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1 Introduction

It is widely known that the Birkhoff-Gustavson normal form (BGNF) expansion
works effectively to study a behavior of nonlinear dynamical systems; the Henon-
Heiles system and Toda linear chain (TLC) are often taken as typical examples [1]
to describe such an efficiency.

Since a core part of the BGNF expansion is made on the polynomial algebra
[2], it fits very well the symbolic computing on computers: For example, the sym-
bolic computing program named GITA realizes the algebraic procedure of converting
power-series Hamiltonians into their BGNF [3] with REDUCE 3.3 or later versions
of REDUCE.1.

One of the aims of this paper is to demonstrate how the normalization into
BGNF works around integrable systems. Although one might not think it necessary
to normalize the integrable Hamiltoniar. systems, the normalization of integrable
systems is worth discussing especially in the case where they admit the trajectories
tending to singularities; the truncated three-particle Toda linear chain (3-TLC) is
taken as an example to demonstrate how the normalization works in the integrable-
system case.

The other, aim of this paper is to present a symbolic computational approach to an
'inverse' problem of normalization recently posed by one of the authors (YU) with
the aim of an application of quantum studies to certain BGNF systems [4, 5, 6].
The inverse problem reads as follows: 'Identify a class of dynamical systems which
are reduced to the same BGNF up to a certain order'. To solve it, the symbolic
computing program named GITA'1 has been proposed by the authors [7], which
will be reviewed in this paper together with an application to the regularized system
of planar hydrogen atom with the linear Stark effect (HLSE) [8]. It. is shown that
a class of Liouville-type systems share the same BGNF with the regularized system
of HLSE.

The aim of this talk is also to review another symbolic computing program
named ANFER (Algorithm of JVbrmal Form Expansion and .Restoration) for the
inverse problem proposed by the authors (YU and SV) [9]. ANFER is expected to
work more effectively than GITA"1 does from various points of view; less steps of
procedures, less memory expenses, and so on. The system of Henon-Heiles type will
be taken as a very simple but intuitive example to show how ANFER restores the
Henon-Heiles Hamiltonian from its BGNF expansion.

The contents of this paper are organized as follows. In Section 2, a brief reveiw
of the ordinary normalization problem is given. In Section 3, the structures of
GITA and GITA"1 for the general n-degree-of-freedom case is presented briefly.
In Section 4, the direct problem of 3-TLC is discussed to show the normalization
is effective not only for non-integrable systems but also for integrable ones. In
Section 5, the run of the inverse problem of HLSE is demonstrated to show the way
to identify a class of Hamiltonian systems which share certain BGNF Hamiltonian

'The authors are trying to implement the same procedure with Maple V



in common. In Section 6, the formulation of the inverse normalization problem
and algorithm of ANFER are presented. In Section 7 a simple test example of the
ANFER run is considered.

2 The Ordinary and Inverse Normalization Prob-
lems

In this Section, we review the ordinary problem of the BGNF expansion very briefly
following [2], Let (Rn x Kn,d0n) be the phase space endowed with the canonical
symplectic 2-form, d8n = 5D™=1 dpj A dqj, where [q,p) are the Cartesian coordinates
of ~Rn x R". Let us consider the Hamiltonian system on (R" x Kn,d0n) which
admits a stable equilibrium point in a resonance of equal frequencies. Without loss
of generality, such an equilibrium point can be put at the origin of R" x Rn , so that
around it the Hamiltonian H(q. p) of such a system is assumed to be expanded into
a power series,

H{q,p) = \JZ {p) + if) + £ Hk{q,p), (1)
1 3=1 k=3

where Hk{q,p) [k = 3,4, • • •) are homogeneous polynomials of degree k in (q,p).
The conversion of H into a BGNF power series is made as follows. Let us consider

a local canonical transformation, (q,p) -4 {£,,rj) around the origin of R n x R" which
is associated with a type-2 generating function [1],

where Wk(g, fj) (k — 3,4, • • •) are homogeneous polynomials of degree k in (g, 77). On
choosing W{q,rj) suitably, the H(q,p) is converted to the power series, say G(^tr/),
through

dW dW

which is written in the form
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(4a)

where G^[i,,r\) (k = 3,4, • • •) are homogeneous polynomials of degree k in (£,T
subject to the Poisson-commuting relation,

(46)



Definition 2.1 Let Dq^n be the differential operator

associated with the variables (q, TJ) and let f(q, ?]) be a power series or a polynomial
in {q,n).Then f is said to be normal (resp. non-normal) to Dqri if f £ Ker(Dqfl)
(rasp, f € Im{Dw).

