as, ), (3.21)
o
and
ot ~ '
Mg, t) =F | ") DG (g, 1; 0s, 1). (3-22)
win

In order to simplify calculaiions, we assume that all bound states including the initial
state yn{z) are negligibly small in the regions I and II so that the term 7H7(q 1) can be
discarded. ’



The mixed Green functions GL/7(g, t; 2', ') above are obtained by applying transforras
(3.16-3.17) to the Green's function Gus(z, 4 2, t"), with respect to its first space variable z.
The evaluation of the functions GIJ/' gives

GLIN (g, 1.0, ¢) = e~k =3 it —A g 5y ), (3.23)
where

i—t ax —f(t) _$r+§(f) (3_24)

==k
2117 TIT 2 F =1 1

and &(z) is the Fresnel integral,

®(z) = j_ﬁ /; = e dp. (3.25)

Thus, eqs. (3.19-3.25) give the ionization amplitudes A4q, in a closed form_.
Now we consider the asymptotic form of {3.19) for large times ¢. Making use of the
asymptotics £(£) from (2.19) for the classical displacement of the electron, one finds

i
I = —q»\/;—!- oY), t— oo (3.26)

In this case the absolute values of arguments z;7 ;7 of the Fresnel intepral are large within
the whole domain of the ¢-integration in (3.21-3.22) except the vieinity of the upper limit
t. On the other hand, cne can expect that in the internal region W the wave function at
large times contains mainly the bound states (if there is no zero modes in the potential
V). This is because the scattered wavepacket disperses over a large volume as ¢ increases.
Thus, the contribution from the vicinity of the upper limit £, in the integrals (3.21-3.22),
is suppressed due to the smallness of the magnitude of i and v, determined by the values
of the bound states at the boundaries a.. In the rest of the integration domain, the
asymptotic expansion for the Fresnel integral & can be used:

.4
i

e 2
1+ e «0(z%), z-— —oo,
s={ BT (327)
22‘/7_1_13 +0(z"%), z -+ +o0.

One can neglect the terms of order 1/z in the expansion (3.27), provided that the following
conditions are valid

Ei> 1 (3.28)

In the latter case, ne contribution from ¥'"(~g,t) comes to the amplitude (3.19). A(lf?’
by virtue of orthogonality between the bound states ¥y and the scattering states ¥,z
the last integrals with respect to the region W in the expression (3.19) can be neglected.
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As a result, the amplitudes in this approximation are determined by ¥/-7(g 1) only and
its final form via the probability flux in'this approximation is

N .
Asgn = 36 | AU, t), Osqiza (2. )] (3.29)

to I=f
Here the values of the phases ¢ are not important for evaluation of the function p..(E),
the flux ;j is :

i, @] = %{@D'fb‘ - & D}, (3.30)

and Og(xz, 1) s the Volkov function (2.20).

One can expect this expression to give a reasonably accurate approximation for not
very small energies £ or sufficiently large times ¢. The approximative equality in (3.29)
becomes exact under simultaneous passing to limit (£ — t3) = +oc and |az] — +oc.

IV. NUMERICAL METHOD

Now we formulate a numerical method which will be applied below to solving, on a
time-space grid, a onme-dinensional TDSE {1.1). For time-integration we shall use the
Crank- Nicolson scheme that provides the accuracy of order ({72} for each time-step 7.
The operator form of this scheme is

(1 + %H(t,ﬁ%)) P = (1 - gH(tH%)) TF, b=ty 4 R (4.1)

where the solution U*(z) discretized with respect to time corresponds to ¥(z,t;) and
depends only on the space variable © € R. This scheme will be implemented with the
help of the Galerkin method [23). In this way, a system of algebraic finite difference
equations is obtained at each step k. In the internal region W, the solution ¥* is sought
as an expansion on a set of basis functions 7;(x),

Trzy =Y ukn(z), zeW. ‘ (4.2)

Making use of the Galerkin method one finds the following system of the equations,

- \ T gyl k-t - T age) k
S s+ st ot = 3 (s - 51 ot =
7 i
iT ir

= 'z-ﬂj'(a-i-)””(tk+§) - Eﬂj'(ﬂ—)l’r(tﬂg]- (4.3}
Here  is the overlap matrix, iy ; = (3, 7)-

The right-hand side is the flux terms from the boundaries arising as a result of inte-

- 1

gration by parts of the expression (7, H{t, +%)7b.) and h;;}? is the Hermitian matrix

k4l ay 1, .
oy = | dz{ G Dk Doyt + Vg 3- (4.4}
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The time point £, =k + 7 is intermediate point between ¢ and #x...

