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1. Introduction 

The inverse problem in physics can be formulated as the pro­

cessing of the initial experimental data with the aim to find the 

features of the physical process which cannot be measured directly. 

So by solving the inverse problem we get true causes of the sig­

nals detected by the physical device. To solve the inverse problem 

in the simple situations, the experimenter uses some semiintuitive 

approaches on the basis of the common sense and of some apriori 

information about the process to be investigated. Thus he sub­

stitutes the inverse problem by the array of several direct ones. 

In most cases he uses the regression methods with which the in­

verse problem can be reformulated as overestimated one with small 

number of free parameters. 
In general case the inverse problem written mathematically is a 

noncorrected one. This meam that even small errors in the exper­

imental data and in the characteristic parameters of the physical 

device may introduce very great errors in our solution. One cause 

of this noncorrecticity is that in the accepted mathematical for­

mulation the problem as a whole is a nondefinite one. To redefine 

it we must introduce some additional information and thus make 

more narrow the class of functions in which our solution is lying. 

This restricted class of functions must be compact. 

It has been proved that in this formulation of the inverse prob­

lem, the latter can have many solutions, and so really we can 

get only approximated solution. We find the most probable so­

lution. To construct such solution we. use the Maximum Entropy 

Technique (MENT). The main point of this technique is that each 

possible approximated solution must have apriori probability of its 

realization. We accept that estimation of the solution which makes 

maximal the entropy functional of our problem. The mathemati­

cal structure of the entropy functional is defined by the kind of 

the quantum statistics of the physical support of the experimental 

information and by the value of the filling factor of the quantum 

degree of freedom. For electromagnetic nonlaser radiation and for 

observation directly of the adronic and 7 -quantum spectra the 
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entropy functional has the form 

N 
H =- L f(x) ·lnf(x), (1) 

x=l 

where f(x) is the estimation of the solution and x is the indepen­
dent variable. 

In the contrary case, for example in the radioastronomy, the 
entropy functional has the form 

N 
H =- L lnf(x). (2) 

X=l 

The first application of MENT made Burg J.P. [1] in 1975. The 
recurrence relation, constructed by Burg J.P. for corrected filter, 
has been used for estimation of the power spectra of the process 
to be investigated. This approach has been used in geophysics 
[2,3], in paleontology [4] and for data compression in the theory 
of information [5]. 

The MENT has been used for image reconstruction, in par­
ticular, of the surface of Ganimed [6], Jupiter satellite, in the 
thermonuclear synthesis with laser plasma (7], for control of ac­
tive zone of nuclear reactors [8], in medical tomography [9], in 
economy and sociology [10]. 

The application of the MENT in the high energy physics was 
made in JINR, Dubna in 1981 [11]. In the frame of the additive 
noise model, the MENT was used for reconstruction of signals with 
slowly varying components and for sign alternating point spread 
functions. 

The MENT ha.s been used in solving of the inverse prob­
lem with poisson-like noises [12] for removing of the instrumental 
spreading at low events statistics. The results of the computer 
simulation by means of this variant of MENT were presented in 
[12] for input signals with unresolved doublets and also for linear 
input signals. It has been demonstrated that we can get good es­
timations at low events statistics, ~ (10-20), for wide class of the 
input signals and for. devices with very broad spreading functions 
of the space-invariant a.s well as of the space-variant structures. 
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So it ha.' been proved that MENT can be used for solving of the 
inverse problems in high energy physics. 

The analysis of the Lagrange multiples in the MENT wa.' pre­
sented in (13] for poisson-like noise. To describe the joint. action of 
the count. st.atist.ics and of the instrumental spreading the concept 
of "temperature" of the experimental data ha.' been introduced. 
The thermodynamical relations which arise nat.nrally in the lv!ENT 
for inverse problems with poisson-like noise were considered in [13]. 
The thm·modynamical ine<tualities which have been found in the 
MENT formalism and in the Le Chatelier-Braun thermodynamical 
principles have been constructed. Namely, the variat.ions of the 
Lagrange multiples are maximal when the variations of t.he ob­
served signal cover only one sample. This relation between the 
Lagrange multiples and the observed signal is analogous to t.he 
thermodynamical relation bet.ween the t.emperatnre and the quan­
t.ity of the heat exchange between two interacting snbsyst.em,; of 
the isolated multicomponent system. 

