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1. Introduction 

In this paper, we present results of studies of efficiency of the critical- component 
direct method proposed in [1 + 3] for solving degenerate and ill-posed systems of linear 
algebraic equ~tions · 

(1.1) AZ=F, 

where A is a square matrix of the general form with real elements a;;, A = {a;;}, Z 
is an unknown vector with coordinates z;, Z = {z;}, and F is a known vector with 
coordinates /;, F = {/;}, i,j = 1, 2, ... , m. It is shown that for systems like (1.1) the 
critical-component method makes it possible to numerically determine the only normal 
-pseudosolution (Z+= A+ F): IIAz+- FIi = infllAZ - FIi, IIZ41 = infllZII, where ZA 

zezA zezA 
is a set of all pseudosolutions to system (1.1), and to obtain the unique matrix A+, 

pseudoinverse of A: IIA+A-EII = inf II ,4-1A-EII, IIA-+jl = inf II 1-111,A+A = AA+, 
1-•enA ' 1-•enA 

where E is a unit matrix and nA is a set of all A -1 , pseudoinverse of A. In this case, 
even if the problem (1.1) is substantially ill- posed, the quantities z+ and A+ are stable 
to small changes of input data (A, F). Comparative analysis of results of the numerical 
solution performed for a large number of problems like (1.1) both by the new met.hod and 
by those known earlier shows that the critical-component method is on the average more 
effective than any method compared to it. When det A # 0 and a system is well-posed, 
the normal pseudosolution z+ of system (1.1) derived by the critical-component method 
coincides with its usual solution Z, and A+= A-1 is a matrix inverse of A. One of the main 
problems in numerical solution of ill-posed systems of algebraic equations is well-known 
[4,5,6]: there can be large changes in the solution; beyond the scope of admissible values, 
corresponding to small changes in the matrix of a system or/and its right-hand side. The 
above breakdown of continuity of the inverse mapping Z = A-1 F, if A-1 exists, is caused 
by a great norm IIA-111 and, as a result, by largeµ= cond A, the condition number of the 
system matrix(µ= IIAll · IIA-111, if det A# 0 andµ= 00., if det A= 0, ~here·Jl · 11 are the 
corresponding norms), i.e; even for an exactly given vector•F a negligible relative error in 
calculating A-1 can produce a large distortion of the searcb,ed vector Z. This effect is to be 
taken into account sincerealistic calculations are carried ou~ with a certain finite accuracy 
and , besides, sometimes one knows not the exact system AZ = F, but only a system 
AZ= F, approximate of it,·which obeys the inequalities !IA-All ~ h* and IIF-FII ~ o• 
( the meaning of norms is defined by the character of a problem). The numbers h* > 0 and 
o• > 0, specifying the norms of deviations of approximate data ( A, F) 'from the exact ones 
(A, F) of problem (1.1) (h* ~ ho+h1,8* ~ 80+81,ho;?: 0,h1 > 0, Oo;?: 0, 81 > 0), are sums 
of (ho, 80),proper model (complete) errors of problem (1.1) and of (h1, 81), round-off errors 
[7,8] when writing the data into the computer memory. Since there are, thus, infinitely 
many systems (1.1) with the input data (A, F), indistinguishable within the accuracy 
(h*, o*), we can speak only about deriving an approximate solution to system (1.1). As 
a result, difficulties may arise in numerical computations for some systems of equations 
(1.1) with square matrices when answering the following questions: 



- is the system degenerate "within accuracy (h*, a*)" ill-posed?*) and 

- is a given system ill-posed by virtue of its being degenerate or is it nondegenerate 
but ill-posed? 

Indeed, if the system AZ = F with a square matrix is degenerate, then det A= 0, i.e., 
the matrix A has some of its eigenvalues equal to zero. But if det A =I 0, and the system is 
ill-posed, then the normal matrix AT A has some eigenvalues only close to zero µf, ... ,µ;,. 
(Jµ;J are singular values of the matrix A). Consequently, systems of linear algebraic 
equations with square matrices, which are ill-posed and degenerate "within a given 
accuracy ( h*, a*)" may turn out to be indistinguishable in the process of computations. 
Besides, the problems (1.1) and AZ= F can be inconsistent if one defines the criterion 
of consistency [9] determined by accuracies (h*, a*). It may also happen' that det A = 0 
(or det A= 0), i.e. system (1.1) (or AZ= F) has an infinite number of solutions. Then, 
there arises the question: what is to be understood by the numerical solution to the initial 
system AZ= F. There are various conceptual approaches to solve this problem (see, for 
instance, reviews given in [4,6,10], etc.). 

If one takes advantage of the regularization [4], the solution z+ to the system AZ = F 
(1.1) will be the regularized normal pseudosolution za that minimizes the discrepancy 
IIAZ - FIi on the set of all its pseudosolutions ZA if IIZ0 IJ == _inf IIZII and za is stable 

ZEZA 

to small variations in (h*, a*) of input data (A, F). The parametric vector za is directly 
computed by solving the sequence of normal systems of equations (AT A+ aE)Z0 = AT F 
with the aim of a more accurate iterative determination of the minimum of quadratic 
functional M 0 [Z, F,A] = IJAZ-FJl2+aJIZll2 with the regularization parameter a(a > 0), 
determined from the discrepancy, i.e., from the condition IJAZ0 

- Fil = a., where 
a.(a. > 0) is a numerical function of (h*, a*) and Z0 [4,5,6]. 

The other group of numerical methods of solving the problem {1.1) rely on searching 
for the generalized matrix A+, which is (pseudo )inverse of A, either by the method of 
singular decomposition (A = UJW; where U and V are orthogonal matrices, E is a 
diagonal matrix, whose elements are singular numbers lµ1 J 2 lµ2 I 2 · · · 2 Jµm I 2 0 of the 
matrix A, and A+ = VTE+UT), or by some other method [7,9,10,11]. Common to both 
of the approaches is that in their program realization they solve ( each by its own means 
and with its own efficiency) the problems of minimization of norms JJAZ - FJJ and IJZII 
and of the continuous dependence of the solution z+ on small changes in (h*, a*) of input 
data (A, F). Here it is set thatµ= cond A= JIAJJ • JJA+JJ, and the main problem no¥{ is 
a stable calculation of the rank of A [7,9]. · 

•.>Systems degenerate "within accuracy (h*,J*)" are not always ill-posed (3.8 example is system (1.1) 
with A= AT, singular (eigen)values µ 1 = µ 2 = ... = µm = 10-6, determinant detA = 10-5m and the 
condition number cond A=µ= IJAJJ · IJA-111 = 1). 
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Conceptually, the critical-component method can be attributed' to the second of 
indicated groups of methods. It is based on the idea of constructive search ( under the 
condition that matrix and vector norms are consistent: 11z+JJ S JJA+JJ · 11.FJJ; and the 
matrix norm is induced by the vector norm: JJA+JJ = sup (IIA+ .FJJ/JJ.FJJ) (5,9]) of an 

IIFll,W 

optimal representation for the matrix A+, pseudoinverse of the matrix A, in the process 
of decomposition of system (1.1) into subsystems, whose solution is stable to errors •) 
(c1, co) and small (h*, a*) changes of input data (A, F). High efficiency of the critical
component method is provided by its basic co1;stituents: 

- the reduction, stable to errors (h*,a*;c1,co), of system (1.1) to two-(tri)diagonal 

systems; , 
- generalized processes {A, G}, stable to errors (c1, co) [14], for calculating ratios of 
upper (lower) corner minors of triangular matrices which allow one, accurate within 
constants (c1 and co) of the computer arithmetic, to determine the structure and 
diagonal elements of matrices that are inverse of them (introduced in [12.13]): 
- the algorithm of optimal (with (c1, co)) decomposition of the system AZ = Finto 

well-posed subsystems; 
- the algorithm of optimal sewing of the solution z+ to the system AZ = F from 

well-posed subspace solutions. 
. . . . 

In y.rhat foUows, along with problem (1.1) of the general form. we will consider the 
pniblems of numerical solution of degenerate and ill-posed systems of linear algebraic 

equations 

{1.2) 
(1.M 

C3X = Y, 
C2X=Y 

with squai;e real ~atrices C3 and C2 of order m, of the tridiagonal mid two-diagonal form 

respectively: 

(1.4) I
' '11 T2 I P2 '12 T3 

C3 = · .. · .. ·:. , 
. Pm-,Jm_,r, 

· Pm qm 

C2 = 
qi T2 I 

q, :;~:. ,~ . 

qm 

where X = (x1,X2,••·•xmff ai{d )( = (:i:1,:i:2,••··:i:mf are unkiio~n ver.t.ors: and Y = 
(yi,y

2
,.,.,Ymf and Y = (iii;/j~,--•,Ym)~ are given m-dimeusioual vectors. {q;}f~1 are 

diagonal elements ~nd {p;,r;}~2 are sub(off)diagonal elements of {uati·iccs C3 and C2, 

•lThroughont we use the notation: E1(e1 > 0) is the modulus of relative error of the arithmetic of 
computer operations with real nnmbers with a floating point; Eo(eo > 0) is the modulus of absolute error 
of the computer zero(}, i.e. of any small real umuber (except for O) from the interval(} E (0 - fo, fo + 0). 
where O is the nsual zeroth element of the real axis. If 9 E (U - Eo, fo + 0) and (J # U. it is an:eptcd 
that (I = U [8,9]. Using constants t 1 and Eo, one can ,,stimate [7] errors of arrangemcut (writing) of tlu· 
real [m, m) matrix A and m-dimensional vector Fin the computer memory in the form II Ar""''' - Alie :5 
(e-1JJAIJE + Eom = h1), JJF,.mp - FJJE:5 (E1JJFJIE + EoJm = oi), whern JJ · IIE are the Euclidean norms of 
matrices and vectors, and h1 > 0, .51 > U. 
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respectively. Without loss of generality, we consider systems (1.3) only witl1 the right 
two-diagonal matrix. 

Since these problems are a particular case of problem (1.1), all said above applies also 
to problems (1.2) and (1.3), whose solutions x+ and .x+ are constructed more easily than 
z+. Therefore, in the course of program realization of the above conceptions of solution 
of problem (1.1), the initial stage [4,5,7,9,13,15] consists in its reduction to problems (1.2) 
and (1.3), i.e. 

(1.5) { 
C2 ( QTZ) =PF, where C2 = P AQ is a two-diagonal matrix. if A =f AT. 
C3 (QTZ)=QTF, where C3 = QTAQ is a tridiagonal matrix, if A= AT. 

Here UTU = E = UUT, U: Q, Pare matrices of reflections or rotations. The orthogonal 
transformations (1.5) stable*) to errors (h•,J•;t:1,t:o), do not often improve the nature 
of the problem being ill-/well- posed. Ill-posed systems of type (1.1) sometimes can 
numerically be reduced to ill-posed systems of type (1.2) and (1.3), with the notation 
in (1.5): X = QTZ, Y = QTF and .X = QTZ, Y =PF.Therefore the basic problem is 
numerical solution of such degenerate and ill-posed systems. Once the vectors X and .X 
are obtained, we determine the solution to system (1.1), vector Z, in the form 

(1.6) Z = QX and Z = QX. 

