


1. Introduction

The inverse problem in physics can be formulated as the pro-
cessing of the initial experimental data with the aim to find the
features of the physical process which cannot be measured directly.
So by solving the inverse problem we get true causes of the sig-
nals detected by the physical device. To solve the inverse problem
in the simple situations, the experimenter uses some serniintuitive
approaches on the basis of the common sense and of some apriori
information about the process to be investigated. Thus he sub-
stitutes the inverse problem by the array of several direct ones.
In most cases he uses the regression methods with which the in-
verse problem can be reformulated as overestimated one with small
number of free parameters.

In general case the inverse problem written mathematically is a
noncorrected one. This means that even small errors in the exper-
imental data and in the characteristic parameters of the physical
device may introduce very great errors in our solution. One cause
of this noncorrecticity is that in the accepted mathematical for-
mulation the problem as a whole is a nondefinite one. To redefine
it we must introduce some additional information and thus make
more narrow the class of functions in which our solution is lying.
This restricted class of functions must be compact.

It has been proved that in this formulation of the inverse prob-
lem, the latter can have many solutions, and so really we can
get only approximated solution. We find the most probable so-
lution. To construct such solution we use the Maximum Entropy
Technique (MENT). The main point of this technique is that each
possible approximated solution must have apriori probability of its
realization. We accept that estimation of the solution which makes
maximal the entropy functional of our problem. The mathemati-
cal structure of the entropy functional is defined by the kind of
the quantum statistics of the physical support of the experimental
information and by the value of the filling factor of the quantum
degree of freedom. For electromagnetic nonlaser radiation and for
observation directly of the adronic and 7 -quantum spectra the



entropy functional has the form

H=-3 (@) In f(z), 1)

where f(x) is the estimation of the solution and x is the indepen-
dent variable.

In the contrary case, for example in the radioastronomy, the
entropy functional has the form

H= -—g:llnf(m). (2)

The first application of MENT made Burg J.P. [1] in 1975. The

recurrence relation, constructed by Burg J.P. for corrected filter
has bePTn used for estimation of the power spectra of the process;
to be‘ investigated. This approach has been used in geophysics
[2,3}, in paleontology [4] and for data compression in the theory
of information [5).
. The MENT has been used for lmage reconstruction, in par-
ticular, of the surface of CGanimed [6], Jupiter satellite, in the
tvhermonuclear synthesis with laser plasma [7], for COIltI‘O,I of ac—-
tive zone of nuclear reactors (8], in medical tomography 9], in
economy and sociology [10]. ,

The. application of the MENT in the high energy physics was
ma?de in JINR, Dubna in 1981 [11]. In the frame of the additive
noise model, the MENT was used for reconstruction of signals with
slowly varying components and for sign alternating point spread
functions.

The MENT has been used in solving of the inverse prob-
lem with poisson-like noises {12] for removing of the instrumental
spreagling at low events statistics. The results of the computer
simulation by means of this variant of MENT were presented in
'[12] for input signals with unresolved doublets and also for linear
11.1put signals. It has been demonstrated that we can get good es-
1t1mations at low events statistics, ~ (10—20), for wide class of the
Input signals and for devices with very broad spreading functions
of the space-invariant as well as of the space-variant structures.

So it has been proved that MENT can be used for solving of the
inverse problems in high energy physics.

The analysis of the Lagrange multiples in the MENT was pre-
sented in {13] for poisson-like noise. To describe the joint action of
the count statistics and of the instrumeutal spreading the concept
of "temperature” of the experimental data has been introduced.
The thermodynamical relations which arise naturally in the MENT
for inverse problems with poisson-like noise were considered in [13}.
The thermodynamical inequalities which have been found in the
MENT formalism and in the Le Chatelier-Braun thermodynamical
principles have been constructed. Namely, the variations of the
Lagrange multiples are maximal when the variations of the ob-
served signal cover only one sample. This relation between the
Lagrange multiples and the observed signal is analogous to the
thermoclynamical relation between the temperature and the quan-
tity of the heat exchange between two interacting subsystems of
the isolated multicomponent systern.