We have the following fact [2] known well:
Theorem 2.2 For any Hamiltonian H(q,p) in the form of (1), there exists

uniquely the pair of the BGNF, G((,,r)), in the form of (4) and the non-normal
type-2 generating function W(q,ij) in the form of (2a), which satisfies (3a).

Theorem 2.2 provides the ordinary problem of the BGNF expansion in the fol-
lowing form:

Definition 2.3 (The ordinary problem) Convert a power-series or a
polynomial Hamiltonian H(q,p) of the form (1) into a BGNF power series G'(£./;)
of the form (4) through a canonical transformation associated with a non-normal
type-2 generating function W(q, rj) of the form (2a).

In view of Definition 2.3 defining the ordinary problem, ihe inverse problem is
defined as follows:

Definition 2.4 (The inverse problem) For a given BGNF in the. form (4).
identify all possible power series H(q.p) in the form (1), which arc normalized to
the given BGNF through the canonical transformations associated with the. typ?.-2
generating functions.

It should be remarked here that we will present an alternative expression for
the inverse problem posed below in Section 6, which will be a key to organize the
algorithm ANFER .

3 A Review of GITA and GITA"1

Let Hii\r(q,p) and FIOUT(<!>P) be tl><; input and the output. Hami!t.onians. which aro
expressed as

OO -i 71

#A(<?,/>) = £ J 7 i " W ) with / / j z W ) = j £ ( r f + ?*). (6)

where //} (A = IN, OUT, h — 3,4, • - •) is a degree-/;, homogeneous polynomial in
(<7,p) expressed as

f ? > " = # • <"P!'••«?".
H{h)(<i,P)= £ c i f c W ) 9 V w i t h 1 | A , , , | v < i ( 7 )



Let G//y(£, if) and GOUT{£,V) ^ e t n e input and the output BGNF Hamiltonian,

Gf\z,V) = ir(T,i+ek), (8)

where Gx (A = /AT, OUT, j = 2, 3, • • •) is a degree-2j homogeneous polynomial in
(£,??) expressed as

Gl2%,7?)= £ 7 f W ) « V with {G[2\Gf>} = 0. (9)
M + |j8|=2j

In equation (9), a and /? are multi-indices used in the same way as in equation (7),
and {•,•} is the canonical Poisson bracket associated with the position variables £
and the momentum ones »;. The coefficients - /^ ' (a , /?) , (j = 2,3, • • •) are found
by solving the key BGNF equation

Here Wx{q, rf) is the generating function of the form (2), which should be identified
together with G\{t£,r)) as the solutions of (10). We will not get the identification of
Wx(q, 7j) in detail here ( see [2, 3] ).

Let us denote by P( the space of degree-^ homogeneous polynomials in In vari-
ables with real coefficients, which can be identified with the vector space R"'"1'1,
where N(n,£) indicates the number of degree-^ monomials in 2n variables allowed
to exist. Then, denoting such a correspondence by i( : Pe —» R"'"1 ' ', we associate
the vectors, cf' and j ' ^ , with Hx and Gx by

^ ^ ( f l f j a * 1 ^ and 7fJ) = L2j{Gf]) e R w ( n A ) , (11)

respectively. Further, using ^, we express the differential operator D (5), restricted
on Pt by the matrix Mw acting on R w ( n ^ ; i , o D = M w o i ( .

After the preparatory work done above, the hth order part of Eq. (10) is put
into the series of algebraic equations,

t } = M<*>{cf + *<">(#-°, •, -, 42))} 0- = 3,4, • • •), (12)

for y{
x
h) (A = IN, OUT) [2, 8], which are just the equations solved by GITA. Note

that 7fJ+1) (A = IN, OUT) turn out to vanish [8].
We are now in position to present what GITA"1 computes: Let us recall the

inverse problem posed in Section 1, which is put in the following: 'For a given i//w,
identify all the possible (or a part of) Hoursubject to GIN = GOUT up to a certain
order'. Since GIN = GOUT can read 7 $ = fot/r C* = 2, 3, • • •), GITA"1 solves the
series of equations,

$ ^ » 4 > ( j = 3,4, • • •), (13)



for (^olT, where 7''$ are determined beforehand from HIN through GIT A (i.e. (6)-
(12)). In the subsequent Sections, we demonstrate how GITA and GITA""1 (i.«.
(6)-(13)) work in REDUCE 3.3 or later versions of REDUCE in the direct problem
of 3-TLC and in the inverse problem of HLSE.