Numerical solution of ill-posed systems (1.2),(1.3) with tridiagonal and upper two-diagonal 
matrices can be best realized by the following methods [4,7,9] : the inverse substitution 
with normalization, regularization, a singular decomposition· with exhaustion. In sect.3, 
we present (in particular) the results of comparison between computations performed by 
these methodes and by the new one. 

•l1t is known [5,7,9] that the Euclidean and spectral norms of matrices are invariant (theoretically) 
under the orthogonal transformations (1.5), i.e. there hold the equalities: IIC~IE = IIPAQIJE = 
1/AIIE, IICJIIE = IIQT AQIIE = IJAIIE; IIC~l2 = IIPAQll2 = IIAJl2, IIC~l2 = IIQT AQll2 = IIAll2 and 
I/Pl/2 == I/Qlj2 == 1, 1/PI/E == IIQIIE == rm. As a result, µ == cond A == 'cond C3 (or cond C2). Here 
IIP FIIE == 1/YIIE, IIQT FI/E = 1/YI/E; IIAl/2 is a norm induced by the Euclidean vector norms IIZI/E' and 
IJFIIE; M(A) == m• Il_lax Ja,;J and 1/AI/E are norms consistent with norms IJZI/E and 1/FIIE• However, 

15•,J:Sm . .., 
in real computations in process (1.5) of the reduction of system (1.1) to form (1.2) or (1.3), using the 
Householder U transformations (reflections), we obtain the estimates [7] 

Jj(C2)comp- C2IIE = ll(PAQ)comp- PAQIIE S {[U~c;:J~;,IJAI/E f (
2
1~'(!)$·~•) =f2(m)I/AI/E] :h~}, 

l/(PF)comp-PFIIES(c,IIFIIE+o,)::c52and ; ' • 

l/(C3)comp-C~IE= 1/(QT AQ)comp-QT AQI/ S {[(1~~:::=~!;;-,,IIAIIE ·I l;:(~42~·~:) :h{m)IIAIIE] :h2}, 
ll(QT F)comp - QT FIIE S (€, IIFI/E + 0,) = c52, where E:r ~ 29£1 and 0, ~ (2m + 2./m)E:o, h2 > 0, c52 > 0. 

Similar inequalities could also be written for A,F, where matrix A and vector·F differ from A and F 
by simultaneous inclusion of inherited errors and errors of writing into the computer memory. From the 
above inequalities it follows that problems AZ == F and AZ = F are continuous with respect to. the 
orthogonal transformations (1.5). Though the inherited errors (h0 ,c50 ), if known, are, as a rule,·_much 
larger than the total (h1 + h2 , c51 + c52) effect of the errors of writing and transformations (1.5), the latter 
can influence the character (degree) of problem (1.2) or (1.3) being well-/ill-posed. The cited monographs 
contain also simplified estimates for errors h2 and c52. 
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2. Critical-component method for numerical solution of degenerate and ill
posed systems of linear algebraic equations with tri- and two-diagonal 

matrices 

Below we formulate the theorem according to which one can numerically obtain the 
only stable non-iterated normal pseudosolution x+ of the system of linear algebraic 
equations of the general form (1.2), stable to errors (t:1 ,t:0 ) and (h,J), by the critical-

component method. 
The vector x+ and the representation for' the matrix consistent with it ( Ct = B), 

pseudoinverse to C
3

, are determined as functions of stably computed vector X (a regular 

component of x+) and matrix B (a regular component of Ct). In contradistinction to 
the problem of computation of singular numbers of matrices C3 being unstable in nature, 
the critical-component method is stable owing to the stable processes of computation of 
the ratios of upper (lower) corner minors {A, G} of this matrix. Thus, the method of 
solution based on the search for a non-parametric stable component of the pseudoinverse 
matrix [7,9] found one more argument for its being efficient ( contrary to conclusions 
of perturbation theory according to which x+ and ct are not valid for computer 

calculations). 
Theorem. Let C3X = Y be either a degenerate or an ill-posed system of linear 

algebraic equations with a square, of order m, real tridiagonal matrix of the general form 
C3 (1.4). Also, let the system C3X = Y, where IIC3-C3II ~hand IIY - YII ~ J, being an 
image of the system C3X = Y in the computer memory, be ill-posed but nondegenerate. 
Then the only pseudosolution X of the system C3X = Y that is minimal in norm (IIX+II = 
min), obeys the condition of the norm of discrepancy being minimal (IIC3X+-YII = min), 
and is stable to computation errors (t:1 , co) and to small changes (h, J) of the input data 
(C

3
, Y), can numerically be obtained by the following direct critical-component method•>: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Start of computations: 
k = 1,i = m; 
lk = i; 
[k] z. [k] [k] { o, if ,k = 1, 
x;= I: B;e Ye, </>;= [kl + . . 

e=1 -. B;zk r1k+i xzk+i, 1f k > l, 
if i = lk, then (2.5), otherwise (2.3); 

[k] 
if I </>; I < 1/ci, then (2.4), otherwise k = k + 1 and (2.1); 
. . 1 [k] 0 

J = i + , X lk+l = i 

{ 

[k] [k] [k] 
<1? _ IY;I - IP; X;-1 +q; X; +r;+1 X;+i I, at IY;I ~ 1, 

j - [k] [k) [k) 
l - IP; x ;-1 +q; x; +r;+1 x ;+1 1/IY;I, at IY;I > 1; 

• )Here h S ho+ h1 + h2 and c5 S ,50 + c51 + c52 if the system C3X = Y is a reduced image of the system 
AZ= F; and h S ho+h1,c5 S J0 +J1, where (ho~ 0,J0 ~ 0) are hereditary errors and (h1 > O,J1 > 0) 
are errors of writing the system C3X = Y into the computer memory if system (1.1) is initially of form 

(1.2). 
Since numerical solution is derived for the system C3X = Y that is, within accuracy (h,c5), 

indistinguishable from the system C3X = Y, for simplicity of the notation, the very algorithm of 
numerical method and its proof are given in the notation of the system C3X = Y, i.e., without "~", if 
this does not cause misunderstanding. The requirement det C3 :p 0 of the theorem will be removed later. 

x+ = (xt,xt, ... ,xt_)T. 
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(2.5) 

if J«li ;I $ 2c1, then (2.5), otherwise k = k + 1 and (2.1); 
+ [k] [k] 

X; =X; + ,P;; 
if i = 1, computations are over, otherwise i = i - 1 and (2.2); 
End of computations. 

Here: 
~ ~ 
B;; (lk+1 $ i $ h, 1 $ j $ lk and k = 1, 2, ... , n) are elements of submatrices B of the 

matrix B=G3
1 that is inverse of a well-posed matrix G3 of the form: 

(2.6) 

0 

Ca= 

where 

(2.7) 

[ql T2 l ("'. ''.. ~tiJ:«+•••I 
Plnqln 0 

P13+1 [§13+1 r13+2 l 121 13+1 
P13+2ql3+2T13+3 =C l2 

·········· 
P12 ql2 0 

ln+1+l=l Int ..... •.-----
1 

In 
1,+ 

⇒ 
12 

12+ 

1 

L!J 
- - -

[2] 
B 

~l2+1 = P12+2q12+2T12+a I!,= 
P12+1 [§12+1 r12+2 ] 

(l1=m) ......... . 

Pm qm 

- [k+l] 
ql•+i+l = ql•+i+l -p,•+i+l B 1.+11H1r1•+i+l• k = 1, 2, .. , n - 1 

l2 t l1=mt 

' ' ' ' ,. 
-

[l] 
B 

0 

B 

[k+l] [k+l]. 
and B 1o+,1•+1 are the last diagonal elements of submatrices B which coincide with 

[k+1J1•+2 +1 
the last diagonal elements of submatrices, inverse of well-posed submatrices C k+t 

separated by the method; and n is the number of separated subspaces. 
[k] 

Elements B;; are calculated (1] by the· formulae: 
(2.8) 

[k] 

B;;= 

w; fl /3e, ifl ::; j < i, lk+i + 1 ::; i ::; lk, 
e=i+l 

0 for all i from, j <i $ h, 

0for all j from 1$j<i, 
. [k] 

J • 

if A;=0, for any j from h+i + 2$j$h, 

if ~;= 0, for any i from lk+l + 1 $ i $ lk-1, 

w; TI /3 e, if lk+i + 1 ::; i < j ::; h, 
e=i+l 

0 for all i from lk+1 + 1 $ i < j, if ~;= 0, 
0 for all j from i < j $ lk, if A; = 0. 

. al l [k] f b . [k] d . . . ( ) [ l Drngon e ements Bii o su matrices B an quantities W; m 2.8 are calculated 1 by 
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the formulae: 

(2.9) I
~ ~ ~ ~ 
B;;= (Ai+i+ Gi-1 -q;)-1and W; =B;;. if A; f. 0 f.Gi. 
[k] [k] [k] [k] [k] 
B;;= 0, Bi-Ii-I =Gi-1 wi, B;+1;+1 =G ; 1and wi = (-piri)-1. if A; = 0. 
(k] (k] [k] (k] 
Bii= 0, Bi-Ii-I= A;1, B;+1;+1 = Ai+lwi and wi = (-ri+1Pi+t J-1. if Gi= 0. 

[k] 
sequences {A} and { G} are computed by the foi·mulae: 

(2.10) {
A;+1=q;-p;A;1r;, A2=q1, i=2, .... m., ifA;-/=0forall2$i$m: 
if A;= 0 for any i from (2 $ i $ m.), then A;+1- is undefined, but A;+2= qi+i: 

(2.11) l
[k,j [k] (k] (k•] 
Gi-1=qi - ri+l G;1Pi+i• G1k-1= q1k,i = lk- 1, h- 2 ..... lk+l + 1. if Gif. 0: 
~ ~ 

if Gi=0for any i from (h+i + 1$i $lk -1), then G;-1-is undefoied. 
[k] 

but Gi-:F qi-t • 

~ ~ 
The structure elements /3e and /3 e which determine the elements of submat.riccs B and 

[k] 

their products TI /3e and IT /3 e are computed [1] by the formulae: 

(2.12) 

(2.13) 

l
' -p;A;1, if A; f. 0, 

/3i = -pi, and /3;+1 = -P;+1W;, 

if A;= O; l 
[kr1 

-ri+l Gi [k] 

/Ji+1= -ri+.l• and 
(k·] 

if G;= 0; 

(k] 
if Gif. 0. 
[k] 

/1;= -TiW;, 

i . . . j [k] l[k) [~] [~] 
II/3 

-{/3;·/3;-1···/3;+1, 1f1<i, Il/3" _ 11. 
1 
... 13. 