The interrelation between the !v!ENT and the method of le.,,t 
squares ha.' been analyzed in [14]. It. ha.' been shown t.hat. t.he 
maximum entropy condition induces the stability of the appmx­
imation with normal dist.rihut.ion of the probability densit.y, de­
creases the spreading of the parameters t.o be searched for and 
specifies naturally the bounds of errors zone. The new form of 
the MENT for estimation of the solution in the poisson-like and 
gaussian white noises ha.' been given in (14]. With this new form 
we can see directly the interrelation het.ween the estimation of the 
solution of the inver~e problem and the experimental data. The 
source of the immunity of the MENT against t.he noise h<1.' IH'en 
considered. The stabilization operator which gives this imnnmit.y 
and defines the residual spreading in the MENT estimation h<1.' 
been found in [14] 

In this paper we explain the MENT for solution of the inverse 
problems for the ca.~e of the additive noioe. The effective comput­
er program for solution of the nonlinear equation systems in the 
MENT has heen developed and tested. The scopes of the MENT 
have been demonstrated in the doublet structure analysis of noisy 

a 



experimental data. The comparison of the MENT results with the 
results of the Fourier algorithm technique without any regulariza­
tion is presented. The relative tolerance noi~e level is equal to 30 
% for MENT and only 0.1 % for pure Fourier algorithm. 

2. Maximum entropy technique (MENT) 
If the noise, incorporated in the mea.~urements, does not cor­

relate with the investigated spectrum and can be considered a.~ 
additive noise, the relation between the true spectrum f((n), the 
detected signal s( xm) and the point spread function of the device 
h(xm, (n) can be presented a.~ a linear convolution equation 

N 
S(xm) = L h(xm, (n) · f((n) + n(xm), (3) 

n=l 

m=l, ... ,M; n=l, ... ,N, 
where M and N are the numbers of the samples at the input and 
output of the physical device. We consider only the case when 
the point spread function h(x,{) is a space-invariant, that is, 

h(xm, (n) = h(Xm- (n). (4) 
So we are searching for the estimation j ( ~n) and n( Xm) of the 

spectrum f((n) and of the noise n(xm)· The functions h(xm,~n) 
and S(xm) are known. 

The resolve the equations (3), we use the Maximum Entropy 
Technique (MENT). The whole problem is formulated as a varia­
tion one with conditional extremum and is resolved by means of 
the nonlinear approach. In line with this formulation we overcome 
the ambiguity problem and the problem of the noncorrectness. 

To explain MENT let tL~ consider the relation between the un­
known probability density p(x) and the known M moments qm of 
this density: 

qm=/_:dx·Xm·p(x), m=1, .. ,M (5) 
E.T. Janes [5] had shown that the lea.~t displaced estimation p(x) 
makes the extremum of the entropy functional 

H = - L: dx · p(x) ·ln p(x). (6) 
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Simultaneously, the condition of the maximum of the entropy func­
tional gives the most smoothed estimation of p(x). 

The MENT solution of this problem can be written as 

p(x) = exp (- f
1 
Am· xm) (7) 

where the Lagrange multiples Am must be chosen to meet the 
momentum equation (5). From (7) we see that the MENT solution 
will be always a positive definite function. 

In the formulation of the inverse problem accepted in this pa­
per, equation (3) the additive noise n(xm) is also the unknown 
function to be estimated. The latter can be both positive and 
negative. For permission of the logarithm operation we introduce 
the shifted noise 

{

no(xm) = n(xm) + B, 

B =sup ln(xm)\. 

B ~ 0 with 
(8) 

The algebraical form of the inverse problem accepted in this 
paper can be written as: 

(

S(x:) = I:~d h(xm~ ~n) · f(~n) + n(xm), 
(m- 1, ... , M, n- 1, ... , N) 

I:~=l S(xm) =A 

(9) 

where A is the total number of the detected particles. 
The Lagrange functional of our problem can be written as 

G (J,n,Am,Jt) = 

N A A M A - 2: f(~n) ·ln f(~n)- P · I: no(xm) -ln no(xm)-
n=l m=l 

M r N A 

1 -El Am lEI f(~n). h(xm- ~n) + no(xm)- B- S(xm) -

(10) 

-Jt · ('£ f((n)- Po) -+max 
{=l 
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where A(x) and I' are the Lagrange multiples to be searched for, 
and p is the parameter, which is introduced with the aim to 
smooth the estimation of the noise and which is really the ratio of 
the estimated signal dispersion to the estimated noise dispersion. 