4 Truncated Three-Particle Toda Linear Chain

Let us consider the example of an integrabie system: three identical particles on the
line governed by the Toda Hamiltonian [10]. The original Toda Hamiltonian can be
reduced to the two-dimensional one:

H = ^(Pi + pi) + -{exp (£) + exp fa) + exp (C)}. (14a)

, V = ~V2rh + ̂ g2., C = -2^/ |«2 , £ + V + ( = 0. (146)

It is easy to verify that the Hamiltonian system (14) possesses additional integral of
motion (see Fig.l) in the form

I = 3P1OP1 - 3pj) + (Pi - \/3p2) exp (f) + (pi + \flp2) exp fa) - 2Pl exp (C). (15)

Note that the ansatz 91 = \/6x, 92 = %/6j/, Pi = v^Px) P2 = v'SPy and i? —> 6H
brings the expressions (14) and (15) to the same ones as in the book [11]. As the
Toda Hamiltonian has the C^v symmetry its power expansion is determined fully
through the two invariant functions / = q\ + q\ and g — q\qi — \^q\ . Below the first
power terms of the Taylor series for Hamiltohian (14) are written:

+^(9? + ?i)(9fo - \<ll) + ̂ [ (9? + & + 2{q\q2 - \q\f\ + ... (16a)
or

Thus, it is seen that any truncated Toda's polynomial series generates a generalized
Henon-Heiles Hamiltonian. Here a surprising situation arises: while the full Toda
Hamiltonian (14) is integrated, its power expansion truncated in any finite degree
presents a nonintegrable system. 3-TCL.

In some manner this phenomenon may be explained by the behavior of the neg-
ative Gaussian curvature(NGC) domain on the respective potential energy surface
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Fig.l. Exact integral of motion 3-TLC (15) at E = 1.25.
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Fig.2. Approximate integral of motion 3-TLC(17b) n,uar - 3. *„„„. = G.



PES of the Hamiltonian (16). The NGC domain on the PES indeed emerges if the
highest degree (nmax) in the truncated series (16) is an odd number and, on the
contrary, if the highest degree is an even number then such NGC domain does not
appear at, all. The emergence of the NGC domain is linked with the saddle points on
the PES. Moreover, if we take into account more and more terms in the expansion
(16) then the NGC domain moves upwards on the PES and in the case of the infinite
series the NGC region vanishes.

Below we have constructed the Birkhoff-Gustavson normal form and the ap-
proximate integrals of motion for some truncated Toda's Hamiltonians in order to
understand a dependence of the structure of phase space on the inclusion of highest
degree polynomial Hamiltonian (16). As an example, we present now the normal
forms in the sixth smax = 6 approach all but which are obtained for the different,
highest degree of Toda's series from the value nmax = 3 (Henon-Heiles's Hamilto-
nian) to nmax — 5. These Birkhoff-Gustavson normal forms are expressed below in
the action-angle variables and are obtained with the aid of the GITA procedure:

nmax = 4, smax = 6.

TS1^ + W2^ - 216J»

1^+

The second integrals in the corresponding approximation are also obtained by GITA
procedure up to terms of degree smax as quadratic form [3]

] []) Y ( ( J W ^ W )

To obtain the integral in the original coordinates, GITA expresses the final variables
(&,Vv) = (^[smax},vAsmax]) in terms of variables {qv = €v[2],pv = ^[2]) making



(smax ~ 2) coordinate transformations v — 1, 2; s = 3,4, 5 , . . . , smax
 m accordance

with eqs.(10)and definition of the generation function via coefficiens W's '(f[s -