1
•11. ifi<1· e- if'·. e- •+ ,- ,. • 

e=;+1 l, J ~ i, e=i+i 1. if i ~ j: 

Proof. Let the system C3X = Y, according to the theorem condition. b1? ill-posed 
but non-degenerate. Then its solution x+ with the properties given in the theorem does 
theoretically exist and it is unique. Let us show that it can numerically be obtained by 
the method (2.1) + (2.13) called in (I] the critical-component method. To this end. we 
verify first that to the solution x+ there con·esponds the following generalized LDR [I] 

7 



decomposition of the matrix C3 (1.4): 

[' ,] 
(2.14) 

(3] (3] 

(P,3+,B/3/4+1 )oo•(P13+i8t3/3) [ 1 l 
Ca=LDR= I 

1 

X 

(2] (2] 

1,,,,p,,,, .. , ... ,,,,,p,,,,, [ 1 , l 
[

qi T2 j 
P2 q~-~~, =til:n+1+I=l) 

Plnql l 
(n] ) 

1 (B11,f1n+1 

[ 1 ,17 •• ~ ... , 
X P13+_2_q:~~~~1~;°3 =~(;+1 

l

ijl3+l rl3+2 J 

Pi

2 

qi lii12+1 T12+2 j 
~12+1 = P12+2ql2+2T12+a 

U1=mJ •••.•••••• 

r l 1IJJ,a+tf12+1l 

[2] ) 

1 (''''''" ,] 

' Pm qm 

h . . d h 'd' al . (khk+I +I(k 1 2 l l l ) w ere 1t 1s assume t at tn rngon matrices C 1k = , , ... , n; 1 = m, n+1 + = 1 
are well-posed and their first diagonal. elements are denoted by ' · . 

(2.14)' 
(k+I] 

ii1,+1+1 = q'•+i +1 -p,•+i+I B '•+il•+ir1,+1+I, k = l, 2, .. , n - 1, 

lk+I . , , , . .. [k+I] , 
where {P;,q;,r;}i=l +I are elements,of the m1tial matnx Ca (1.4), B 1k 1; (J = 

k+2 . ,, , , • + 
[k+l] . . . 

h+1, lk+i -1, ... , lk+2 + 1) are the last rows an~ B ilk+I '(i = lk+I, lk+1 -1, ... , lk+2 + 1) are 
. , , . [k+l)ik +1 . . . 

the last columns of matrices, inverse of the matrices C 1 +
2 , computed in accordance 

k+I 
~ - ~ 

with B;; (2.8) since they are elements of rectangular submatrices B (2.8). From the 

assumptions for Ca being nonsingular and for square matrices ~ :z+1 +i being well-posed 

it follows that the LDR decomposition (2.14) is unique and stable to errors (h,E1,Eo), 
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And the matrix B = Ct can uniquely be represented in the form (B = (E + 0) .8): 

[

ql T2 l-l 
P2 ~2-~~-- = (ti):n+1+I=l))_l 

Plnql,. 

(2.15) B=(B= [
- . J-1 ql3+lrl3+2 

P13+_2_q:~~~~l
0

3:3 = (~:t1)-1 

P12 q, [- ]_1 
· ql2+1 T12+2 

(~12+! )-1= P!2+2ql2+2T12+3 
(11-m) •••• ••••• 

Pm qm 

X 

[' ,] 
---------------

l•J (3] 

J 
(-P13+i81314+il l~,,,P,,,,> [ 1 

XI )+ 

[2] (3] ,' , (2] , (3] (2] ,, (2] , 

.,,,p,,,;,,,,,P ,,,, ,.)···•,,•P•,•,.-,,,P•,•S)l~,,,P;•,,. l···l~,,,P,,•J [ _' . 

, ] 
(n] l"J (2] 

[
0 ... ] (-Bu~1n+1l 0:·:~ B11,f1~+1B13+11{12+_1l 

Q (n] Jn] (2] 
(-B lnlriln+1) Q ... Q (B lnl,l'1n+1B1a+•'{12+1l 

[" 
(2] 

+(n= I' l ~•·,t·· .. • b-s. 
0 (2] f ,,.,,,,., 

"l 
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Schematically, the matrix B can be represented as follows: 

(2.15)' 

ln+11l=l In t 

''IT] -
.::.,1- - -; I 

l2 I 

l2 l1=m t 

b+il I I 
l1=~. c___ ___ ___J 

[1] 
B 

0 

=B. 

Representation (2.15) is easily established by a direct verification of the matrix equalities 

C3 B = E = BC3 , with representations (2.8) + (2.13) taken into account for elements ~ij 

of the matrix Band decompositions of C3 and B given by (2.14) and (2.15). 
Now using representation (2.15) for B, we obtain components of the vector x+ in 

form (2.2) and (2.5). From (2.15) it follows that x+ can be written in the form 

(2.16) x+ = (E + f!) x=x +n x, 
where the vector X looks as follows 

(2.17) X= (B=Ca -1)Y 

and is a unique, stable to errors (h, c5) and (c1 , co), solution of the well-posed system of 
linear algebraic equations 

[

ql T2 J 
P2 q~-~~- =~}~n+1+l=l) 

Plnql Q [ t l 
--- ~ 

r 

[n] l .:cl 

(n] 
x,n 

(2.18J (c3= P13 +1 [ii1
3

+1 r1
3
+2 l [[2] l : 

P13+~~l~~-2.T:~~~ =~:tl ) • ~:3+1 = [~l3+1] 

P12 ql2 0 ~] Y1 

P12+1 rii12+lrl2+2 . l [[l] 

12 l [Y12:ll [1]1 + Xl2+1 . 
C (21 ~ )= P12+2ql2+2T12+a . : 1-m . .. . . . . .. . . [l] Ym 

Pm qm xm ~ 
~ 

0 

X 

which differs from the initial system C3 X = Y by the change of the corresponding off
diagonal elements to zeros and of diagonal elements q to elements ij calculated by formulae 
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(2.14)1• Here the vector X includes components given by sums (2.2), which follows from 

the representation B (2.15) and (2.8). 
For the matrix f! (2.15) we can write the following decomposition 

] 

(nl J 

[

Q... (-B "1'n+l 
0 c-r.&\nrrl"rn+• l 

[' ,] 

(2.19) f!= 

[° 
(2) ) 

l (-B13 +1'{12+ 1 

(2) ) 

0 (''"''" .] 

[

1_. _ l c-
1
i,\t2'2+1) 

(2) 

1 r~•w,,,, I .] 

Then for components of the vector f!•X, denoted as vector </J, we obtain the explicit form 

(2.20) 
o _ [n) + [n) + . . · (2) . , + 

f!•X- [(- B llnTln+l)xln+l, ··•, (- B lnlnTln+1)X1n+1, ... , (- B13+ll2 1 l2+1)X12+1 • ··· 

[2) + ]T 
... ,(-B1212rl2+1lX12+1;0 •... ,o =</>. 

Consequently, components of the vector </J are also calculated by formulae (2.2). 
As a result, we have established that if x+ is a normal (pseudo )solution of the system 

C3 X = Y with the properties given by the theorem, then to it there correspond consistent 
with it decompositions (2.14) and (2.15) for matrix C3 and its (pseudo)inverse matrix 

B =ct.In this case, representations for x+ =X +f!•X (2.16) and Ct =B +f!•B (2.15) 
being consistent with each other (since they are calculated with the same matrix f! (2.15)) 
are unique and stable to small errors (h,c5) and (c1,c0 ) in view of decompositions of C3 

(2.14) and Ct (2.15) being unique. Stability is a consequence of the matrix C3 (2.18) 
being well-posed. 

Now let us show that if the numerical solution of the system C3X = Y is obtained by 
the method*) (2.1) + (2.13), then it is minimal in norm and provides a minimum of the 
discrepancy norm. Indeed, let x+ is determined in the form (2.1) + (2.13). Then from 
(2.5) it follows that the vector x+ can be represented as a sum of two vectors, 

(2.21) x+ =x +</J, 

•) As we can see, this method includes the algorithm and criterion (2.3) + (2.4) of separation of well
posed subspaces and, respectively, the procedure of numerical finding of x+. It is to be kept in mind 
that the quantities~; (2.4) obey the inequalities l~;I :5 l~,I, where~; is a discrepancy. As a matter 

(kl (kl [k] 
of fact, l~;I = IIY;I-IY; - [Y; - (P,; x ;-1 +q1 x; + r;+1 x ;+illll = llv;I- Ll/1 - ~;II :5 l~,l.sinn• 
IIY;I - IY; - ~;II :5 OY; - (Y; +~;)I= ,~;ll• 
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whose co~ponents are determined according to (2.2). The vectors .X and </> consist of n 
s~bvectors of proper dimensions, i.e., 

o _ (n] (n] (k] (k] [2] [2]. [I] _ + [I] _ + T 
X'- [( X 1, ... , X In), ... ,( X1k+1 +1, ... , X 1k), ... ,( X13+I, ... , X12), ... ,( X12+1- X12+1' ... , Xm- x;;J] ' 

(n] (n] (k] [k] [2] (2] (1] (I] 

</>= [( </>1' ···•</>in),···• ( </>1k+1+1 • ···, </>1k), ···, ( </>13+1' ···• </>12 ), ··•• ( </>12+1 = 0, ···• </>m= 0)f, 

corresponding to well-posed n-subspaces that are separated in accordance with the 
criterion (2.3), (2.4). 

From (2.1)+(2.5) we have that to the solution x+ there corresponds the decomposition 
of B = c+ of the form (2.15), which results in the representation for C3 (1.4) of form 

(2.14). Then, as mentioned above, the solution x+ is written in form (2.16), where.Xis in 
a unique way represented in form (2.17), (2.18). Owing to system (2.18) being well-posed, 

which results from criterion (2.3) and (2.4), the vector .X is unique, obeys the condition 

min II .X 1/, and is stable to small errors (h, o) and (t:1, t:0 ). From the uniqueness of matrix 
n (2.15) _ that contains the last columns of matrices, inverse of the well-posed matrices 

~::+ 1 +1, and from (2.16) and (2.15) it follows that x+ and (B = Ct) are unique and 
minimal in norm. 

Let us now show that the vector x+ determined by formulae (2.1) + (2.5) satisfies the 
condition of minimum of the discrepancy norm (min //C3X+ - Y/1). Taking advantage of 
the representation of x+ (2.15), ·we get 

I/C3x+ - YI/= IIC3(E + n) .x -YII = 11 c3.x -YII, 
0 00 -01 0 

where X= (B=C 31)Y, C3 , and Bare, respectively, defined by (2.18) and (2.15). Owing 

to the system (2.16) being well-posed, the minimum min II C3.X -YI/ and, consequently, 
min IIC3X+ - YI/ are attainable. So, the theorem is proved. 