From the condition 
~=0 
o]({n) 

we get the equation for the signal estimation 

]({n) = exp ( -1- I'- m~l Am· h(xm,{n)) 

and from the condition 

oG = 0 
dno(xm) 

we get the equation for the noL~e estimation 

fl.,(xm) = exp ( -1- Am/ p), 

from the condition 

we get 

oG = 0 
GAm 

(ll) 

(12) 

(13) 

(14) 

(15) 

N • 
S(xm) = L: f({n) · h(xm, {n) + no(xm)- B, (16) 

n=l · 

and from the condition 

we get 

(m = 0, 1, .. , M) 

oG = 0 
01' 

N • 
Po= L f({n), 

n=l 

(17) 

(18) 

To find (N + 1) Lagrange multiples we get the following system 
of (N+1) - equations: 
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N M 
S(xm) = L h(xm,{n) · exp[-1- I'- L Am· h(xm,{n)]+ 

n=l m=l 

+exp(-1- Am/P)- B {19) 

N M 
Po= L exp[-1- I'- LAm. h(xm,{n)]. 

n=l m=l 

The system of the nonlinear equations (19) is solving by the 
Newt.on-Rufson technique with relaxation [15]. 

3. Nonlinear equations system 

To explain t.he Newton-Rufson technique let us consider t.he 
!l;eneral form of t.he nonlinear equations 

{

{i(XJ> ... ,XN) = 0 

/N(Xi, ... ,XN) = 0 

(20) 

where f;(i = 1, ... , N) are the given functions of the unknown 
valueH x;(i = 1, ... , N). 

If for every arbitrary point a:(xi> ... , a:N) there exist functions 
j;(xi> ... ,xN) (i= 1, ... ,N), and their partial derivatives Dj;(xm)fo:~.:; 
(i=1, ... ,N), (j=1, ... ,N), and besides behavior of these derivatives 
can be considered as linear one, than the solution t.o be searching 
for can he estimated by the following technique. Namely, we 
exp<tnd each function j;(x1, ... , XN ), (i=1, ... ,N) into the Newton 
series up to the second order ohrivatives. Tlms for increment.s 
6.x;,m, which couple the solutions at. (m+1) and m iterations 

Xj,m+l == Xj,m + llXj,m 1 
(21) 

we get the system of the linear equations: 

N Of;(Xm) L 
0 

(x;,m+l - X;,m) = - f;(x;,m) 
j=l Xj 

(22) 

(i = 1, ... ,N;m= 0,1,2 ... ) 
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which we resolve by the iterative technique. 

Then the equations (22) go to the equations: 

1

88(>.., J.t) 6 >.. 88(>.., J.t) 6 = _
8

(>.. ) 
8>.. + 8j.t 11 .11 

8Po(>.., 11) 6 >.. 8Po(>.., 11) 6 = _ p, (>.. ) 
8>.. + 811 11 . 0 ,j.t 

where the partial derivative~ will be written ~ follows: 

1

88(>.., 11) = 8 . 88(>.., 11) = 8 
8>.. .\, 811 p 

8Po(>.., 11) _ p, . &Po(>., 11) _ S, 
8).. - 0.1, 8j.t - Op. 

The corresponding increments 6>.. and 6J.t are equal to: 

where, 
1

6 >.. = Po • 8p - 8 • Pop 
8.1· Pop- 8p · Po.1' 

6 J.t = .,R,..:o:.__·-;;8;.:.,~_-_8;,-..:· R--;o;..1 
Po.1 · 8p - 8.1 · Pop 

N M 

8.1 = - L: h(xm. en). exp[-1 -tt- L: Am. h(xm, en)]· 
n=l m=l 

M 1 
· L; h(xm, en) - -exp[ -1 - A.m/ p] 
,_, p 

N M 

8P = - L h(Xm, en)· exp(-1- J.t- L Am· h(xm, en)] 
n=l m=l 

N M M 

Po.1 =- L: exp[-1- 11- L: Am· h(xm,en)] · L: h(xm,en) 
n=l m=l tn=l 

N M 
Pop= - L; exp[-1- J.t- L; A.m • h(xm, en)] 

n=l m=l 
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(23) 

(24) 

(25) 

(26) 

4. Computer program 

We have used the computationally efficient and numerically sta­

ble algorithm for MENT (15], by means of which we have pro­

cessed the nonlinear equations system (22). 