Thus, a boundary condltlons are required to express /7 (f;, 1) = (vl +v')/2 via
ui AT and fTret] £IT 1n turn, let us consider the finite difference representa.tlon of the eq. (3.3)
on the mesh gnd tr- The integrand coniains the square root singularity at the end point
t, so the quadrature rule chosen for the approximative representation of the integral over
time should takes into account this singuiar point in order to obtain a reasonable accuracy.
The following interpolating quadrature rule on the uniform knot sequence with the step

T was chosen:

kr k 47112

[ ey asen, o =T,

¢ =0

o = af (k- 1P — (k- 3/2)6'2), o) = af (s ~ 1)*/? — 252 + (s + 1)¥?}.

{43)

With the help of this rule the finite difference representation of the boundary conditions

takes the form

(2=D)1/?

vl = 10 w7 (4.6)
and f}" is "’
e —Z( (:Z)]’ )eis"’ (AT = 1P} 5 20 ) oFLI(t).  (47)
Here A
S = %ﬁ?)z -3 [t " £)at, P= % LAR). (48)

Some simplification in the (4.8) connected with dropping the 3 [ A?d¢’ term can be
achieved by the unitary transformation of the original TDSE (1.1) ¥ — 3 b 4% g,

Thus, using (4.6), {4.2) and {4.3) one finds the final form of the system of algebraic
equations,

(m + %&H%) pFHl = (ﬁs - %ﬁ“%) u® + g—d’“%, (4.9)

where
%ﬁ=fﬁ+f&,m 0 Jns(a) +ny(a)mas)} (410)

and
(@), =y TR gyt w1

Below in all calculation we use the cubic B-splines [26] as a set of the basis functions
n;(z). Such choice leads to systems of algebraic equations with band matrixes and its
inversion can be effectively performed by Gauss elimination method.
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V. NUMERICAL RESULTS AND DISCUSSION

A. Model

For an illustration of the method which uses the IBC, we now consider the solution of
the time-dependent Schroedinger equation that describes a one-dimensional atom modeled
by the Poschl-Teller potential Vpp(z) [27). This potential was earlier used in [13] and
our results allow a direct comparison to their work.

1
Ver(g)=~—5—, |sl<co (5.2)
cosh” z
Such potential supports only one bound state,
Yole) = —— (52)
K V2coshz’ '
with eigenenergy Fp = —1/2, and a contimium of the scattering states

) 1q F tanhz :i:! -
Yioe(z) = T1+ig i . (5.3)
It foliows from eq. {5.3) that there is an additional, pseudobound state with £ = 0. This
states become a real bound state if one increases the depth of the potential well.
The vector-potential A(f) generating the laser electric field £(t) was chosen in all
caleulations in the form of a square pulse,
—ésinwt, 0£t<T= @
Alt) = w w (5.4)
0, t<0, t>7T,

where the duration of the pulse, T, is defined in {erms of N periods of the laser angular
frequency w.

B. Wave packeis

First, we consider the integration of the TDSE, eqs. {5.1)-(5.4), with the atom being
initially in the ground state {5.2). In these calculations, two sets of the peak field param-
eter £, were used for an 8-cycle pulse with w = 0.1: (7} & = 0.1, and ()} & = 0.2, with
the excursion amplitude of the eleciron & being 10 and 20 an, respectively.