Corollary. The norm of discrepancy IIC3X+ - YI/ complies with the following 
estimate: 
(2.22) 

{ 

- - [k] 
IIC3X+ - YII= $ t:1 rp, m_ax l!i;/ + Ll, where T = m_ax (/11;/, /i\/), p = max(/ B;3 /), 1$i$m 2:5,:5m i,3;k 

'Y = f: lk(lk - lk+i), 11 = m, ln+I = 0, 0 $ Ll $ h/lX+ /I + 0. 
k=I 

Proof. In view of all said above, we have 

11c3x+ - YI/= I/C3(E + n) .x -YII = 11 c3.x -YI/. 

Since the system C3.X= Y is well-posed, the Euclidean norm of errors II Ca.X -Y/IE can 
be estimated by using the known results [9]: 

(2.23) 11c3x+ - YI/E = II Ca.X -YI/E $ 4/(m)t:11/ Ca I/Ell X 1/E-

However, in the case of the method considered above, this estimate turns out 
to be excessive. Actually, performing obvious transformations and making use of 
the definition of matrix norms consistent with the corresponding vector norms, 
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we get 

(2.24) I/ (}3.X -YI/ = I/ (}3EJ Y - YI/= /l(C3B -E)YII $ II (}3.8 -Ell· 1/YII. 

Next, we estimate the norm of matrix discrepancy II G3B -Ell, using the explicit form 

of G3 (2.18) and B (2.15), as well as the condition for the matrix Ga being well-posed. 

Taking account of the explicit form of elements of the matrix (CaB -E) and introducing 

the notation v;;(v = (v;3) =CaB -E) for them, we can write the system of scalar identities 

(2.25) 
{ 

(k] (k] (k] 
ii; B,-1; +tz; B;; +1"'.+1 B,+1;= Vi;, lk+I + 1 $ i < j $ lk, 

(k] (k] (k] 
P; Bi-Ii +tz; B;; +1\+1 B;+!i= 1 + V;;, h+1 + 1 $ ( i = j) $ lk, 

(k] (k] (k] 
P; B,-1; +q, B;; +i'.+1 B;+1;= v;;, 1 $ j < i $ lk. 

Hereafter, k = 1, 2, ... , n; 11 = m, l;.+1 = 0. Utilizing the representations for ~;; (2.8) + 
(2.13), we write the system of identities (2.25) either in the form 

(2.26) 

(k] j [~] 

[A;+1(-Ai;1i\+1) + i'.+il Bi+1,+1 II /3 e= v;;, lk+1 + 1 $ i < j $ lk, 
{=i+2 

(k] (k] 
(A;+1 + G,-1 -q,) B;;= 1 + V;;, lk+I + 1 $ ( i = j) $ lk, 
[k] (k] _

1 
_ _ (k] i [k] _ . . 

[G;-1 (- G;_1p;) + p;] Bi-!i-1 II /Je= v;;, 1 $ J < i $ lk, 
{=HI 

or in the form 

(2.27) 
{ 

(1 - A;+1Ai;1)r;+l ~i+lj= v,;, lk+I + 1 $ i < j $ lk, 
(k] (k] 

(A;+1+ G,-1 -q,) B;;= 1 + v;,,lk+I + 1 $ (i = j) $ lk, 
(k] (k]_1 _ (k] _ . • 

(1- G;-1 G,_1)p, B,-1;= v;;, 1 $ J < i $ lk. 

Let us now estimate (2.27)i), (2.27hi and (2.27)ai; we have 

l 
. -l _ (k] _ _ [k] 

/(l-A;+1A;+1)r;+1B;+1;=v;;/$/l-(l±t:1)I µiax /r,+11 .Ill:ax /B;+1;/, 
l<s< m-1 l<•<J<m-1 

[k] (k] - - [k] - -

(2.28) l(A;+1 + Gi-1 -q,) B;; -1 = V;l/ $ 1(1 ± £1) - 111~~ I B;; I, 
(k] [k]_

1 
_ (k] _ - - _ (k] 

/(1- Gi-1G;-1)P;B,-1;= v,;/ $ /1-(1 ±t:i)/ m_ax /p;/ ~~ I B;-1; /. 
2$•9k 2$J<•9k 

- - oo - 00 

With estimates (2.28), we obtain IICaX+ - Yll 00 = 1/(CaB -E)Ylloo $ II CaB 

--,EIIMIIYlloo $ f: lk(lk-lk+i)Ill~/v,;II/Yl/ 00 $ E1TP, m.ax hi;/, where T,P,'Y are 
k=I '" IS•Sm 

defined by (2.22). Here we t<?_ok advan_tage of the ~ondition of consistency of vector norms 
/IC3X+ - Yl/ 00 = m_ax /(CsX+ - Y);/ and 1/Ylloo = m_ax /!i;/ with the M-norm-of 

1$s$m · 1$•Sm 
0 0 0 0 J? 0 0 

the matrix (C3B -E), i.e. II C3B -EI/M = vm2 II/-~ l(C3B -E);;/. The validity of 
l$1,3$m 
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inequality (2.22) is established. Since the Euclidean norm of the matrix II C3B -EIIE 
is consistent only with the vector Euclidean norm IIYIIE, instead of (2.22), one can, 

by analogous arguments, obtain the estimate 11c\x+ - YIIE = ll(C3EJ -E)Y/IE < 
i1rnllYIIE, where r,p, 1 are defined by (2.22). -

Remark 1. To save the volume of publication, we do not present the method of 
solution of system (1.3) with the two-diagonal matrix C2 (1.4). It is expounded in detail 
in ref.[3] and it is shown there that it results from the method (2.1) -;- (2.13). 

The estimate (2.22) for system (1.3) acquires the following form: 
(2.29) 

l 11(\.X+ - YII ~ II G2B -Ell· IIY-11 ~ £1ffrr m_ax IY;I +~,where f = max (Ii\!), l<,<m 2<1<m 
[k] n - - -. -

p = IP-!1X(I B;i l),i = 1/2 I: (h -h+i),11 = m,ln+i = 0,0:::; ~:::; h/lX+il + J. 
,,3;k k=l 

Here ~ii are elements of upper triangular matrices, inverse of well-posed two-diagonal 

. [[k] llk+1+l matrices C2 1k • 

Remark 2. Note that due to orthogonality of matrices P and Q in transformations 
(1.5), the following estimates take place for the norms of discrepancy IIAz+ - FIi: 

(2.30) 
{ 

11Az+ - FIi ~ t:1rfrr 
1
~/~,. IY;I + ~, if A= AT, 

11Az+ - FIi ~ t:1¥M 
1
i~ !1i;I +~,if A =I AT, 

wheref,p,7 and f,p,4 are defined in analogy with (2.22) and (2.29), 0 ~ ~ ~ hllz+!l+J. 
Remark 3. The above estimates (2.22), (2.29) and (2.30) can also be used for problems 

of inversion i.e., C3C;t = E,C2Ci = E,AA+ = E: the matrices C;t,Ct and A+ are to 
be obtained by solving the matrix system of equations 

C3Ct = E, C2Ct = E and AA+ = E. 

by the critical-component method. In the case when systems (1.1), (1.2) and (1.3) are 
ill-posed, one should not take, as Ct, Ct and A+, the corresponding matrices obtained 
by the critical-component method in solving these systems of equations with a given right
hand side. The reason is that the norms of !llatrices Ct, Ct HA+ are consistent with the 

norms of concrete vectors Xt, Xt, z+, Y, Y and F. 
Remark 4. The theorem is formulated under the assumption <let C =/ 0. Let us remove 

this restriction. The critical-component method does not explicitly use the quantity <let C. 
Rather, it is based on the processes (2.10) and (2.11) for computing elements of m
dimensional vectors {A, G}. As established in ref. [14], ifdet C = 0, then components of 
these vectors get into one of the following three situations: either Am+l = 0 and Go = 0, or 
A; = 0 and G; = 0, or [(A;= 0 and A;A;H = 0) or (G; = 0 and G;G;_1 = O)]. In this case 
we replace some zero quantities by the quantity o(t:i). This does not essentially impair the 
quality of solution, since such perturbations can already be present in these quantities. 
Consequently, one may consider the critical-component method to be applicable for any 
value of <let C, including <let C = 0. 
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3. Results of numerical; experiments and their analysis 

In this section, we discuss the results of numerical experiments performed in the 
computer arithmetic with double accuracy (t:1 = 2-s2

::,:: 2, 2 · 10-16 ) for computing basic 
numerical characteristics of the solutions X of systems WX = Y, W : C2;C3;A =/ 
AT: A = AT. Let us first explain the notation and abbreviations adopted in Tables 
1 7 12 : JJ;l - the relative error of _x-(m) - the obtained numerical solution of 
system Wlm)X(m) = y(m) (Wlm) : C~m);Ct\A!m) =/ (A!mljT;Alml = (Alml)T -
the above indicated types of matrices, X(m) ~ the exact solution. m - the order of 
the system under consideration); µ(W(ml) = cond(Wlml) - the condition number of 
W(ml; tlm)(sec.) = com.time(sec.) - the time of computing solutions _x-(m)_ Jt'. Jkm) 

- the lower and upper bounds JJ;l i.e.•) 

3.1 ,5(m)= l11x(m)11-11x(m)111 < ,5(m)= 11x(mLx(m)IJE < IJ(W(m))- 11!-IJW(m)x(m)_y{m)IJE =<l(m), 
( ) ( L IJX(m)/1 ) _ ( M /IX(m)/1 ) _ ( /IX(m)IJ R 

- ~ 
where IIX(m)IIE, IIX(m)IIE are nonp.s of approximate and exact solutions; <lL =-ft. I: (Jtn'h-

J 1=1 
N; N; N;_ N; 

<lM= "ti· I:(JJ.;'))1,Jn = "ti· I:(Jkm))t,J_i- = "ti· I:(!IX(m)ll)1,Jx = "ti· I:(IIX(m)ll)1, 
J l=l J I=! J I=! J I=! 