Our initial input signal consisted of two delta-functions, blurred 

by the given point spread function 

h(x, e) = exp[(x- 0 2 /2u2
]. (27) 

The sum was normalized at unity. The additive noise is superim­

posed then. We have used one such realization as the "measured 

signal " S(x). 
At the first stage we find the Lagrange multiplies, which define 

the solution in the nonexplicit fashion. The iterative technique 

gives the solution after 5-8 iterations at noise level 30 %. We 

have changing the doublet splitting, the relative intensities of the 

doublet components and the auxiliary parameter p. The number 

of samples was equal to m = I = 120. In some cases we used 

the additional smoothing of the data. 

The auxiliary parameter p has been used in this paper for base 

smoothing of our estimations, ](x) and n(x). It is evident that 

at high p we can see doublet with harrow splitting with broad 

point spread function. We have introduced a new parameter 

maxin,.i 
'fJ= maxiAI' 

(28) 

where nr -maximum of the reconstructed noise and A - maximum 

of the reconstructed spectrum. The influence of those two param­

eters, p and 'fJ on the results of the analysis will be presented in 

§6. 

5. Results of MENT reconstruction 

We have performed the computer simulations for MENT doublet 

structure analysis of the noisy experimental data. 
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Fig.!. Results of the computer simulations for equal intensities of 
the doublet components with gaussian point spread function for 
various doublet splitting without noise. 
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Fig.2. Results of the computer simulatim•~ for equal int.ensit.ies of 
the doublet components with noise level no(x) = 10%. 
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Fig.3. The same a~ in Fig.2, but with noise level no(x) = 20%. 
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Fig.4. The same as in Fig.3, but with noise level no(x) = 30%. 

13 



lnfF(w)l 

lniH(w)l 

~ 
1-1 d) 

10-2 
10-J 
10-• 
f0-5 ' J~ 10 -20 

g(x) w 

f} l=4.0 1~-
o.:. : ':M :' : ' ' I ' I 

-50 0 50 

X . ,,., I 
G'(w) 

n(x) 0. 17. 1000 ,, 

:~~ .. 
750 
S<JO 
250 'l __l '-'- -100 -50 0 X 

I 

20 
0 

0 20 

w 

Fig.5. Results of the computer simulations of the Fourier Trans­
form reconstruction for doublet splitting Ll. = 4 and for gaus­
sian point spread function with !7 = 2.5 and for two noise levels: 
n=O% and n=O.l%. 
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I. Equal intensities of the doublet components (At = Az). 
In Fig.l(a,c,e,g) we pre~ented the input signals f(x) in the form 

of the doublet with gaussian point spread function at various dou­
blet splitting Ll. = 2, 3, 4, 5 in units of x axis. In Fig.l(b,d,f,h) we 
see the corresponding signals reconstructed by means of MENT 
for different doublet splitting Ll.. 

In Fig.2(a,c,e,g) we presente(J the corresponding signals as in 
Fig.l(a,c,e,g) with additive noise no(x) = 10%. In Fig.2(b,d,f,h) we 
see the corresponding signals reconstructed by means of MENT for 
different doublet splitting Ll. and for auxiliary parameter p = 104

• 
The analogous results are presented for noise levels n=20 % and 
30 % in Fig.3 (for p = 2000) and in Fig.4 (for p = 2000). 

We see that even for noise level n=30 % the doublet structure 
could be reconstructed for doublet splitting Ll. 2: 3. 

Now let us compare the result~ for MENT shown above (Fig.l­
,2,3,4) with results reconstructed by the pure linear algorithms, 
such as Fourier algorithm technique without regularization. 

In Fig.5 the Fourier Transform reconstruction is shown for dou­
blet splitting Ll. = 4 and for gaussian point spread function with 
17 = 2.5. In Fig.5a the initial signal f(x) is shown. In Fig.5b 
the absolute value of the Fourier Transform IF(w)l in the loga­
rithmic scale is given. The point spreftd function h(x) is shown 
in fig.5c, and its absolute value of the Fourier Transform IH(w)l 
in the logarithmic scale is presented in Fig.5d. In Fig.5e we see 
ratio G(w) = F(w)/ H(w) a." a periodic function. In Fig.5f we see 
the reconstructed function g(x), a." inverse Fourier Transform of 
the function G(w) in the absence of the noise for Ll. = 4. The 
function G(w) for noise level n(x) = 0.1% is shown in Fig.5g. and 
the "reconstructed " signal in Fig.5h. 