As an example we present the integrals ( see Fig.2-4 ) in the explicit form :

rt9\ 385 fi 3311 d 0 385 a 9 1589 d 9 5 &
+P 2 + 41472p2pl

124416" 41472

1225 , 7 , 2849 2 . 287

OO 9 9 " ? 0 9 9 OoD i) J I)
P P ? - I i i P P ~ l ^ + ^

9 9 ^ ^ 9 9 iDO

P " + P ? 9 +

1 7 7 217
P ?5184P2P??2<?1 -

7 2 791 3 7

3 6 P 2 P l 9 2 < ? 1

7 3 847 6 2821 4 2 7
P ? + +

3 847 6 2821 4 2 7 4
1 + I^ilP - ^ + ^MM

847 4 2 5 4 1771 , 4 37 2 o 91
P l ? " 288P l + 41472Pl<?2 " ^ M

2 •> 1 99 + ̂ T
6 2 3 0 * 5 o ••> 545

921244T6
5 5 943 4 2 5 4 5 3 2 1537 2 4 5 4

2 1 6 ^ ? 2 4147292<?1 ~ 2889a ~ 108^ 9 2 < ? 1 " 4147292?1 ~ 288?1

=:: 4, Smax == 6.

(2) 35 6 77 4 2 35 4 2 143 4
7 = 7776P2 + 2592P2Pl + 2592P2?2 P

55 2 7 11
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Fig 3. Approximate integral of motion 3-TLC(18b) nmax = 4, smax = 6.
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The above integrals (17b)-(19b) and corresponding Poincare sections are presented
in Figs. 2-4. One can observe how the sequence of these sections step by step tends
to the limited section of the exact Toda integral (15) which is shown in Fig.l. Note
that the approximate integrals of motion will describe well theoretically the regular
phase trajectories similar to other generalization of the Henon-Heiles dynamical
system [12]. In this way one may expect to find additional criteria of a true choice
of BGNF structure related to exact integrals.

5 GITA"1 and the Inverse Problem of HLSE

GITA"1 consists of a core part and a subsidiary part. The core part is derived from
GITA [3] and the subsidiary part contains the procedures characteristic of GIT A"1 ,
both of which are put together in a single file. The procedure list and the input
data (the input Hamiltonian) are loaded at the beginning of running GITA"1 .

As an example of program fulfillment, we take the inverse problem of HLSE. Let
the input Hamiltonian H;^ be

Hm(q,p) = \ip\ + p\ + q\ + qt) + ^E(q* - q*2), (20)

the Hamiltonian of regularized system of HLSE [8]. The input BGNF Hamiltonian,
G/JY, for HIM is calculated up to the fourth order to be

+ nl - & - %2), (21)
where e is a parameter. The vector 7}^ in equation (13) is hence fixed by the
coefficients, 7^(0:1,0:2, fi\,,52), of Ĝ w through (10). It is worth noting that all
these preliminary calculations can be made by GITA.

The GITA"1 starts with generating the field Pi to describe the output Hamilto-
nian HQIT all of whose coefficients CpUT(a, /?) are unidentified. Next, eqs. (6)-(12)
with A = OUT are proceeded in GITA"1 to calculate Goy r, all of whose coeffi-
cients, TouT(ai0)> expressed in terms oi CQUT(a,B), are unidentified. On equating
G;N with GOUT in GITA"1 , eq. (13) takes the following form:

^ 0 , 4 , 0 , 0 ) + c^ r(0,2,0,2) + 3c^T(0,0,0,4) = -8e,

4,0,0,0) + 4 ^ ( 2 , 0, 2,0) + 3cg^(0,0,4,0) = 8e,

where the coefficients, cOUT(ki, hi,i\, l-i), not listed in (22) are set to zero.
Applying the subroutine SOLVE in REDUCE to equation (22), we have

0^(0 ,0 ,4 ,0 ) = u(4), ' cgkr(0,0,0,4) = «(2),

4 4 ^0 ,4 ,0 ,0 ) = (-3«(2) - u{\) - 8e)/3, cgtrr(0,2,0,2) = «(l),

(4,0,0,0) = (-3«(4) - «(3) + &)/3, c$ / r(2,0, 2,0) = «(3),

.13



as the solution of equation (22), where u{i) (i = 1,2,3,4) denote the unidentified
constants 'arbcomplex(i)' introduced automatically in SOLVE.

Finally, we identify the output Hamiltonian to be

H$lT(q,p) = u(4)pj + u(2)p| + u{Z)q\V\ + u(l)<&£
1 1 (23)

+ -{-3u(4)-u(3) + 8e}9* + - { - 3 u ( 2 ) - u ( l ) - f e } ^ ,

which admits GIN given by eq. (21) as the BGNF. Note that if all the u(i) vanish
in eq. (23), Hour becomes identical with -HJH given by (20).