N; N; 
µ(W) = -ft-'I:(µ(W(m)))t,t(sec.) = -ft.I:(t(m))i are arithmetic means of the 

JI=! JI=! 

characteristics listed above, N; = f:, Nj, where N; is the number of examples of a 
j=l 

given type, s - the number of examples in a Table, i - the number of a Table: MCS 
and MCC - our programs DCS□L (access through www http://cv.jinr.ru/lcta/sap/ 
lib/f499. f) from library LIBJINR [17] (algorithms of the critical-component method 
[l -;-3]); GS - programs DBEQN and DEQN from library CERNLIB [21] (a modified algorithm 
of the Gauss exclusion method); □SM - program DTSYS from library LIBJINR [19] 
(algorithm of nonmonotone orthogonal run); QR- programs F01AXF from library NAGLIB 
[20] (algorithms of QR - method); SVD - subprogram-function PS□L from library LINA 
[7] (algorithm of the singular-expansion method with the use of exhaustion); TRM -
subprogram SLAY from library LIBJINR [19] (algorithms of the Tikhonov regularization 

10 -
method). We have solved N = 278 (N = I: N;,i =I 4 and i =/ 8) different systems 

i=l 
of linear algebraic equations at different orders••> mk (k = 1,2,3,4,4'.5). which is 
presented below. A system of the type C2X = Y. Examples 1 -;- 5 from [2.3,16] (see 
§5 Appendix). {m1 : 10; 20. m2 : 3. m3 : 5; 10; 15. ms : 10; 20. Here 1 < 
µ(C(mk)) ~ 1/ y'€!}, {m1 : 30; 40; 50. m2 : 4; 5; 6. ma : 20; 25; 30; 35. ms : 30; 40. Here 
1/ y'€J < µ( C(mk)) ~ 1/ t:i}, { m1 : 60; 70; ... ; 100; 150; 200. m.2 : 8; 9; 10. m.3 : 40; 45. 11/.4 : 

5;6; ... ;18. ms :
0

50;60; ... ;100;150;200;300;400;500. Here l/t:1 < µ(C(mkl)}. A ,system of 
the type CaX = Y. Examplesf•l. 6-;- 10 from [2,3,16] (see §5 Appendix). 

•)The left-hand side of inequality (3.1) is a property [10) of the norm II · II, and the right-hand side 
is obtained by using the exact solution X = w- 1y and equality w- 1w = E. We have (J.u = 11.X -
XII/IIXII) = IIX - w- 1YII/IIXII = 11w- 1(WX - Y)II/IIXII ~ rnw- 1 11 · IIWX - YII/IIXII = on). Note 
that in practice, inequalities (3.1) can be broken (see, for instance, Table 7). This occurs when calculating 
WX - Y. In this case, the solution .X can be surely considered acceptable. 

**)lower index k of order mk indicates the number of an example from the set of given-type examples. 
l•lExample 4' is example 4 from [2] (system 9, see §5 Appendix), but with co =0.00000001. 
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{ m 1 : 10; 20; ... ; 100; 150; 200; 300; ... ; 900. m 2 : 10; 20; ... ; 100; 150; 200; 300; ... ; 900. 
ma : 10; 21: 3 0; 40; 51; 60; 70; 81; 90; 100; 151; 201; 300; 400; 501; 600; 700; 801; 900. m4 : 
10; 30: 40; 60; 70; 90; 100; 300; 400; 600; 700; 900. m4, : 10; 30; 40; 60; 70; 90; 100; 300; 
400: 600; 700; 900. ms : 10; 20; ... ; 100. Here 1 < µ(Glmkl) :S 1/ ./Et}, {m4 : 20; 50; 80; 
150: 200; 500; 800. ms: 150; 200. Here 1/.JEt < µ(C<mkl) :S 1/c1}, {m4,: 20: 50: 80; 150: 
200; 500; 800. Here l/c1 < µ(G(mkl)}. A system of the type AX= Y (A=/= AT). Examples 
11 + 15 from [2,3,16] (see §5 Appendix). { m1 : 10; 20; ... ; 100; 150; 200; 300; 400; 500. 
m 2 : 5. ma: 10; 20; ... ; 100; 150; 200; 250; 300; 400; 500. m 4 : 3; 4; ... ; 10. ms : 5; 6. Here 
1 < µ(G(mkl) :S 1/.JEt}, {m2 : 6; 7; ... ; 10. m4: 11; 12; ... ; 17. ms: 7; 8; ... ;11. Here 
1/.JEt < µ(G(mkl) :S 1/t:1}, {m2 : 11; 12. m 4 : 18. ms: 12. Here 1/t:1 < µ(G(mkl)}. A 
system of the type AX= Y (A= AT). Examples 16 + 20 from [2,3,16] (see §5 Appendix). 
{ m 1 : 10; 20; ... ; 100; 150; 200; 300. m 2 : 5; 6. m 3 : 5; 6. m 4 : 10; 20; ... ; 100; 150; 200; 
300; 400; 500. Here 1 < µ(Glmkl) :S 1/ .JEt}, {m2 : 7; 8; ... ; 11. m3 : 7; 8; ... ; 11. Here 
1/.JEt < µ(G(mkl) :S 1/t:1}, {m2 : 12. ma : 12. ms : 5; 10; 15; 20; 25; 30; 35. Here 
1/t:1 < µ(G(mkl)}. 

Below, in Tables 1 + 3, 5 + 7 and 9 + 11, we report the obtained numerical values of 
the indicated characteristics JL, Jn, J}, Jx, of approximate X and exact X solutions of 
systems WX = Y (W: C2;Ca;A =/= AT;A = AT) at 1 < µ(W) :S 1/,/Ei- being well
posed, 1/ Fi < µ(W) :S l/t:1 - being ill-posed, l/t:1 < µ(W) - being pathologically 
ill-posed of these systems, respectively. In Tables 4, 8 and 12, we present averaged results 
of Tables 1 + 3, 5 + 7 and 9 + 11. Note also that when 1/t:1 < µ(W), the subprogram 
SVD stops to work producing information INF= -1. The program TRM does not work [19], 
when m > 100. Tables 9, 12 do not contain ( * * * * *) values oft( ceK.) above 100 sec. 

For an easier apprehension of the calculation results reported in Tables 4, 8 and 12, 
we plot their "graphic images-figures". 

Remark 5. In Tables 4, 8 and 12 (as well as in Figures 1 + 9) , we also present 
the averaged results of computations by subprograms !MCS I when W = (A = AT) and 
I □SM I when W = Ca, which is to be kept in mind when analyzing the above Tables and 
Figures. Explanations to some Tables and Figures: on the horizontal axis of Figs. 1 + 9, 
in units 101 where values of order t are indicated below the axis, approximate values of 
quantities JL(W), JM(W) and Jn(W) from Tables 4,8 and 12 are plotted. On the vertical 
axis of these Figures, we point out the names of programs through which those values 
have been obtained. The horizontal axis of Figs. 11 + 13 represents relative errors of the 
r.h.s. of a system with the Hilbert matrix (see §5 of Appendix, example 17), whereas on 
their vertical axes, we plot the corresponding relative errors found by various programs. 
For names of programs, see the notation. Table 13 contains the numerical results that 
are drawn in Figs. 11 + 13. Note that: < Jy>=< 1\~i'I > - the mean value of the relative 

error of perturbation of the r.h.s. of the system; < Jx>=< 11
1fJii'I > - exact mean values 

corresponding to <fr> . Numbers in Table 13 written in line with a program are average 
values really obtained by this program for < Jg> . In Fig.IO, the matrix, inverse of the 
Hilbert matrix, of order m = 14 is graphically shown. Along the axis Z, the values of 
elements of this inverse matrix are indicat~d. As a result, its complicated structure is 
easily visualized. Also, numbers of subspaces separated by the critical-component method 
are given in the Figure . 
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'!'able 1_(0.173E02< µ(W) s; 0.547E08, 3:s; m :s;10□,_µ(J!') = 0.533E0_'7, Ni_= 117) 
PR. t(sec) h 

- - - ,Si,i OR oi ax 
MCC 0.0004 0.238E-ll 0.301E-ll 0.470E-10 0.136E01 0.136E01 

C2X=Y GS 0.0005 0.238E-ll 0.301E-ll 0.119E-08 0.136E01 0.136E01 

N1 =8 SVD 0.1568 0.261E-ll 0.335E-11 0.723E-08 0.136E01 0.136E01 

µ(C2) = QR 0.0036 0.113E-10 0.175E-10 0.405E-08 0.136E01 0.136E01 
0.576E07 TRM 0.0366 0.448E-05 0.546E-05 0.575E-05 0.136E01 0.136E01 

MCC 0.0051 0.839E-13 0.868E-13 0.137E-12 0.609E01 0.609E01 
CaX=Y GS 0.0028 0.994E-13 0.153E-11 0.289E-10 0.609E01 0.609E01 
N2 = 54 QR 6.9793 0.187E-ll 0.302E-10 0.294E-08 0.609E01 0.609E01 
p,(Ca) = SVD 0.3091 0.609E-12 0.505E-10 0.704E-09 0.609E01 0.609E01 
0.106E07 TRM 5.3795 0.238E-07 0.212E-05 0.212E-05 0.609E01 0.609E01 

0SM 0.0039 0.561E-Ol 0.164EOO 0.850E04 0.655E01 0.609E01 
AX=Y QR 0.1776 0.526E-ll O.lOlE-09 0.122E-07 0.254E01 0.254E01 
A=f=AT MCC 1.0925 0.973E-ll 0.117E-09 0.461E-08 0.254E01 0.254E01 

Na= 31 SVD 2.8117 0.973E-ll 0.117E-09 0.683E-08 0.254E01 0.254E01 
p,(A) = GS 0.1091 0.752E-ll 0.144E-09 0.256E-08 0.254E01 0.254E01 

0.549E07 TRM 2.9615 0.364E-04 0.618E-04 0.639E-04 0.254E01 0.254E01 
MCC 0.9636 0.163E-10 0.951E-10 0.178E-07 0.434E01 0.434E01 

AX=Y SVD 2.5378 0.163E-10 0.951E-10 0.307E-07 0.434E01 0.434E01 
A=AT QR 0.1564 0.129E-10 0.160E-09 0.383E-07 0.434E01 0.434E01 
N4=24 GS 0.0977 0.373E-10 0.179E-09 0.230E-07 0.434E01 0.434E01 

p,(A) = MCS 0.9367 0.153E-09 0.429E-09 0.171E-07 0.434E01 0.434E01 
0.900E07 TRM 2.5976 0.603E-08 0.328E-07 0.453E-07 0.434E01 0.434E01 

Table 2_ (0.968E08< µ(W) :s;o.399E16, 6:s; m :s;80, µ(W) = 0.365E15, N2 :::: 43) 
PR. t(sec) 0£ OM on oi- Tic 
MCC 0.0008 0.191E-04 0.353E-04 0.289E-02 0.180E01 0.180E01 

C2X=Y GS 0.0009 0.191E-04 0.353E-04 0.517E-02 0.180E01 0.180E01 
N1 = 13 SVD 0.7276 0.598E-04 O.llOE-03 0.259EOO 0.180E01 0.180E01 

µ(C2) = QR 0.0200 0.954E-03 0.221E-02 0.276EOO 0.180E01 0.180E01 
0.351E15 TRM 0.3108 0.208E12 0.208E12 0.210E12 0.131E13 0.180E01 

MCC 0.0067 0.638E-08 0.240E-04 0.277E-02 0.754E01 0.754E01 

CaX=Y GS 0.0035 0.672E-06 0.213E-03 0.313E-02 0.754E01 0.754E01 

N2=3 SVD 8.6764 0.335E-05 0.463E-03 0.453E-01 0.754E01 0.754E01 

µ(Ca)= QR 0.4031 0.102E-04 0.962E-03 0.960E-02 0.754E01 0.754E01 
0.586El5 0SM 0.0048 0.468E-Ol 0.141EOO o:136Ell 0.793E01 0.754E01 

