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Introduction 

A big solenoidal magnet L3, a muon filter and a dipole magnet are the basic ele­
ments of the spectrometer magnetic system for the ALICE experiment. Fig.I gives 
the 1/2 symmetrical part of the geometrical model of the spectrometer magnetic 
system with a superconducting dipole magnet. The papers [2,3,4,5) are devoted to 
the development of projects for the dipole magnet. The main requirements on· the 
projected dipole are conditions on integrals of the field component, that is ortogonal 
to the beam axis. The desired economy when manufacturing and exploitating the 
dipole magnet have led to the development of a series of projects named as "VUL­
CAN". All .the projects have been developed in JINR and were used as a base for 
the magnet in [5). Geometrical models of the magnets of the series are presented in 
fig.2. Their typical feature is that all the magnets are "warm" and their coils are of 
conic saddle shape. 

The paper suggests a construction algorithm of a computer model for such a 
coil. The coil field is computed by the Biot-Savart's law. In this connection some 
integrals are successfully calculated by means of analytical formulas. 

The computer models for the "VULCAN" magnets have been constructed in 
the framework of a differential approach for two scalar potentials e, 71, which are 
introduced by formulas [6): H = - 'vf in the magnetic material and H = - 'vf/ + jj• 
exterior to the magnetic material. Here His the magnetic field intensity, vector jj• 
is computed by the Biot-Savart's law. These methods were described in detail in 
[7,8,9). They are based on solving a boundary-value problem £01· two scalar poten­
tials e and 77 by means of the finite element method (FEM): 

V · (µVe) = 0 
V · V77 = 0 

in the magnetic material, 
exterior to the magnetic material, 

with the following conditions on the boundary between two mediums 

µ(ae;an) = 811/an - ii· D•, e = 11 + 11', 

and the condition T/ = 0 on a boundary that is distant enough from the magnetic 
material. Function µ=µ(I've!) is known, potential 77• is defined by formula 

11'(P) = 11'(Q) - fcP n;dt. 
-·· Q 

On the next stage, the modeling has been performed with regard to a local ac­
curacy control of computations. Here in parallel with the already known algorithm, 
two new algorithms are used. The former is based on a comparison of the fields 
computed by means of linear and square base functions. The latter is based on the 
definition of the local classical solution to the problem for FEM. 



Fig, 1. The magnetic system of the spectrometer ALICE, containing solenoidal 
magnet L3, superconducting dipole magnet and muon filter (the 1/2 symmetrical 
part is represented)._ 
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a) b) 

tj ~ 
Fig.2. Models of magnets from the "VULCAN" series (the 1/2 symmetrical part 
is shown): a), b), c) - the first, second and third magnets; d) - the coil of the 
third magnet. 
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1 Construction of computer models for the coils 

The magnetic field intensity exterior to the magnetic material can be conve­
niently represented as a sum 

ii= ff!+ H', (1) 

where vector ii 1 = .:_ V77 is a contribution of the ferromagnetic material, and vector 
ii• is the coil field intensity computed by the Biot-Savart's law: 

~ 1 l ~ 1 H"(P) = - J x V-dflQ, 
41r o. RPQ 

(2) 

where n, is a coil region, J is a known vector of the current density, Rpq is the · 
distance between points P and Q. 

Note that ii• is a classical solution of the following equations 

V · ii• = 0, V x ii• = 0, lim 'ff 1 (P) = 0, 
P-+oo 

within the whole space excepting the fegion fl,. Here 

V · ii• = 0, V x ii• = J. 

For the computation of the integrals in (2), we suggest the following. Let the coil 
· be located on a later~! ~rea of straigth frustum of a cone. In a space with Cartesian 

coordinate system (x, y, z) such a cone may be characterized by the inclination 
angle of the generator a and z-coordinate of the vertex z0 • Let L be a length of the 
generator and tp be an angle value on the lateral area of a cone (fig.3). Then we 
obtain: 

x = r ·sin~'= L: sina · sin(t/)/sina), 

y = r · coscp' = L • sina · cos(t/)/sina), 

z = z0 + L • cosa. 