The interrelation between the MENT and the method of least
squares has been analyzed in {14]. It has been shown that the
maximum entropy condition induces the stability of the approx-
imation with normal distribution of the probability density, de-
creases the spreading of the parameters to be searched for and
specifies naturally the bounds of errors zone. The new form of
the MENT for estimation of the solution in the poisson-like and
gaussian white noises has been given in [14]. With this new form
we can see directly the interrelation between the estimation of the
solution of the inverse problem and the experimental data. The
source of the immunity of the MENT against the noise has been
consiclered. The stabilization operator which gives this immunity
and defines the residual spreading in the MENT estimation has
been found in [14]

In this paper we explain the MENT for solution of the inverse
problems for the case of the additive noise. The effective comput-
er program for solution of the nonlinear egnation systems in the
MENT has been developed and tested. The scopes of the MENT
have been demonstrated in the doublet structure analysis of noisy



experimental data. The comparison of the MENT results with the
results of the Fourier algorithm technigue without any regulariza-
tion is presented. The relative tolerance noise level is equal to 30
% for MENT and only 0.1 % for pure Fourier algorithm.

2. Maximum entropy technique (MENT)

If the noise, incorporated in the measurements, does not cor
relate with the investigated spectrumn and can be considered as
additive noise, the relation between the true spectrum  f(£,), the
detected signal s(z) and the point spread function of the device
h(zm,€n) can be presented as a linear convolution equation

S(ztm) = ﬁlh(zm, £) - F(62) +nlom), )

m=1,.,M;, n=1,..., N,
where M and N are the numbers of the samples at the input and

output of the physical devicee We consider only the case when
the point spread function h(z,£) is a space-invariant, that is,

ML m, €n) = h(Tm ~ &). : {4)

So we are searching for the estimation f(£,) and x,) of the
spectrum  f(£,) and of the noise n(z,). The functions hMzm, &)
and S(zm,) are known. ,

~The resolve the equations (3), we use the Maximum Entropy
Technique (MENT). The whole problem is formulated as a varia-
tion one with conditional extremum and is resolved by means of
the nonlinear approach. In line with this formulation we overcome
the ambiguity problem and the problem of the noncorrectness.

To explain MENT let us consider the relation between the un-
known probability density p(x) and the known M moments Gm oOf
this density: o

Gn=[ do-z™plz),  m=1.,M ©)

E.T. Janes [5] had shown that the least displaced estimation plz)
inakes the extremum of the entropy functional :

Simultaneously, the condition of the maafimum czf the entropy func-
tional gives the most smoothed estimation of p(m).'
The MENT solution of this problem can be written as

B(z) = exp (— 3 o w”‘) @

where the Lagrange multiples A, must be chosen to m<.eelt tt‘:he
momentum equation (5). From (7) we see that the MENT solution

it i tion.
will be always a positive definite func ‘ -
In the formulation of the inverse problem accepted in this pa-

per, equation (3) the additive noise n(zm) is also the _u.nknowg
1

function to be estimated. The latter can be b?th p031.t1ve dan
negative. ¥or permission of the logarithm operation we introduce

the shifted noise - |
{no(mm) =n(zm) +B, B>0 with ®
B = sup [n{zm)] -
The algebraical form of the inverse problem accepted in this
paper can be written as: _
S(zm) = Taz1 MTm, &)+ f(6n) + 1{(@m),
(m=1,.,M, n=1,.,N) (9)

M S(m)=A

where A is the total number of the detected particles:
The Lagrange functional of our problem can be written as

G (£, hmy 1) =

=3 f(6) - n F&) — o 3 nalem) - vmo(am)-

" (10)
- 3 0 [ e Blam )+ o) =B = S(om) -

f(gn) - Po) - MAT

|

Ve

.



where A(z) and p are the Lagrange multiples to be searched for,

and p is the parameter, which is introduced with the aim to

smooth the estimation of the noise and which is really the ratio of

the estimated signal dispersion to the estimated noise dispersion.
From the condition a0

—— =0 11
57 )
we get the equation for the signal estimation
R M
fer=emp (1= % d-blem)) (2
m=1
and from the condition
oG 0
GPalam) 13)
we get the equation for the noise estimation
fo(Tm) = ezp(—1 — Mn/p), (14)
from the condition
oG
7 =0 . (15)
we get
N
S(@m} = ’2 F(&n) - B(@m, &) + () — B, (16)
(m=0,1,..,M)
and from the condition
oG 0
e (17)
we get :
N .
Fo = 2 fén), (18)

To find (N+1) Lagrange multiples we get the following system
of (N+1) - equations:

( N M
S(lm) = 2 h(l’m,fn) . e:r;p[—l — B Z_:l Am * h(ﬂim,fn)]‘*‘

n=l

{ +exp(—1— Am/p)— B (19)

N M
P = Z exp[—1—p - zl Am h(l'm,fn)] .
n=1 m=

\

The system of the nonlinear equations (19) is solving by the
Newton-Rufson technique with relaxation [15].