TRM 6.6831 0.148E14 0.148E14 0.562El4 0.125E15 0.754E01 

AX=Y MCC 1.0966 0.200E-03 0.418E-03 0.239EOO 0.254E01 0.254E01 
A=/=AT SVD 2.8427 0.200E-03 0.418E-03 0.255EOO 0.254E01 0.254E01 
Na= 17 GS 0.1095 0.278E-03 0.514E-03 0.473EOO 0.255E01 0.254E01 

µ(A)= QR 0.1784 0.338E-03 0.615E-03 0.316EOO 0.255E01 0.254E01 
0.271E15 TRM 2.9711 0.133E12 0.133E12 0.261E12 0.167E12 0.254E01 

MCC 0.9660 0.654E-06 0.161E-04 0.215EOO 0.435E01 0.435E01 

AX=Y SVD 2.5544 0.654E-06 0.161E-04 0.467EOO 0.435E01 0.435E01 
A=AT MCS 0.9389 0.119E-05 0.548E-04 0.189EOO 0.435E01 0.435E01 

N4= 10 GS 0.0979 0.166E-05 0.828E-04 0.452EOO 0.435E01 0.435E01 

µ(A)= QR 0.1568 0.109E-05 0.976E-04 0.734EOO 0.435E01 0.435E01 
0.253E15 TRM 2.6032 0.435E05 0.435E05 0.460E05 0.543E05 0.435E01 
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Table 3 (µ(W) >0.450El6, 5::; m ::;so, µ(W) >0.450E16, Na = 46) 
PR. t(sec) th /jM liR lif lix 

MCC 0.0010 0.133EOO 0.179EOO 0.952E02 0.259E01 0.253E01 

C2X=Y GS 0.0012 0.482EOO 0.103E01 0.924E03 0.378E01 0.253E01 
Ni =30 QR 0.0879 0.274E02 0.276E02 0.211E07 0.182E03 0.253E01 

µ(C2) > TRM 1.6955 0.602E55 0.602E55 0.145E75 0.602E56 0.253E01 
0.450E16 SVD INF= - 1 

MCC 0.0069 0.298EOO , 0.828EOO 0.126E02 0.887E01 0.683E01 

CaX=Y QR 0.1659 0.724EOO 0.127E01 0.398E02 0.129E02 0.683E01 

N2 =3 GS 0.0022 0.174E02 0.184E02 0.940E03 0.142E03 0.683E01 

µ{Ca)> □SM 0.0034 0.221E02 0.231E02 0.140E18 0.178E03 0.683E01 
0.450E16 TRM 3.1464 0.777E15 0.777E15 0.611El6 0.430E16 0.683E01 

SVD INF=- 1 

AX=Y MCC 0.0179 0.109E-02 0.333E-01 0.106E03 0.856EOO 0.856EOO 
A/AT GS 0.0022 0.330E-02 0.681E-01 0.193E03 0.861EOO 0.856EOO 

Na=4 QR 0.0040 0.610E-02 0.895E-Ol 0.209E03 0.861EOO 0.856EOO 

µ(A)> TRM 0.0421 0.166E14 0.166E14 0.278E14 0.208E14 0.856EOO 
0.450E16 SVD INF= - 1 

MCC 0.0479 0.428E-01 0.365EOO 0.139E03 0.994EOO 0.989EOO 

Table 5 (0.250E03< µ(W) ::;0.323E07, 150::; m ::;200,µ(W) = 0.827E08, Ms= 16) 
t(sec) /jL /jM liR /j~ lix 

-
PR. 
MCC 0.0133 0.344E-12 0.362E-12 0.724E-12 0.788E01 0.788E01 

CaX=Y GS 0.0065 0.345E-12 0.363E-12 0.727E-12 0.788E01 0.788E01 

N2 = 8 QR 6.0108 0.622E-12 0.777E-12 0.170E-10 0.788E01 0.788E01 

µ{Ca)= SVD 31.137 0.138E-10 0.104E-10 0.274E-10 0.788E01 0.788E01 
0.202E05 □SM 0.0093 0.306EOO 0.467EOO 0.114E01 0.116E02 0.788E01 

AX=Y MCC 22.606 0.331E-13 0.311E-09 0.120E-07 0.719E01 0.719E01 
A;icAT GS 2.2529 0.134E-13 0.374E-09 0.275E-07 0.719E01 0.719E01 

Na=4 SVD 37.433 0.331E-13 0.436E-09 0.189E-07 0.719E01 0.719E01 

µ(A)= QR 3.6669 0.236E-13 0.617E-09 0.306E-07 0.719E01 0.719E01 
0.123E07 
AX=Y MCC 10.312 0.122E-11 0.155E-09 0.121E-06 0.134E02 0.134E02 
A=AT SVD 18.469 0.122E-11 0.155E-09 0.364E-06 0.134E02 0.134E02 

N4 =4 MCS 10.181 0.115E-11 0.215E-09 0.lOOE-06 0.134E02 0.134E02 

µ(A)= QR 1.6768 0.808E-12 0.263E-09 0.371E-06 0.134E02 0.134E02 
0.123E07 GS 1.0537 0.218E-11 0.336E-09 0.230E-06 0.134E02 0.134E02 

Table 6 (0.657Ell< µ(Ca) ::;o.594E15, 150::; m::; 200, µ{Ca)= 0.308E15, &6 = 3) 

AX=Y MCS 0.0439 0.197EOO 0.545EOO 0.149E03 0.107E01 0.989EOO PR. t(sec) /jL /jM /jR /j~ lix 

A=AT GS 0.0051 0.104E05 0.104E05 0.297E22 0.483E04 0.989EOO MCC 0.0591 0.117E-05 0.133E-02 0.207E-01 0.136E02 0.136E02 

N4=9 QR 0.0090 0.261E12 0.261E12 0.332E25 0.123E12 0.989EOO CaX=Y SVD 43.881 0.488E-05 0.179E-02 0.l 71E01 0.136E02 0.136E02 

µ(A)> TRM 0.1165 0.457E16 0.457E16 0.593E18 0.213E16 0.989EOO 
0.450E16 SVD INF=- 1 

N2 = 3 GS 0.0075 0.766E-05 0.277E-02 0.324E-Ol 0.136E02 0.136E02 

µ(Ca)= QR 4.5427 0.114E-04 0.336E-02 0.229EOO 0.136E02 0.136E02 

Table 4 (Mean values of characteristics of Tables_~± 3, N4 = 206) 
PR. t(sec) /jL /jM /jR /j~ lix 

MCC 0.5154 0.712E-ll 0.538E-10 0.561E-08 0.358E01 0.358E01 
µ(W) = SVD 3.1214 0.763E-11 0.614E-10 0.119E-07 0.358E01 0.358E01 
0.533E07 GS 0.0525 O.USE-10 0.819E-10 0.669E-08 0.358E01 0.358E01 
Ni= 117 QR 0.1617 0.752E-ll 0.822E-10 0.138E-07 0.358E01 0.358E01 

IMCSI 0.9367 0.153E-09 0.429E-09 0.171E-07 0.434E01 0.434E01 
TRM 2.7438 0.102E-04 0.174E-04 0.180E-04 0.358E01 0.358E01 

fosMl 0.0039 0.561E-Ol 0.164EOO 0.850E04 0.655E01 0.609E01 

~ 0.9389 0.119E-05 0.548E-04 0.189EOO 0.435E01 0.435E01 
MCC 0.5175 0.549E-04 0.123E-03 0.115EOO 0.406E01 0.406E01 

0.308E15 □SM 0.0109 0.135E-02 0.414E-Ol 0.101E12 0.138E02 0.136E02 

Table 7 (µ(1-D_ >0.450El6, 150::; m ::;200, µ(HT) >0.4501!:!5_,_1V1 =_5J 
PR. t(sec) th liM liR /j~ lix 

C2X=Y MCC 0.0049 0.615E-04 0.113E-03 O.OOOEOO 0.719E01 0.719E01 

Ni =4 GS 0.0060 0.615E-04 0.113E-03 O.OOOEOO 0.719E01 0.719E01 

fi(C2) > QR 3.3505 0.401E02 0.408E02 0.128E06 0.653E02 0.719E01 
0.450E16 SVD INF= - 1 

MCC 0.0278 0.292E+OO o.819E+oo 0.258E02 0.183E02 0.141E02 

CaX=Y QR 5.3062 0.551E+OO o.837E+oo 0.446E02 0.189E02 0.141E02 

N2 = 1 GS 0.0079 0.719E+o2 0.728E+o2 0.649E04 0.103E04 0.141E02 

µ(Ca)> □SM 0.0133 0.882E+o2 0.892E+02 0.571E18 0.126E04 0.141E02 
0.450E16 SVD INF = - 1 

µ(W) = GS 0.0529 0.749E-04 0.211E-03 0.233EOO 0.406E01 0.406E01 
0.365E15 SVD 3.7003 0.660E-04 0.252E-03 0.257EOO 0.406E01 0.406E01 
N2=43 QR 0.1896 0.326E-03 0.971E-03 0.334EOO 0.406E01 0.406E01 

j □sMI 0.0048 !).468E-Ol 0.141EOO 0.136Ell 0.793E01 0.754E01 
TRM 3.1420 0.379E13 0.379E13 0.142E14 0.316E14 0.406E01 
MCC 0.0184 0.119EOO 0.351EOO 0.882E02 0.333E01 0.280E01 

µ(W) > jMcsl 0.0439 0.197EOO 0.545EOO 0.149E03 0.107E01 0.989EOO 
0.450E16 □SM 0.0034 0.221E02 0.231E02 0.140E18 0.178E03 0.683E01 
Na=46 GS 0.0027 0.260E04 0.260E04 0.742E21 0.124E04 0.280E01 

QR 0.0667 0.653Ell 0.653Ell 0.830E24 0.308Ell 0.280E01 
TRM 1.2501 0.151E55 0.151E55 0.362E74 0.151E56 0.280E01 
SVD INF= - 1 

PR. t(sec) /jL liM liR /j~ lix 

MCC 10.977 0.532E-12 0.155E-09 0.443E-07 0.949E01 0.949E01 
µ(W) = SVD 29.013 0.502E-11 0.200E-09 0.128E-06 0.949E01 0.949E01 
0.827E06 jMcsl 10.181 0.115E-11 0.215E-09 O.lOOE-06 0.134E02 0.134E02 
Ns = 16 GS 1.1044 0.846E-12 0.237E-09 0.848E-07 0.949E01 0.949E01 