(3) 

Thus, the location of ~ point on the lateral area of the cone is characterized 
by the couple of variables (L,,p). The evolvent of the lateral area of the coil is 
decomposed by the five types of superelements as it is shown in fig.3. The coil as 

the whole may be considered'as a sequence of layers. bounded by the lateral areas 
of the cones with the sam'e inclination angles of the generator and the different z­
coordinates of vertices. In this connection, an important condition is a conservation 
of a cross-section area of the coil and lengths of the arcs on the lateral areas of cones. 

The method for calculating the integral-(2) ·depends on a type of the integration 
region. For example, to compute the integrals over the volume formed by superele­
ments of types 1 and 5, some analytical formulas for a double integration with a 
consequent numerical integration are used. · 

Let us present these formulas presupposing that in a cylindrical coordinate sys­
tem fl,~ {(r,cp,z): r1 :5 r :5 r2,'P1 :5 tp $ tp2,p1r + qi :5 z :5 P2r + q2,P1<,q1c = 

4 
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Fig.3. The quarter oCevolvent of lateral area of frus~tum ofa cone and parameters 
for the transfonnation (3). 

5 



const#O, k = 1, 2}, i.e. n, is a solid formed by rotating a triangle or a quadrangle 
around the axis oz. The analytical formulas for the region n, obtained by the ro­
tation of the rectangle with the sides parallel to the coordinate axes, ·are given in 

' [10). 
In our case the integral (2) takes the form 

- Jo f - -, - -r 
H'(ro, <po, zo) = 

4
,r ln, (z cos(9)i + z sin(9)J + (r - r0 cos(9)k) RJ dzdrdcp, 

where J0 is a current density, 0 = cp-cp0 , Risa distance in the cylindrical coordinate 
system.- After the double integration, we have for the first two vector components 

J J -zr p b ar + b 
RJ dzdr =-;:; - al/2 ln I Jo. + Pl, 

where 

p = Jar2 + 2br + c, a= pr+ 1, b = Pk(q,. - zo)- rocos(0), C = r~ + (q1, - zo)2
• 

For the third vector component we have 

JJ -(r - r0 cos(0))rd d p 1 { b) 1 1
ar + b I z r=-+-s-- n --+p+ 

R3 a -fa, a_ -fa. · 

.+sgn(s)rocos 01n /jGi'j + rol sin0larctgG2, 

where 
s = p1orocos0 + q1o - zo, 

G _ p - sgn(s)(p1or + q,. - zo) G _ p1,ri sin2 0 - (r - r0 cos 0)s 
i-p+sgn(s)(p1<r+q1o-zo)' 2

- rolsin0lp · 

Then the obtained formulas are used for a numerical integration over the variable 
cp. 

To compute integrals ove~ the volumes formed by superelements of types 2 and 
4, the Gaussian cubature formulas for cube [11) are used. 

The volume formed by superelements of type 3 is devided into two parts. The 
double integration with the above-mentioned analytical formulas is realized for the 
first one and the Gaussian cubature formulas are used for the second part. 

\ 

2 Construction of computer models for the 
magnets under the local accuracy control . -

For the magnetic field modeling of the "VULCAN" magnets the code MSFE3D 
[7) is used. Due to a symmetry of the magnets it is enough to solve the boundary­
value problem in the 1/4 part ·of space. The conditions B •ii= 0 and jj xii= 0 are 
used, respectively, on the vertical and horizontal planes of the symmetry. Figs. 4a)• 
4c) show the partition of the magnet calculating region by hexahedronal elements. 
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Fig.4a. The partition of the first magnet calculating region by elements. 
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Fig.4b. The partition of the second magnet calculating region by elements. 
Fig.4c. The partition of the third magnet calculating region by elements. 
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Several approaches exist to create the procedures for a local accuracy control 
when solving magnetostatic problems by FEM (for example, see 112]). Note, that 
the accuracy must be higher, if the contribution of the coil field is large·r. It is true 
for all these approaches when the summands in representation (I) have the same 
sign. 