3. Nonlinear equations system

To explain the Newton-Rufson techunique let us consider the
general form of the nonlinear equations

f1(l‘1, ...,.’L'N) =0
{: : (20)

fN(:L'l,...,ﬂ,‘N) =0
where fi(i = 1,..,N) are the given functions of the unknown
values 2;(i = 1,...,N).

If for every arbitrary point x(zy,..,2y) there exist functions
filz1, ..o zn) (i= 1,..,N), and their partial derivatives 8fi(zm)/0%;
(i=1,..,N), (j=1,..,N), and besides behavior of these derivatives
can be considered as linear one, than the solution to be searching
for can be estimated by the following technique. Namely, we
expancd each function fi(zy, ..., 2n), (i=1,...,N) into the Newton
series up to the second order obrivatives. Thus for increments
Az;m, which couple the solutions at (m+1) and m iterations

Tjm+l = Tjm + A.’Bj‘m, (21)

we get the system of the linear equations:

N ai m
3 2o s im) = =) %)

(6=1,..,N;m=0,1,2...)



which we resolve by the iterative technique.
Then the equations (22) go to the equations:

BS(/\,,U,)A’\ + aS(/\, #)A

Y on k= —S(A u)
23)
OBy (A, p) OFo(A, 1) (
—a AA+ TA# = —Fo(A p)
where the partial derivatives will be written as follows:
3S(\, p) dS(\ 1)
i T
2
6PO(AHU) By- apﬂ(/\’“) ( 4)
Y 073 i Sop

The corresponding increments AX and Ap are equal to:

Axz L0 Su— S PRy
SA'RJ#—Sp'PoA’

Auz PO'SA'_S'POA (25)
Fos - Sp— 8x - Py,

where,

) |
L AR SEVES PR

ot 1
' El h’(xm: fn) - ;e:cp[-—l - /\m/p]

N .
Sy = = 32 hmy €n) - exp[~1 — s - mé Am - BT, &) (26)
N M M
Foy = —gl exp(—1—p — ; Am  MZm, &) - 2. h(zm, &)
- ﬂ; m=1
Poy = — 21 ezpl~1—p— 3 Xn - h(Zm, &n)]
= me=}
8

4. Computer program

We have used the computationally efficient and numerically sta-
ble algorithm for MENT ([15], by means of which we have pro-
cessed the nonlinear equations system (22). '

Our initial input signal consisted of two delta-functions, blurred
by the given point spread function

Wz, €) = expl(c — £)%/20%]. (27)

The sum was normalized at unity. The additive noise is superim-
posed then. We have used one such realization as the "measured
signat * 8(x).

At the first stage we find the Lagrange multiplies, which define
the solution in the nonexplicit fashion. The iterative technique
gives the solution after 5-8 iterations at noise level 30 %. We
have changing the doublet splitting, the relative intensities of the
doublet components and the auxiliary parameter p. The number
of samples was equal to m = 1 = 120. In some cases we used
the additional smoothing of the data.

The auxiliary parameter p has been used in this paper for base
smoothing of our estimations, f(z) and A(z). It is evident that
at high p we can see doublet with harrow splitting with broad
point spread function. We have introduced a new parameter

_ maziny|

"~ maz|A|’ (28)

n
where 7, -maximum of the reconstructed noise and A - maximum
of the reconstructed spectrum. The influence of those two param-
eters, p and n on the results of the analysis will be presented in
§6.

5. Results of MENT reconstruction

We have performed the computer simulations for MENT doublet
structure analysis of the noisy experimental data.
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the doublet components with gaussian point spread function for . the doublet components with noise level no(x) = 10%.

various doublet splitting without noise.
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Fig.4. The same as in Fig.3, but with noise level no(z) = 30%.
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I. Equal intensities of the doublet components (A; = A4,).