II. The skew doublet with At = 0.2 · A2 • 
In Fig.6(a,c,e,g) we see the initial signals with doublet splittings 

Ll. = 2, 3, 4, 5. The MENT reconstructed signals are shown in 
Fig.6(b,d,f,h) in the absenee of the noise (no(x) = 0%). The 
reconstruction is indeed well for splittings Ll. 2: 3.0. Here we 

· observe that the most complex example of signal reconstruction for 
At = 0.2 · A2 is demonstrated by means of the MENT algorit.!nn. 
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Fig.6. Results of the computer simulations for shew doublet with 
A1 = 0.2 · A2 for doublet splitting /:,. = 2, 3, 4, 5 and for noise level 
n=O%. 
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Fig.7. The same as in Fig.6, but for noise level n=lO %. 

17 



p = 2000 

~;<oc-; 
1 b) 

~"""' 
o) j 

0.8 1- 0.8 
S(x) s(,) 

0.6 1- f(x) 0.6 f(,) 

0.4 t I I I 
0.4 ~ hi I I 

0.2 0.2 ··············-·· ..... - .. 

100 0 25 50 75 100 I X X 

c) 

1\ iter= 3 
' f d) /\ iter == 4 I I 

0.8 J:- 0.8 
s(,) s(,) 

0.6 1- f(,) 0.6 f(x) I I I I 

0.4 1- Ill I 0.4 1- II I I I 

0.2 1- 1/Uil I 0.2 1- /Jill I I 

0 ~'ll'•'t~J:r:<..·,.-,v,-l•'•~~,·r~Tl!::ll Q l!'il:~!l:f!i~lvll!lmiWI t:)IUHI'I~m:t.!!:IIO I 

I 0 25 50 75 100 0 25 50 75 100 
X X 

Fig.S. The dynamics of MENT iterations (see text). 
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Fig. 9. The dependencies of the parameter 1J verHus noise level 
u(%) for different p parameter. 
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The case of the skew doublet with noise level n = 10% is shown in 
Fig. 7. The reconstructed doublet can be seen at doublet splittings 
6~4. 

The efficiency of the MENT program is define by the number 
of iteration:; nece:;:;ary for good doublet resolution. Let us consider 
the dynamism of the iterative process for the case of noise level 
n=lO %. In Fig.8a we see the noise input signal S(x) and the 
first iteration for f(x) (constant value at "" 0.37). The results 
offer the 3-d and 4-th iterations' are given in Fig.8c and Fig.8d, 
respectively. The convergence is attended at the 4-th iteration, 
that is the convergence of the MENT program is extremely high. 

6. Influence of the auxiliary parameter p 

To demonstrate the stability of the results of the MENT re­
construction against the auxiliary parameter p (11], introduced in 
§2, we have analyzed the dependencies of the parameter 7J versus 
noise level n(%) for different p parameter. In Fig.9 we see three 
such functions 7J(n) for p = 100, 500 and 2000. The indicator of 
this stability is the initial slope of the curve 7)( n) for different 
parameter p, which is equal to 0.93. w-2 for p = 100,0.88. w-2 

for p = 500 and 0.92 .lQ-2 for p = 2000. In the range of p param­
eter 20:1 the various of the initial slope is only ±2.8%. So we 
have demonstrated that the MENT program is indeed very stable 
against large variations of the auxiliary parameter p. 

7. Conclusions 

1. The Maximum Entropy Technique (MENT) for solution of 
the inverse problems is explained. 

2. The effective MENT computer program for solution of the 
system of the nonlinear equations is developed and tested. 

3. The doublet structure analysis of the noisy experimental 
data has been performed by means of MENT. 

4. The comparison of the MENT results with the results of 
the Fourier algorithm technique without any regularization has 
been made. The relative tolerance noise level is equal to 30 % for 
MENT and only 0.1 % for pure Fourier algorithm. 
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5. It is shown that MENT reconstruction algorithm demon­
strates high stability to the variations of the p parameter. 
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