Let us select two most simple in realization and effective enough approaches. 
The continuity property of the normal component of the flux density vector and 
the tangential component of the field intensity vector on the boundary between any 
regions is used in the first approach. We presuppose that as a result of a numerical 
solving of the problem, a field is obtained in every element of discretization of the 
calculating region. Let f; be a boundary of the i-th element, B;, H; are field vectors 
in this element, 13;0 u1, Hiout are field vectors in the neighboring elements which have 
a common boundary with the i-th element. Then foi: the estimation of the local 
accuracy in the i-th element we can use the values 

➔ 1 / · ➔ ➔ 
or,;(B) = lfld Jr; l(B; - B;ouc). nldf, (4) 

I ➔ 1/ ➔ ➔• ➔ 
81,;(H) = 1ni1 Jr; l(H; - Hiout) X nldf, (5) 

where ln;I is a volume of the region n;, fi is a vector of unit normal to the J:>oundary 
f;. 

In the second approach two different methods of the field computation are used. 
Moreover, one of them gives a more correct result. To realize this approach, we 
prefer the following. Let us presuppose that the numerical solving of the problem 
gives the potentials T/;, j = 1, 2, ... 8 in vertices of the i-th hexahedronal element, 
and let Nj1l, j = 1, 2, ... 8 be linear shape functions (for example, (13)). Then the 
magnetic field intensity created in this element by the magnetic material can be 
computed by the formula 

s 
ff'•1(P) = - E11;VNj1l(P). 

j=l 

On the other hand, it is possible to construct a quadratic element, containing 
the i-th linear element and seven neighboring linear element.a in the limits of every 
superelement with the sufficient number of partitions. Let the quadratic shape 
functions N,'2> I= 1, 2, ... 27 be defined in this quadratic element. Then the vector 
ff! can be computed by the formula 

27 

ff1•2(P) = - E111'vN,<2>(P). 
1=1 

Thus, the accuracy of the field calculation in-the element fl; is characterized by the 
following value 

➔ 1 1 ➔, ➔, 82,;(H) = - IH ·1 
- H '2 ldfl. 

lfl;I n; 
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It is necessary to note that when solving the magnetostatic problems by FEM 
with first- or second- order base functions, the obtained solution is not classical in 
view of a insufficient smoothness of the generalized functions (14). Therefore, it is 
possible to obtain "semi-classical" solutions only using the representation (1) and 
the above-mentioned formulas for a computation of the. magnetic field intensity iii. 

However, it is naturally to require that the magnetic field has continuous partial 
derivatives and the following equations a.re t:ue 

'v •ff!= 01 'v X ff!= 0 

in some quite extensive and interesting for us region fi, i.e. the field is locally 
classical. If on a boundary of the region fi the vector ff I is known, then the problem 
of the required field finding has a unique solution [15),(16) and it is represented in 
the following form 

(7) 

• ➔, ➔ ➔, ➔ 

ff!,e(P)= 'v { H ·ndfq- 'vx { H xndfq, 
4,r Jr Rpq 4,r Jr Rpq 

where f' is a boundary of the region fi. To recalculate the magnetic field intensity 
ff! by the formula (7), it is naturally to define the characteristic 

Ba,i(ff) = -1
- { 1ff1·1 

- ff!,eldn 
lfl;I Jn; 

in every element fl;, belonging to the region fi. 
The characteristics (6) and (8) a.re used for the local accuracy control. 

a Computed results 

(8) 

According to conditions of the experiment, the dipole magnet of the spectrometer 
ALICE must satisfy the requirements (1): the integral of the main field component 
is equal to 3 T • m, the field magnitude in the centre of the magnet is 0,7 T, the 
diameter of the free aperture is 3,9 tn, its length Lm ~ 5 m. In view of this, we give 
the values of the parameters for all three magnets of series "VULCAN". Table 1 
presents the maximal field magnitudes Bm on the axes of the magnets, the current 
densities in the coils, the areas of the coil cross-sections S, the diameters of free 
apertures D and the lengths of the magnets Lm. Table 2 gives the integrals of 
the main field component within the magnet aperture. The integrand is computed 
in the polar coordinate system ( r, 8, <p) on the rays starting from the point that 
approximately corresponds to the centre of the magnet L3. 