Integration with respect to time was cerried out for the full duration of the pulse,
0t T,

In 2l calenlations by the IBC method the boundaries of the internal region W were
taken to be ax = 10 au as shown in Fig. 1 (a) and the integral boundary conditions
(3.3) were imposed at gx. The numerical solution in W was obtazined by using the
Crank-Nicolson-Galerkin method described 2bove. Because the initial state (5.2) falls off
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exponentially, the terms F! in (3.3) at the boundaries are of order ~ 107°, and these
terms were neglected. The potential Vpr vanishes even more rapidly, so that the solution
could be accurately extended to the external regions I and II by using the asymptotic
representation {3.15).

&) i)

[}

Imx

(b

XA, Rex

FIG. 1. (a) Division of space R into regions I, IJ and W for integration by the IBC
method; the box size (region W) is £10 au; the initial ground state {supported by the Pgschl-
Teller potential) has eigenenergy E = —0.5 au. (b) The contour C{z) in the complex z-plane
used in the CC caleulations of the same problem.

For comparison, the same problem has also been solved numerically by the complex
coordinate method (CC) and by imposing the rigid boundary conditions (1.2) at the outer
edge of a very large space-grid.

For the CC method, the complex contour C{z) is shown in Fig. 1 (b} where [, and
I, specify the integration domain on the complex plane x. The principle moment of this
method is that the complex parts of C(z) provide exponential decay of the functions
&#%C(3) for £ > I, and e~*C(@) for x < —I,. The rate of this decay depends on the angle &,
0<i<3.

Thus, the outgoing from the origin wave packets disappear as they propagate past
+I; on the complex part of the contour C{x). The reflection of the wave packets from
rigid boundaries chosen sufficiently large is strongly suppressed in this case. The lengths
i» should be chosen in such a way that the outgoing wavepackets on real axis not be
appreciably scattered back towards origin by the action of the electric field and potential
beyond =I;. So that, at least, the two parameters, Iz and #, are need to select for using
the CC method. Below we for definiteness assume I, = Iy, and the angle # only considered
as adjust parameter of the contour C(x). For too small angles the reflection appears from
the boundaries, but the choice of too large angles leads to collapse of the scheme because
of the wavepackets returning back to small z grow exponentially on the complex parts of
the contour C(z).

The wave packets obtained at the end of the pulse ({ = T} by the CC method as weil
as by the IBC method, are displayed in Figs. 2 (a, b). As shown below, the IBC results
in these graphs are virtually exact.
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FIG. 2. Wave packet dynamics after application of a 8-¢ycle square laser pulse with w =
0.1 an. {a) & = 0.1 au; {b) the same with £ = 0.2 au. Solid curve - solution obtained by
the IBC method; broken curve - sclution obtained by the CC method. For the IBC method,
boundaries are at =10 au. For the CC mwethod, the contour C(x) has parameters {; = ls = 10 au.
The best angle # is 10° in (a} and 5% in (b).

In Figs. 2 (a, b), we use a contour C{z) with [, = [, = 10 au so that the length of the
real part of C(z) is taken the same as in the IBC calculations. The angle § is chosen to
achieve the best possible agreement with the IBC solution on the interval —10 < z < 10.
In Fig. 2 (a), agreement between the CC and IBC is mederate. However, there is a
huge difference between the wave packets in Fig. 2 (b). This indicates that the chosen
dimensions of C{z) are too small. It follows, in fact, from our numerical experiments that
for the field £, = 0.1 au, [, should be taken at least 30 a.u., and for the field & = 0.2 an,
at least 50 au. Thus, the size of the spaiial grid which is required in the CC calculations
is about ten times larger then the grid for the IBC method provided that we want to
obtain a comparable accuracy of the numerical sclutions.

3.0e-03

25205 N\
)
20805}

1.5e-05
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1.0e-05 |\ I 3
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v o7 f
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0.0e+00,5 =z 3 ¢

FIG. 3.Absolete difference between the solution obtained by the IBC method with az =

+10 au and the rigid-boundary solution which uses a very large space-grid (a+ = +10060 au):
() solid curve - for & = 0.1 aw, and (i) broken curve - for & = 0.2 au. Integration steps:
Az=01an; r=5%10"2 au for (i) and 7 = 2.5 x 10~% au for (i)
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As our numerical experiments show, the numerical solution which used the rigid bound-
ary conditions (1.2) needs spatial grids with the boundaries at least at g = #1000 for
the first set of field parameters; and ¢, = 41500 for the second set.