QR 3.7848 0.498E-12 0.294E-09 0.134E-06 0.949E01 0.949E01 

fosMl 0.0093 0.306EOO. 0.467EOO 0.114E01 0.116E02 0.788E01 
MCC 0.0591 0.175E-05 0.133E-02 0.207E-Ol 0.136E02 0.136E02 

µ{Ca)= SVD 43.881 0.488E-05 0.179E-02 0.171E01 0.136E02 0.136E02 
0.308El5 GS 0.0075 0.766E-05 0.277E-02 0.324E-Ol 0.136E02 0.136E02 
N6= 3 QR 4.5427 0.114E-04 0.336E-02 0.229EOO 0.136E02 0.136E02 

Table 8 (Mean values of characteristics of Tables 5 -a- 7, Ns = 24) 

fOSM! 0.0109 0.135E-02 0.414E-Ol 0.101E12 0.138E02 0.136E02 

18 
19 



MCC 0.0164 0.146EOO 0.410EOO 0.129E02 0.127E02 0.106E02 

µ(W) > QR 4.3284 0.203E02 0.208E02 0.640E05 0.421E02 0.106E02 

0.450E16 GS 0.0069 0.360E02 0.364E02 0.325E04 0.519E03 0.106E02 

N1=5 josMi 0.0133 0.882E02 0.892E02 0.571El8 0.126E04 0.141E02 

SVD INF = - 1 

Table !l_(0.498E03S µ(W) S0.318E08, 250S m S900, µ(!f) = 0.675E07, Ng= 39) 
PR. t(sec) OL OM OR 0~ ox 

3 Sm S 6, 7SmS 11, 12 Sm S 13, 
0.524E03< µ(A) <0.150E08 0.475E09<µ(A) <D.518E15 µ(A) >0.450E16 
<ox>= o.oo, <oy >= o.oo <ox>= 0.00, <oy >= o.oo <ox>= 0.00, <oy >= 0.00 

MCS 0.384886772512E-10 MCC 0.64196E-04 MCS 0.182E01 
QR 0.394340547190E-10 SVD 0.64196E-04 MCC 0.214E01 
GS 0.432343309209E-10 MCS 0.23960E-03 GS 0.270E01 

MCC 0.502178164479E-10 GS 0.23988E-03 QR 0.403E01 

Table 13 

C3X=Y MCC 0.0524 0.762E-14 0.403E-13 0.168E-ll 0.999E01 0.999E01 

µ(C3) = GS 0.0230 0.718E-14 0.444E-13 0.179E-ll 0.999E01 0.999E01 
SVD 0.502178164479E-10 QR 0.44822E-03 SVD INF= -1 
TRM 0.334842097124E-07 TRM 0.58231E05 TRM 0.397E08 

0.255E06 OSM 0.0324 0.179E02 0.186E02 0.682E75 0.618E02 0.999E01 <ox>= 0.10, < oy >= 0.054 <ox>= 0.10, <oy >= 0.047 <ax>= 0.10, <oy >= 0.045 
N2 =31 MCS 0.999999999782E-Ol MCC 0.99945E-Ol MCS 0.125E01 
AX=Y MCC 12.156 0.703E-12 0.611E-08 0.115E-05 0.101E02 0.101E02 MCC 0.999999999809E-01 SVD 0.99945E-Ol MCC 0.277E01 
A;i:AT GS 1.2256 0.227E-11 0.971E-08 0.179E-05 0.101E02 0.101E02 SVD 0.999999999809E-Ol QR 0.99982E-Ol GS 0.333E01 
N3=4 GS 0.999999999948E-Ol MCS 0.10005EOO QR 0.465E01 
N4=4 
A=AT MCC ***** 0.256E-11 0.522E-09 0.182E-05 0.188E02 0.188E02 

QR 0.999999999991E-Ol GS 0.10005EOO SVD INF= -1 

TRM 0.100000344252EOO TRM. 0.23802E06 TRM 0.442E10 
µ(A)= MCS ***** 0.216E-12 0.227E-08 0.174E-05 0.188E02 0.188E02 

0.999E07 GS ***** 0.703E-12 0.240E-08 0.197E-05 0.188E02 0.188E02 

Table 10 (0.540E15S µ(C3) S0.637E15, m: 500,800, µ(C'i) =0.589E15, N10 = 2) 

<ox>= 0.20, <oy >= 0.107 <ox>= 0.20, <oy>= 0.094 <ox>= 0.20, <oy >= 0.090 
TRM 0.199999724752EOO QR 0.20003EOO MCC 0.219E01 
MCC 0.199999999988EOO GS 0.20004EOO MCS 0.323E01 

PR. t(sec) 0£ OM OR oi oX SVD 0.199999999988EOO MCS 0.20009EOO QR 0.342E01 

C3X=Y MCC 0.0901 0.161E-05 0.174E-02 0.415E-01 0.253E02 0.253E02 MCS 0.199999999994EOO MCC 0.20016EOO GS 0.352E01 

µ(C3) = GS 0.0290 0.2.94E-04 0.765E-02 0.666E-01 0.253E02 0.253E02 GS 0.199999999997EOO SVD 0.20016EOO SVD INF= -1 

0.589E15 OSM 0.0394 0.150E-02 0.915E-01 0.290E75 0.253E02 0.253E02 QR 0.199999999999EOO TRM 0.10208E06 TRM 0.139Ell 

N2 = 2 <ox>= 0.30, <oy >= 0.161 <ox>= 0.30, <oy >= 0.142 <ax>= o.3o, <oy>= 0.135 

Table 11 _(µ(W) :>0.450E16, 250S m S 800, µ(W) > 0.450E16, Nu = 7) 
PR. t(sec) 0£ OM OR 0~ ox 

C2X=Y MCC 0.0088 0.615E-04 0.113E-03 0.000EOO 0.106E02 0.106E02 

µ(C2) > GS 0.0115 0.615E-04 0.113E-03 O.OOOEOO 0.106E02 0.106E02 

0.450E16 

MCC 0.299999999983EOO MCS 0.29990EOO MCS 0.172E01 
SVD 0.299999999983EOO GS 0.29991EOO MCC 0.279E01 
MCS 0.299999999985EOO QR 0.29995EOO GS 0.350E01 
GS 0.299999999992EOO MCC 0.29996EOO QR 0.465E01 
QR 0.299999999996EOO SVD 0.29996EOO SVD INF= -1 

TRM 0 .300000398356EOO TRM 0.60699E04 TRM 0.487E10 
N1 =4 

C3X=Y MCC 0.0583 0.145EOO 0.409EOO 0.114E03 0.250E02 0.213E02 

µ(C3) > GS 0.0192 0.167E03 0.168E03 0.190E06 0.394E04 0.213E02 

0.450El6 OSM 0.0300 0.215E03 0.216E03 0.209E75 0.500E04 0.213E02 

<ox>= 0.39, <oy >= 0.209 <ox>=0.39, <oy>=0.184 <ox>=0.39, <oy>=0.176 
MCC 0.389999999988EOO QR 0.38988EOO MCS 0.333E01 
SVD 0.389999999988EOO MCS 0.39002EOO MCC 0.377E01 
GS 0.389999999997EOO MCC 0.39003EOO GS 0.392E01 

N2 = 3 MCS 0.389999999998EOO SVD 0.39003EOO QR 0.399E01 
Table 1~ (Mean values of characteristics of Tables 9 + 11, N12 = 48) 

PR. t(sec) OL OM OR oi oX 
QR 0.389999999999EOO GS 0.39004EOO SVD INF= -1 

TRM 0.390000429338EOO TRM 0.31130E06 TRM 0.137E12 

µ(W) = MCC; ***** 0.109E-ll 0.221E-08 0.990E-06 0.130E02 0.130E02 

0.675E07 !Mesi ***** 0.216E-12 0.227E-08 0.174E-05 0.188E02 0.188E02 

N9 =39 GS ***** 0.993E-12 0.404E-08 0.125E-05 0.130E02 0.130E02 

r□sMl ***** 0.179E02 0.186E02 0.682E75 0.618E02 0.999E01 

µ(C3) = MCC 0.0901 0.161E-05 0.174E-02 0.415E-01 0.253E02 0.253E02 

0.589E15 GS 0.0290 0.294E-04 0.765E-02 0.666E-01 0.253E02 0.253E02 

N10 =2 fosM1 0.0394 0.150E-02 0.915E-Ol 0.290E75 0.253E02 0.253E02 

< ox >= 0.60, < oy >= 0.320 <ox>= 0.60, <oy >= 0.282 < oX >= 0.60, < oy >= 0.269 
MCC 0.597599999976EOO MCC 0.59754EOO MCS 0.197E01 
SVD 0.597599999976EOO SVD 0.59754EOO MCC 0.334E01 
MCS 0.597599999983EOO QR 0.59761EOO QR 0.430E01 
QR 0.597599999985EOO GS 0.59762EOO GS 0.471E01 
GS 0.597599999990EOO MCS 0.59763EOO SVD INF= -1 

TRM 0.597600286570EOO TRM 0.19820E06 TRM 0.377Ell 

µ(W) > MCC 0.0335 0.725E-01 0.205EOO 0.570E02 0.178E02 0.159E02 

0.450E16 GS 0.0153 0.835E02 0.840E02 0.950E05 0.198E04 0.159E02 

Nu =7 r□sMl 0.0300 0.215E03 0.216E03 0.209E75 0.500E04 0.213E02 
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The notation used in Figures 1-9: 

D -JL(W); ■ - JM(W); tll - Jn(W). 

l □sMI 
TRM 

!Mesi 
QR 
GS 

SVD 
Mee 

I ' 
' I 

t = -13 · -12 -11 -10 -9 -8 

Fig.1. At µ(W)=0.533E07- being well-posed, N1 = 117. 
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Fig. 2. At µ(W) =0.365E15 - being ill-posed, N2 = 43. 
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1 

Fig. 3. At µ(W) >0.450~16 - beind pathologically ill-posed, N3 = 46. 

l □sMj 
QR 
GS 

!Mesi 
SVD 
Mee 

t = -14 -13 -12 -10 -8 -7 -1 0 

Fig. 4. At µ(W)=0.857E06- being well-posed, N5 = 16. 
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10t 

l □sMI 
QR 
GS 

SVD 
Mee 

t = -7 -6 -5 -3 -2 0 1 U 

Fig. 5. At µ(W) =0.308E15 - being ill-posed, N6 = 3. 

l □sMI 
GS 
QR 

Mee ~ 
l □sMI 

GS 
!Mesi 

Mee 

101 

t = -2 -1 1 3 ·4 17 10
1 

t = -14 -13-12 -9 -7 -6 1 74 

Fig. 6. At µ(W) >0.450E16 - being 
pathologically ill-posed, N1 = 5. 

l □sMI 
GS 

Mee / /4: /:✓ :I 

t = -7 -6 -5 -3 -2 74 

Fig. 8. At µ(W) =0.589E15 
posed, N10 = 2. 