On setting u{2) = u(4) = 0 in eq. (23), Hour becomes

l
HouT[q,P) = g 2

I </2
2 - | {u(l) + 8e} g*.

Surprisingly, Hour turns out to be a Hamiltonian admitting the separation of vari-
ables, which provides an integrable system accordingly. Although it seems to be
incidental that we encounter such integrable systems after GITA"1 , one may ex-
pect to find a class of integrable systems whose Hamiltonians reduce to a given
BGNF Hamiltonian.

6 The Inverse Problem and Algorithm of ANFER
To pose the inverse problem appropriately to the ordinary problem given by Def. 2.3,
we look at equation (3a), the key equation of the ordinary problem, in more detail:
Let us regard —W(q.rj) (see (2)) as the non-normal type-3 generating function [13]
associated with the canonical transformation, (£,77) -> (q,p) through the relation

d(-W) d(-W)
? dr, ' V dq '

Then equation (4) can read that H{q,p) is restored from its BGNF series G(£,rj)
through the canonical transformation associated with the non-normal type-3 gener-
ating function —W(q,r)). Hence we pose the inverse problem as follows:

Definition 6.1 (The inverse problem) For a given BGNF in the form (4)
identify all possible pairs of the power series H(q,p) in the form (1) and the non-
normal type-3 generating function,

) , (26)
3=1 k=3

which satisfy
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Since wo usually dealt with the BGNF polynomials of even order, it would be
better to restrict the inverse problem to the following form:

Definition 6.2 (The restricted inverse problem) For a given BGNF,
£*(£,'/), in 2pth order polynomial, identify all the possible pairs of the 2pth
order Hamiltonian H{q,p) in the form (1) and the 2pth order non-normal type-3
generating function S(q,rj) in the form of (2b). which satisfy Eq. (3b) up to the 2pth
order.

Remark: For any 2pth order BGNF (7(£, 77), 2p is the highest order up to which
both H{q,p) and S(ij,q) can be identified completely.

We present an algorithm of solving equation (3b), part of ANFER , up to 2pth
order, where G(£,?/) is a 2p-th order polynomial in BGNF to be inverted.

Like in the case of solving the ordinary problem [2]. we have to deal with a highly
combinatorial problem of picking up the homogeneous part of degree k (3 < k <
2p) from equation (3b). To settle this problem, it is of great use to consider the
composition of canonical transformations as follows.

Let. us define a series of canonical transformations,

'/V : ( ^ - ' W ' - " ) - > K ( ?V/ ( r )) with (C(2i,»/(2)) = (£,»/) (r = 3.4.---).

associated with the t.ype-3 generating functions,

t ^ ~ Sr«*r)rf-l)) (r = 3.4, • • •).

when1 Sr is the homogeneous part of degree r of the. generating function S(q. y) i!i
the form (2b). Using the {< r̂}'s we have the following Lemmas:

Lemma 6.1 The composition, (j>r o <}>T-\ o • • • o ^3, (3 < r) of the canonical
trajisformatioiLi, $3, • • • ,(f>r, is generated by the. typc.-S generating function of the
form

t C V' ) + £ 5WK"1.'/'-"). (2-0

where (^s), r/(i'"!)) (s = 3, • • •, r) on the r. h. a. of (24) are regarded as the function*
of (r/2), C;r)) through fa, - • •, <pr.

Lemma 6.2 Let H^{(y\i}^), be the power series de.term.ined by

> > ( ? ~ 3 , • ! . • • • ) . ( 2 , ) )

Then up to rth order, H^(q,p) is identical with H(q,p) determined by (2b).
With account of Lemma C.2, solving Eq. (3b) up to 2/rth order amounts to solving

equation (25). Since equation (25) is put. together with Lemma G.I to imply

15



we see that the H^'s satisfy the equations

(r = 3,4, • • •) (26a)

with
'(2))> (26/.')

which are the basic equations of constructing ANFER .
We proceed to solve equations (26a) up to r = 2p now. Equating the Ath order

homogeneous part (A; = 2,3, • • •, 2p) in (26a), we have

f o r A: = 2 , • • • , r - 1 ,

H<?\p\4r-") = (Dq>r,Sr) (C
W,'?(r

for k = r, and

+

(27a)

(27b)