These large grids are consistent with earlier caleulations by Eberly and co-workers [28)
who used the reflective condition (1.2). For comparison between the solutions obtained
by the IBC and full solutions with the boundary conditions {1.2) we explicitly calculate
the absolute differences between both solutions (Fig. 3} as functions of z on interval W.
It can be seen that the errors are of order 107°.

These resulis clearly demonstrate the superiority of the present IBC method. We point
out that the increasing of the value & leads to necessity to use larger size of the spatial
grid, in contrast to the IBC method where the required size of the grid is determined by
the decaying properties of the atomic potential only.

In the method of Boucke at al [15] where the Hamiltonian is assumed to be asymp-
totically field-free, one needs to use the Kramers-Henneberger frame, and the size of the
grid also depends on the quiver &,.

The IBC method allows also to take the scattering states {5.3} as initial state for
TDSE to calculate free-free and free-bound transitions, in contrast to the CC method,
where the incident plane wave contained in the scattering state exponentially grows on
the contour C'(z). Similar comparisons for solutions obtained by IBC method and full
solutions at large grid with proper logarithmie derivatives imposed at the boundaries show
also the excellent agreement as far as for above bound initial state.

C. Energy distribution p(E).
First, we consider the energy spectrum of photoelectrons ejected by the laser pulse.

The computed energy distribution p{E) for the electrons which are initially in the ground
state (5.2), is shown in Fig. 4 for several values of £).

P I R I S
6t 2345678 9W0IL1213M485I6
Ela

01 2345678 9I10I111R2I13141510
Ef

FIG. 4. The energy distribution p(E) of laser-ejected electrons for several values of the
field £. A 16-cycle square laser pulse, with angular frequency w = 0.5 an. ‘The function p(E) is
obtained using (a) the full expression (3.19} for amplitudes, and (b) the asymptotic expression
(3.29). The pondermotive shifts of the ATI peaks are clearly seen.
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The angular frequency w of the field was chosen equal to the binding energy of the
ground state |Ep|, w = 0.5 au.

Taking into account the pondermotive shift U, = &£°/4w?, the position E, of the
peaks in the spectra is approximately given by E, = nw + Ep — U,. This corresponds
to absorbing by the electron the energy of n photons. For the laser parameters used.in
Figs. 4, the pondermotive shifts U/, which are 0.16, 0.09, and 0.01 au for £ = 0.4, 0.3, and
0.1 au, respectively. These values give reasonable estimate of the exact numerical shifts
obtained in present calculations.

The spectral distributions, shown in Figs. 4 {a, b) have been obtained in two different
ways. In Fig. 4 (a), the spectral disiributions p{F) are calculated using the full amplitudes
Ar (3.19-3.25). For t = T, this gives the exact result for p{E). On the other hand,
the distributions in Fig. 4 (b} have been obtained using the flux expression (3.29), with ¢
taken up to T. The latter is valid only under condition (3.28). It can be seen from Fig. 4
that for the particular choice of laser parameters, the asymptotic expression (3.29) gives
a good estimate for the energy distribution p(E). The positions and heights of the ATI
peaks are correctly reproduced. However, at the bottom of continuum, the asymptotic
expression {3.29} cannot be applied and one needs to use the full expression (3.19).

As Figs. 4 show, the asymptotic formula for p(E) works better for stronger fields £&.
Qualitatively, this is because the electrons leave domain W faster when exposed to stronger
fields. For a fixed value of T, this facilitates the condition (3.28.) We also point out that
fast oscillations seen is some curves in Figs. 4 can be traced to the steep front of the
pulse (5.4).

At small intensities of the field, the exact energy distributions p(E) can be used for
establishing the validity region of the standard perturbation theory. As an illustration, we
consider transitions from the (even-parity) ground state i¥s(z) (5.2) to the (odd-parity)
pseudobound state with energy E = (.