Fig.5 shows the behaviour of the field component B 11 along these rays for all 
three magnets for <p = 45°. The point with coordinates x = y = z = 0 corresponds 
to the centre of the magnet. 
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Fig.5. The behaviour of main field component along rays in polar coordinate 
system for three magnets. · 
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V The accuracy of the field computations can be characterized, to a certain degree, 
by the local accuracy estimations obtained in some part of the magnet aperture. The 
third magnet and the part of its aperture, contained in the volume V = {(x, y, z) : 
lxl $ 2m, IYI $ lm, lzl $ lm} are considered as an example. Table 3 presents the 
maximal and the minimal values of the characteristics ( 4),(5),(6),(8) for the obtained 
flux density vector with respect to the maximal field magnitude Bm on the magnet 
axis: . 

01,;(B) = o;,;(B) + ot;(B), 02,;(B), 03,;(B). (9) 

Note that the coil field contribution is equal to 58.8 % in the point of the magnet 
axis, where the maximal field magnitude Bm is reached. 

Table 1 

number of Bm(T) current density S(m2
) D(m) length 

magnet ( A/cm 2 ) Lm(m) 
1 0.7145 242. 0.35 2.42-4. 
2 0.7212 242. 0.35 2.42-4. 
3 0.7089. \ 241.21 0.3918 2.58-4.1 

Table 2 

number of 
magnet 

1 

2 

3 

V' = oo 
<p = 45° 
'P = goo 

'P = oo, 
'P = 45° 
'P == 90° 

'P = oo 
'P = 45° 
'P = goo 

8 = 0° 
2.712 
2.712 
2.712 

8 = 0° 
2.717 
2.717 
2.717 

0 = 0° 
2.732 
2.732 
2.732·· 

fLm B 11dl (T · m) 

0 = 2° 0 = 7° 8 = go 
2.749 3.217 3.456 
2.728 2.792 2.636 
2.710 2.811 3.000 
8 = 2° (} = 70 0 = go 
2.754 3.234 3.495 
2.733 2.795 2.647 
2.713 2.781 2.940 

0 = 2° 0 = 7° 8 = go 
2.757 3.148 3.461 
2.748 2.823 2.749 
2.741 2.938 3.164 

5. 
5. 
5. 

Figs. 6a)-6c)1 give the behaviour of the relative characteristics (9) on the bound­
aries of considered volume V in the third magnet aperture. The value of every 

1Color figures can be find in direetory /afa/cern.ch/user/y/yuldash/public 
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Fig.6a. The distribution of the characteristic 01 within middle part of the third 
magnet aperture. 
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0.1 0.6 0.8 1.1 

Fig.6b. The distribution of the characteristic 02 within middle part of the third 
magnet aperture. 
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0.1 0.6 0.9 1.2 

Fig.6c. The distribution of the characteristic 03 within middle part of the third 
magnet aperture. · 

16 

characteristics with the number i corresponds to the centre of the i-th element. 
Every element in the volume V has the following dimensions: h., = 10cm, h11 = 
8.3125cm, h. ~ 19.83cm{z < 0), h. ~ 20.875cm(z > 0). As it is clear from these 
figures, the values of characteristics 81(8), 82(8), 83(8) do not exceed 1.7, 1.1 and 
1.2 %, respectively. 

Table 3 

81,;(8) (%) 82,;(8) (%) 83,;(B) (%) 

min I max min I max min I max 
0.11 I 1.66 0.064 I 1.10 o.084 I 1.20 
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