(27c)

for k — r + 1, • • •, 2p. The 6Jj.r)(f(r', T/7""1') in (27c) is the homogeneous polynomial
of degree k (k = r + 1, • • •, 2p) given by [3]

9 V (r-1}

(28a)

where (• ] denotes the Gauss symbol, and a = («i, • • •, «n) is the multi-index with
nonnegative-integer valued components associating the notations,

(286)

In ANFER , equations (27) are solved recursively from r = 3 to r = 2p as fol-

lows: Let us assume tha t tf<2>, • • -H^V and S1'3', • • • ,S<r- l> (i.e., S 3 , - - - , 5 r _ i )

16



have been identified already. Then it turns out that equations (27) are closed for
H^ (k = 2, • • • , 2p) and Sr. Since equation (27a) means merely an incrementation,
we start with solving equation (27b). A key of solving Eq. (27b) is the direct-sum
decomposition induced by the operator Ẑ co,,,(.•-1> (see (5)) of the vector spaces of
kth order homogeneous polynomials of ( f^W" 1 ' ) denoted by 14({(r),?/r~1));

Vk(?\ r/"-") = Ker (£$>,,,,-») © Im (D^.^) , (29a)

where

L
Accordingly, decomposing H^ and H^.r~^ as

we can rewrite (27b) as a pair of equations:

ffM."(fMj1/'--i)) = ^ - i ) . " ( f M > 1 7 ( r - i ) ) ) (30a)

and
^W./(fM^(r-i)) = (Z?W5,.)|KM ̂ r_it) + H}r-lVtfrW'-»). (30b)

Equation (30a) obviously identifies H^'N to be equal to HJ^f. In contrast with
(30a), a pair of unidentified functions, H^>! and Sr, exists in Eq. (30b), so that we
cannot get rid of an ambiguity in the identification; we identify

H^'1 : chosen arbitrarily as long as it is in Im (D^ (r_,,) , (31a)

and
/ i

S ff(r) n(r-1)) - I D(r)

Once one has solved (27b), H^ (k = r + 1, • • •, 2p) are identified by (27c) with
simple substitutions.

After repeating the process described above from r = 3 to r = 1p, / J ^ (g, p)
thus obtained identifies the inverted Hamiltonian H(q,p) (see (2b)) up to the 2pth
order. In ANFER , the above described process (24)-(31) has been implemented
with Reduce 3.3 or its later version.

17



7 Example

7.1 Introduction

In this short note we solve the ordinary problem for simple test Hamiltonian,

) = \(pZ + q2) + q3. (32)

The homogeneous 4th order term of its BGNF is obtained by the direct way. The
inverse problem is solved also following the algorithm ANFER . Through out this
note, numbers of the variables are reduced as far as such a reduction causes no
confusions.

7.2 The Ordinary Problem

Since we would like to convert K into the BGNF up to the 4th order, it is convenient
to denote by Kk {k = 3,4), the kth order part of K;

Ks(q,p) = q\ K4(q,p) = 0. (33)

Let us further assume the type-2 generating function W(q, rf) and the BGNF G'(£, r/)
to be in the power series form,

and

G ^ ^ ^ + a + EcM^),
1=2

where W^ (resp. G^t) stand for the homogeneous k (resp. 2£)th order parts of W
(rcsp. G).

According to the algorithm of BG(Birkhoff-Gustavson)- normalization, what we.
have to solve is a system of equations2,

G3 («f, n) + Dq^W3 = K3 (q, ft), (34a)

and

for both G and W, where
d d

D

2G3 vanishes from the definition of BGNF
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On introducing the complex variable z by

z = q + iij, ~z = q — ii]

equation (34a) may be rewritten as

i(zd - W)W3 = -{z3 + Zz2z + 3zz2 + z3),
8

with

dz oz

so that we have

G,(£, n) = 0, W3fo, /;) = - ~ (z3 + 9z2z - 9zz2 - z3) . (35)

We now proceed to the solution of (34b). Using the relations

—• = 9 + 3, — = 7.(9-9),
dq 01}

we have

^ = 0. ^ = -1 -̂̂ ), f^-i(--6^). (36)
3r/ 9f/ 2 or) 4

Hence equations (35) and (36) are combined with equation (33) to put equation (34b)
into the form

G,(q,V) + D^W, = I'u,

where
K,x = - U - 5 2 4 + UzH - 30z2z2 + 122c3 - ur1).