Ictt] | st PT—— >
tet0 | 0=l
/
1e-03 //
- 3rd PT
=
4 Je-D2
g B=2
[=%
te03 |
Ie-04 |
105
1e-06
0.001 0.01 0.1
Field £, a0

FIG. 5. Comparison between the exact calenlations and perturbation theory. Probability
density p{E = 0) as a function of the laser field &, for the electron transition from the ground
state with Ey = —0.5 au to a pseudobound state with & = 0. A 16-cycle laser pulse with angular
frequency w = 0.5 au {n = 1) and 8-cycle pulse with w = 0.25 au (n =2}.

As the first example, we take w = |Ey] = 0.5 au. The leading term is one-photon

21



absorption, n = 1. In the lowest (1st) order of perturbation theory, p(E} is generally
given by

2 T 2 s 2 {-w)
1 . e 2 TEQ) sin” 22T .

(1) [ § | dte’® (N 2 A Y| = g 2 s 5.5
D (E) ot ~ ./'; ¢ (1lb5,q [Cp ( )i 4 U} COS}lz ';r_zq (92 _ w2)2 ( )

where Q = E — Ey. A comparison between both methods for the transition to the E =10
level, is presented in Fig. 5 ("Ist PT’ and m=1" curves). As can be seen, in this case,
perturbation theory works well up to & = 0.01 au.

As the second example, we take w = 0.25 an. The leading term is now two-photon
absorption. It follows immediately from the parity consideration, that the 2nd order term
p@(E = 0) vanishes, and the leading term of perturbation theory is p®(E = 0). In
Fig. 5, the corresponding curves are marked "3rd PT’ and 'n=2". The validity region of
perturbation theory extends, in this case, up to £ =~ 0.03 au.

D. Ionization probability

For the comparison of our calculations with the calculations performed in [13], we
evaluate the ionization probability of the atom, w(£p) = 1 — pyg, where the ground-state
probability pgg is given, at the end of the square pulse, by (3.12). As in [15], we used 4-
and 8-cycle pulses with the angular frequency w = 0.2 an.
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FIG. 6. Square laser pulse with angular frequency w = 0.2 au. Variation of the lonization

probability w with the laser field £ at the end of a 4-cycle (broken curve) and 8-cycle (solid

curve) pulse.

The curves (see Fig. 6) produced in these calculations are identical with the jonization
curves in Fig. 3 (a) of Ref. [15]. The ionization minima in the Fig. 6 are due to the
effect of channel elosing caused by the dynamical shift of the free-electron energy, Up. By
energy conservation, an n-photon channel is open only if nw + Eg > Uy.

The threshold fields are & = 0.126, 0.219, and 0.283 au for closing n = 3, 4, and 5
photon channels. The minima positions in the calculated ionization probability are found
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to be in good agreement with the above estimate for n = 3 and 5, but it is not as good for
n = 4 where £, passes through the critical value 0.22 an for the over-barrier ionization.

VI. CONCLUSIONS

We have developed by application of the general theory of the parabolic potentials
a method which permits to impose the exact boundary conditions on an intermediate
surface to be used in the numerical solution of the time-dependent Schridinger equation.
It allows to substantially reduce the size of the spece domain where integration is carried
out numerically. The method is based on considering an exterior part of the configuration
space separated from the internal region by a surface & that divides conventionally the
space to the (external) domain of semiclassical motion of the particle and to the (internal)
domain where it is required the quantum-mechanical description. The accurate asymp-
totic behavior of the solution is represented by a time-dependent Green’s function for
& free electron moving in the external (laser} electric field. This allows us to formulate
integral boundary condifions on the surface ¢ in termns of asymptotic parabolic potentials.
The leng-range Coulomb potential can alse be included into consideration and the bound-
ary condition for the case of the spherical surface ¢ is presented. Numerical examples
considered in the paper demonstrate the advantages of the present theory. The energy
spectra and ionization probabilities have been obtained by this method for finite times
and its form have been investigated in Hmit of infinitely large times. The applications of
the method to more realistic systemns like as Hydrogen atom in laser field will be subject
of forthcoming publications.

This work is parily supporied by Grant No. 85-0512 from RFBR-INTAS.
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