In Fig.1(a,c,e,g) we presented the input signals f(x) in the form
of the doublet with gaussian point spread function at various dou-
blet splitting A = 2,3,4,5 in units of z axis. In Fig.1(b,d,f,h) we
see the corresponding signals reconstructed by means of MENT
for different doublet splitting A.

In Fig.2(ac,e,g) we presented the corresponding signals as in
Fig.1(a,c.e,g) with additive noise no(z) = 10%. In Fig.2(b,d,f,h) we
see the corresponding signals reconstructed by means of MENT for
different doublet splitting A and for auxiliary parameter p = 104,
The analogous results are presented for noise levels n=20 % and
30 % in Fig.3 (for p=2000) and in Fig.4 (for p = 2000).

We see that even for noise level n=30 % the doublet structure
could be reconstructed for doublet splitting A > 3.

Now let us compare the results for MENT shown above (Fig.1-
»2,3,4) with results reconstructed by the pure linear algorithms,
such as Fourier algorithmn technique without regularization.

In Fig.5 the Fourier Transform reconstruction is shown for dou-
blet splitting A =4 and for gaussian point spread function with
o =25 In Fig5a the initial signal f(x) is shown. In Fig.5b
the absolute value of the Fourier Transform |F (W) in the loga-
rithmnic scale is given. The point spread function h(x) is shown
in fig.5c, and its absolute value of the Fourier Trausform |H(w)]
in the logarithmic scale is presented in Fig.5d. In Fig.5e we see
ratio G(w) = F(w)/H(w) as a periodic function. In Fig.5f we see
the reconstructed function g(x), as inverse Fourier Transform of
the function G(w) in the absence of the noise for A = 4. The
function G(w) for noise level n(z) = 0.1% is shown in Fig.5g. and
the "reconstructed ” signal in Fig.5h.

II. The skew doublet with 4; = 0.2 <Ay .

In Fig.6(a,c,e,g) we see the initial signals with doublet splittings
A = 2,3,4,5. The MENT reconstructed signals are shown in
Fig.6(b,d,f,h) in the absence of the noise (no{x) = 0%). The
reconstruction is indeed well for splittings A > 3.0. Here we

- observe that the most complex example of signal reconstruction for

Ay =02+ A; is demonstrated by means of the MENT algorithm.
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The case of the skew doublet with noise level n = 10% is shown in
Fig.7. The reconstructed doublet can be seen at doublet splittings
A >4

The efficiency of the MENT program is define by the number
of iterations necessary for good doublet resolution. Let us consider
the dynamism of the iterative process for the case of noise level
n=10 %. In Fig.8a we see the noise input signal S(x) and the
first iteration for f(x) (comstant value at ~ 0.37). The results
offer the 3-d and 4-th iterations are given in Fig.8c¢ and Fig.8d,
respectively. The convergence is attended at the 4-th iteration,
that is the convergence of the MENT program is extremely high.

6. Influence of the auxiliary parameter p

To demonstrate the stability of the results of the MENT re-
construction against the auxiliary parameter p [11], introduced in
§2, we have analyzed the dependencies of the parameter 7 versus
noise level n{%) for different p parameter. In Fig.9 we see three
such functions n(n) for p = 100, 500 and 2000. The indicator of
this stability is the initial slope of the curve n(n) for different
parameter p, which is equal to 0.93.10"2 for p = 100,0.88 - 10~2
for p =500 and 0.92-107% for p = 2000. In the range of p param-
eter 20:1 the various of the initial slope is only +2.8%. So we
have demonstrated that the MENT program is indeed very stable
against large variations of the auxiliary parameter p.

7. Conclusions

1. The Maximum Entropy Technique (MENT) for solution of
the inverse problems is explained.

2. The effective MENT computer program for solution of the
system of the nonlinear equations is developed and tested.

3. The doublet structure analysis of the noisy experimental
data has been performed by means of MENT.

4. The comparison of the MENT results with the results of
the Fourier algorithm technique without any regularization bhas
been made. The relative tolerance noise level is equal to 30 % for
MENT and only 0.1 % for pure Fourier algorithm.

20

5. It is shown that MENT reconstruction algorithm demon-
strates high stability to the variations of the p parameter.
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