Since Dy^M^ cannot bo normal we have

7.3 The Inverse Problem
In this Section, we solve, the inverse problem for the harmonic oscillator Hamiltouinn.
the BGNF for tho Hamiltonian K given by (32). Let H(q,p) and S(q, •//) be the lih
order polynomial Hamiltonian and the 4th order t.ype-3 generating function of t ho
form

) = \{j? + <12) + H3{q,p) + H.t(q,p)

19

and
S(q,v) =



where H^ (resp. 6\) {k = 3,4) :-;tand for the homogeneous fcth order parts of / /
(rtsp. S). The inverse problem is the problem of identifying; all the H whose BGNF
is identical with the harmonic oscillator up to the 4th order.

We apply the algorithm of ANFER (24)-(31) to the present, case: Following the
notation of Section 6, we deiiae the starting HamilIonian Z/'2' to be

Then at the stage of r = 3, equation (27b) is solved as

ffV),N _ tr(2),A' _ rr(2> _ n r t (2 ) , / ._ rr(2) _ n .

H-/ : c h o s e n a r b i t r a r i l y in I in \Dfd) ,<2))> i-e-

H~^(t(, ?;) - - c,7? 4- C222"« + C2-Z22 4- ft;33; (37n)

from (31b)

we have

where c,- (j = 1,2) are complex numbers arbitrarily chosen, and Cj their complex
conjugate. Accordingly, we have from(27c) at k=4:

dS3 '., , , , , , , 2

-— = -i(C! 4- c2)z - 2i(c2 - c2)zz 4- i(ci 4- c2)^ ,

8 5 3 ' ' ' • " ' • - • - • - - — { 3 8 )

2«(c2 — C2)z~z — i(3ci — c2)z
2,

dr,

where Hf\q,ri) = 0, and Hf] (q,rj) turns out to be H^' + QfK Using the definition

c(3) .... d$3 '

of9<3):

dr} dq dq dr] 2 \ drj J 2 \ dq J '

we have

4(2cic2 - c{c2 - c2c2)zz3 (39)

6c2c2 - ^)
16
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Substituting equations (37)--(39) in equation (27b) with r = 4, we have the following:
H^]'N = Hf]'N- H?'1: chosen arbitrarily in Im (£>$)>1)m) •
The non-normal part of F4

(4) denoted by H^' can be chosen to be arbitrarily non-
normal, i.e.,

H^''(q, 17) = flZ* + f2z
3z + "}2zz3 + J^,

where f\ and f2 are arbitrary complex numbers. In contrast with this, the normal
part, denoted by H^'N, is determined uniquely to be

c2c2-~)^2.

To summarize,
H{q, V) = H™ + H?)J + H^'1 + H?W,

we see that all the 4th order polynomial Hamiltonians of the form

H{q, T)) = ^zz+ (ciz3 + c2z
2z + c2zz2 + c^3)

+[/iz" + hzsz + J2zz3 + Jtz*

+(6c,C! + 6c2c2 - ^)z2z2] + O4, (40)

share G = (l/2)(?72 + f2) as the BGNF up to the 4th order, where ch c2, fi,f2eC
can be chosen arbitrarily.

The type-3 generating function S(q, rj) is identified up to 3rd order3,

z - c2zz2 - | ^ ) + O3.

7.4 Restoring Test Example
We wish to show that, the Hamiltonian K defined by equation (32) is in the form of
equation (40). Indeed, setting

ci = l/8, c2 = 3/8, /1 = /2 = 0, (41)

in equation (40), we immediately obtain K. Further, equation (41) is put together
with equation (35) to show that W(q, rj) is equal, up to 3rd order3, to S(q,ij) with
(41). Thus the normalization of K into G, the BGNF, and the restoration of G to
K are completed.

3To identify H up to 4th order, it is sufficient to identify 5 up to 3rd order.
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8 Concluding Remarks

We would like to make a few remarks on the peculiarities of the realization of
GITA"1 . (i) In generating the field Pe and equation (13), we have used REDUCE
to implement the combinatorial algorithms and the list processing, (ii) As is seen
from the algorithm (6)-(13) presented in Section 3, GITA~! is proceeded by tracing
back the procedures of GITA in principle. Since ANFER might have the performance
features different from GITA"1 , we may expect that GITA and GITA"1 can be put
together with ANPER to provide a unified symbolic computing program for various
calculation around the BGNF expansion and integrable models in future.
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