4000 

101 

being ill-

2 I 2 

Fig. 7. At µ(W) =0.675E07 - being well
posed, N9 = 39. 

l □sMI 
GS 

Mee ~ 
t = -3 -2 -1 1 2 4 74 

Fig. 9. At µ(W) >0.450E16 
pathologically ill-posed, N11 = 7. 

101 

being 

Fig. 10. 
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The analysis of numerical results reported in Tables 1 + 13 and their graphical 
interpretation with the use of Figs. 1 + 13 show that our programs HCC and HCS provide, 
on the average, better accuracy characteristics as compared to the most known analogous 
programs. 

The program HCC has also better time characteristics in the case W = C2, no matter, 
whether a system of equations is well- or ill- or pathologocally ill-posed, but HCC and HCS 
are about twice as worse in time as the program GS (DBEQN) in the case W = C3 • This. 
is owing to the time consumption on the an1:1ysis of zeros in computing B;; - elements · 
of matrices B = Ct and on testing various inequalities in accordance with the algorithm 
(2.1) + (2.5). The programs HCC and HCS work about 10 times as slow as the program 
GS (DEQN) in the general case W : A = AT, A #- AT. This is due to considerable time 
consumption on reduction of the system W X = Y of the general form to systems of the 
type (1.2) and (1.3). 

From the analysis presented it follows that the critical-component method in its 
qualitative characteristics is the best one of the methods of solution of degenerate and 
ill-posed systems of linear algeb~aic equations. 

4. Conclusion 

In this paper, we have demonstrated the efficiency of the critical- component method 
for numerical solution of degenerate and ill-posed systems of linear algebraic equations. 

We have proved the theorem according to which the only stable normal solution can 
surely be obtained for degenerate and ill-posed systems of linear algebraic equations by 
the critical-component method. 

Results of numerical experiments (278 examples were computed) on the calculation of 
basic characteristics of solution of the system W X = Y are presented, and a comparative 
analysis has been performed, which shows that the programs HCC and HCS have, on the 
average, better characteristics. 
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5. Appendix 

I. Test examples of systems of equations C2X = Y with two-diagonal matrices of the 
general form: 

System 1 

c,{\,J 
System 2 

[ 
co r l 

C2 = · . ·;o ;
0 

' 

System 3 

r 

7 11 ] 

c, - , '·; r . 
System 4 

co 2 
-12 

-12 
C2 = I ci 2 

-12 

-12 
ci 

System 5 

c,-['\J 

Xi= 1/i, 
i = 1,2, ... ,M, 
-~ -Yi - i(;+i)' YM - 1/M, 

i = 1,2, ... ,M-1; 

xi= 1/(2i + co), i = 1, 2, ... , M, 
. = 2i+3eQ _ • • 

Y, (2;+,rn2i+•,i+2), YM - co/(2M + c0 ), 

i = 1, 2, ... , M - 1, 
where r = 1 - c0, co = 0, 01; 

Xi= 1/(2i + 1), 
i = 1,2, ... ,M, 
Y· = 1s2i+11s .' is(2i+1)(2i+a)' YM = 7/5(2M + 1), 
i = 1, 2, ... , M - 1; 

x, = (-l)i+ia, 
i = 1,2, ... ,M, 
Y1 = (co - 2)a, 
Y; = (-1)'3a, 
i = 2, 3, ... , k - 1, k + 1, ... , M - 1, 
Yk = (-ll(2 - ci)a, 
YM = (-l)M+lc;:a, 
where a= 1 +c0, c0 = 0, 0000001, 

ci = 0,0001; 

x, = 1, 
i = 1,2, ... ,M, 
Yi = 10, YM = 3, 
i = 1,2, ... ,M- l. 
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II. Test examples of systems of linear equations CaX = Y with tridiagonal matrices 
of the general form: 

System 6 

Ca= 

System 7 

Ca= 

System 8 

C3 = 

System 9 

C3= 

System 10 

c3 = 

2 -1 
-1 2-1 

-1 2-1 
-1 2 

-1 1 
1-2 1 

1-1 

1-2 1 
1 a 

-1 1-1 

-1 1-1 
-1 1 

1 r 
p 1 1' 

P 1 r 
p 1 

6 3 
4 6 3 

4 6 3 
4 6 

1 • M -2 -~ X- = -:-, z = 1.2..... . Y1 - • YM - M(M-!) 0 

y; = ;1_,,:(1+il' i = 2, 3, ... , M - l; 

xi= 1 + (-1)i€0, i = 1,2, .... M. 
Yi= 2€;;, Yi= (-1)i-14c0, i = 2.3 ..... M -1. 
YM = (-l)M-l(a + Eoko, 
where a= 1MM. €0 = 0, 0000001; 

i . 1 2 M - I - --1-Xi = 2i' z = , .... , , Yi - 4' YM - 2M(I-M)' 
i

2
+1 . - 2 3 M - 1 · Yi = 2i(l-i)(l+i)' Z - • • ••• , ' 

xi = 1, i = 1, 2, ... , M, Yi = 2 - €0, 
YM = 2 + co, Yi = 3, i = 2, 3, ...• M - 1, 
where p = 1 + c0, r = 1 - €0, €0 = 0. 0000001; 

Xi=l, i=l,2, ... ,M, 
' Yi = 9, YM = 10, Yi = 13, i = 2, 3, .... M - 1. 
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Ill. Te~t examples of systems of equations AX = Y with A -1- AT - filled matrices of 
the general form: 

System 11 

A= 

System 12 

M M-1 M-2 ··· 3 2 333 
M-1 M-1 M-2 ··· 3 2 1 
M-2 M-2 M-2 ··· 3 2 1 

3 3 3 ... 321 
2 2 ···221 

Eo 1 I ··· 1 1 I 

A= (ai;), oi; = i+J-1 , 

x; = 1/i, i = 1, 2, ... , M, 
M-1 M 

Y _ _, M-k±I + 333 y _ -'l + E• 
1 - L... k M ' M - L... k o, 

k=l k=2 
i M 

Yi= (M - i + 1) Et+ E M-;+1
' 

k=I k=i+I 

i = 2,3, ... ,M -1, 
where Ea = 0, 0000001; 

Xi= 1/(2i + 1), i = 1,2, ... ,M, 
M 

i = 1, 2, ... , M - 1, j = 1, 2, ... , M, 
aMl = 333, 

Yi = k~l(2k+l)ti+k-l)' 
i = 1,2, ... ,M-1, 

M oM1 = M:j-l' j = 2,3, ... ,M, 

System 13 

A= (o;;), 01; = 0;1 = M_1;+1, 
j = 1,2, ... ,M -1, 
o1M = 1"+ Eo, OMl = 1- Eo, 

I 
oi; = o;i = M-i+l' 
i = 2,3, ... , M, j = 2,3, ... ,i, 

System 14 

A= 

System 15 

M M-1 
M-1 M-1 M-2 

3 3 3 
2 2 2 

... 3 2 

... 2 2 1 

•·· 1 1 I 

A= (o;;), oi; = i-j~M' 

YM = L (2k+l)ti+k-l) + 111; 
k=2 

Xi = 1 - Ea, i = 1, 2, ... , M, 
· M:_l 
Y1 = (1 - EaH E M-

1
k+I + 1 + Eal, 

k=l 
. M I 

Yi= (1- EaHM~i+l + EM-k+1l, 
k=l 

i = 2,3, ... ,M-1, 
M 

YM = (1 - EaH1 - Ea+ E M-
1
k+1 l, 

k=2 
'where Ea = 0, 00001; 

X· = (-l)i/i i - 1 2 M 1 ' - ', ••• , ' 

Y· = (1 + Hl'.(i-M)) ~ i::!t_ 
. ' •+1 k';;:l k ' 

i = 1,2, ... ,M -1, 
M 

YM = L (-lJk/k; 
k=l 

xi= 1/i, i = 1,2, ... ,M, 
M I 

i = 1,2, ... ,M, j = 1,2, ... ,M, Y; = L k(i-k+M)' 
k=I 

i = 1,2, ... ,M. 
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IV. Test examples of systems of equations AX= Y with A= AT - filled matrices of 
the general form: 

System 16 

A= (oi;), 01; = o;1 = M-1;+1' 
j = 1,2, ... ,M -1, 
OM1 = 01M = M +Eo, 
o;; = o;i = M_1i+I' 

i = 2,3, ... ,M, j = 2,3, ... ,i, 
X; = (i + 1)/i, i = 1,2, ... ,M, 

System 17(A - the Hilbert matrix) 

A= (o;;), oij = i+J-1, 

y - MEI k±I + (M+,.l(M+l) 
1 - bl k(M-k+l) M , 

i M 
_ I _, ill + _, kH 

Yi - M-i+I L... k L,, k(M-k+l)' k=l k=•+l 
M 

YM = E !:f +2(M +Eo), 
k=2 

i = 1, 2, ... , M - 1, where Eo = o, 0000001; 

i = 1,2, ... ,M, j = 1,2, ... ,M, 

xi= 1/i, i = 1,2, ... ,M, 
M 

_ _, 1 • 1 
Y; - L... k(i+k-1)' i = '2, ... , M; 

k=l 

System 18 

A= (o--) o1- = o-1 = •+~ 1, 
IJ 1 J J I J-

j = 1,2, ... ,M -1, 

M-1 
y = L i::!t_ + (-l)M333 

I k=l k> M ' 

oM1 = o1M = 333, oi; = o;i = i+J-i, . =~~ ._ 
Y,-1 L... k(k+i-2)' i - 3, 4, ... , M, 

k=I i = 2, 3, ... , M, j = 2, 3, ... , i, 
xi= (-l)i/i, i = 1,2, ... ,M, 

System 19 

r 

•o M-1 M-2 ... 3 2 M 

A= ~-I -M~l ~-2 ..... 3 2_1 

2 2 2 ···221 
M I 1 ·····111 

System 2Q(det(A)=0) 

A~f I b b 
o b 

b b 
b b 

b, o l 
... : : ' 

b o 

- M (-1)• 
YM - L k(k+M-1) + 333; 

k=2 

xi = 1 - Ea, i = 1, 2, ... , M, 
_ <1-,,;l(M2 -M+2 •• > 

Y1 - · 2 · ·., 
_ (1-,0)(M-i)(i+M-3) 

Y; - . 2 ' 

YM = (2M - 1)(1 - Eal,• 
i = 2, 3, ... , M - 1, where Eo = 0, 0000001; 

-1=..!r ·-12 M Xi - 2i+l ' 1, - , ' ••• , , 

- · .. - M-1(-1)• {(-l)M I) 
Y1-YM - b E 2k+l + 0 \2M+1 - a , 

k=2 
_ M (-1)• (-l);a 

Yi - b L · 2k+l - 2i+l ' 
k=I 

i=2,3, ... ,M-1, whereo=l-Ea, 
b = 1 + Ea, Ea = 1 .. 10-11

• 
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