


1 - Introduction

The two Coulomb centers problem (the problem Z,eZ,) consists in a determina-
tion of wave functions of electron e, driven in a field of two fixed charges Z; and
Zs, which are located on a distance R from each other. It plays a fundamental
role in the theory of collisions. Physical aspects of this task are covered in [1]. In
the applications at account of inelastic processes (for example, passages between
terms testing quasiintersection) the performances of terms in a complex plane

R are required. In an outcome of direct numerical computation of terms in the

complex plane R for a symmetric case were detected series of branchpoints,
which allow to speak about a new type of quasiintersections. These “hidden”
quasiintersections explain not only passages between bound states, but also the
process of ionization [1-3].

2 Algorithm

Stationary Schrédinger equation of the two Coulomb centers supposes a separa-
tion of variables in prolated spheroidal coordinates [4], r; = [r — R;[:
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function as in [4,5]: ¥ = (€2 — 1)™/?
following equations for f (€) and (n):
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where a = (Z; + Z3)R, b = (Z2 — Z1)R, A — constant of separation.

For real values R, the problem was traditionally solved by the expansions .

" of unknown functions f and ¢ on polynomials of variables £ and n [6-11]. It
leads to trinomial recurrent equations for factors of expansion. The problem
ZieZ, was solved also by the finite differences [5,12,13] and by the spline-
approximation [5,14] methods with use of continuous analog of the Newton’s
method. In the complex plane R the problem was solved by the expansions of
functions {1-3]. In the present work the Newton’s method applied for a solution
of a nonlinear system of difference equations is considered.

To the equations (2), (3) it is necessary to add the equations circumscribing
a behaviour of functions f(£) and ((n) near the borders of a range of definition.
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That the equations (2) and (3) made sense at £ — Land 7 — £1, the rea.lization

of next equalities is necessary [5]:

o+ [+ 5| =0, (9
o (~1) + [5(3”1—'51—)— %} (1) =0, (5)
S(1) - [2—(%5% 4 "g—] o(1) =0, (6)

Use of an asymptotics for f(£) in form f(§) ~ &% - eP&, £ = 00, reduces in the
following equation:

1©-(348) 1@ =0, §-o ©
For the factors a and § we have received relations:
ﬂ%%@i:”, 268+ 2(m +1)B+a =0 (®)

The cotisidered problem we solved for € € (1,&u); where &y is the large
enough value, for which it is possible to assume good realization of asymptotics

(8). For example, for the computation of the term E3z5 afn"d Espo .(:s,pgcitr?sjcgpic
“1gbels [2]) at real value R = 0.8 we took &ar 2 25 and &y > 45, respectively.

The homogeneoiis boundary conditions allow to enter a normalization of
the radial and angular function, for example; as:
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For comiplex value R there will be cbmbi?x also functions 7 f(E) a.nd ga(n) and
also unknown quantities E, X and parameters a and b. If we divxde sggmem
(1,&n) into N¢ equal parts and segment (—1,1) intq N, of equal parts and
points of grids we denote &; and 7;, we should determine unknowns:

Re f(&), Imf(&), i=L,Ne +1;  Rew(m), Imep(m), i =1,Ny + L
and values Re E, Im E, Re A, Im A. .

If we put to zeros real and imaginary parts of the complex equa:tlons (2),
(3) in interior points § = £2,...,éN, and 7 = N2,.. 51Ny respe.ctlvely, and
equations (4-7) and if to these equations we shall add the equations (9), we
shall receive a system of 2N¢ + 2N, + 6 nonlinear equations. The number of
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unknowns is equal 2N¢ + 2N, + 8. For complex functions f(£) and ¢(n) it
is possible (and it is necessary) to add two conditions of a normalization, for
example:

Im f(§m) =0,  Imy(1) =0. (10)

The problem (2-7), (9), (10) we solved by a Newton’s method. The system
matrix is sparse. It has nonzero columns corresponding to derivatives with
respect to the variables Re E, Im E, Re A, Im A and also nonzero rows cor-
responding to derivatives of the equations of a normalization with respect to
the variables Re f;, Im f;, Rey;, Imy;.. We solved this system by the LU-
decomposition of the system matrix. With the purpose of saving memory,
we produced direct LU -decomposition, without of creation of a system matrix
itself.

3 Numerical results

The problem Z;eZ> we solved for Z, = Z; = 1 and m = 0, with the purpose to
compare outcomes with outcomes of works [1-3], which are obtained by other
method. The computation in the complex plane we began.always on a real
axes R. On a real axes as initial values Re E we used values from a table from
[5]. As initial approximations of wave functions f(£) .and ¢(n) we used either
constant or linear function with ‘one zero, or cos function w1th appropr1ate
number of zeros — all renormalized. with respect to (9).

‘ The problem is.ill-conditioned, dur1ng a solut1on there appear very small
values of: the module of the dlagonal elements l,, Therefore we apphed a
regularlzatxon using idea of work [15] The renormallzatlon of unknown func-
tions f and ¢ on each step of Newton s method promoted to improving and
acceleratlon of convergence.

" First and sécond derivatives'in the equations (2-6) wé approximated with
the second order accuracy, in the asymptotic equation (7) we used both first,
and second order accuracy.- According to Runge’s rule’it is'possible by results
of the computation to conclude, that all difference scheme has in these cases
first and the second order accuracy, respectively. ,
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Fig. 2

Figure 1 shows surface Re E of a term 3pos. This surface was obtained by
calculation along rays parallel to imaginary axes Im R, beginning always on
real axes Re R. The similar figure is indicated in [2]. On Figure 2 the passage
of a term 3po in a term 4po in an outcome of one round movement along the
closed trajectory enveloping a branchpoint is shown.

The work shows, that the method of finite differences can be used for a
solution of the two centers problem in complex area also, as well as method
based on recurrent equations for factors of expansions of wave functions.
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Bywa 4.
Yucnenuoe pelienye 3aqayl AByX LHEHTPOB
B KOMIUIEKCHOI1 IIOCKOCTH

E11-98-293

3anaya ABYX KYJIOHOBCKHX LIEHTPOB B KOMINEKCHOH TJIOCKOCTH MEXBAREPHOIO
paccTosHHs R pacCMaTpHBAeTCS KaK CHCTeMa HelMHeiiHbIX ypasHenuil. CHcreMa,
KOTOpas MoJIy4aeTcsi B pesy/bTare NpHUMeHEHHs METO1a KOHEYHBIX pa3HoCTel, petla-
ercs Merogom HeloToHa ¢ Mcnonb3oBaHHeM LU-pa3noxeHuss MaTpHUbl CHCTEMBI.
ITpu BbluMcineHnd LU-pa3oXeHHs M peLleHHH CHCTEMbl MNPUMEHSETCS pery-
JIpH3aLMS.

Pabora Bemonnexwa B JlaGopaTOpHH BHYMCITHTENBHOH TEXHHUKH W aBTO-
marusauuu OHSIH.
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The two Coulomb centers problem in a complex plane of an internuclear
distance R is considered as a system of the nonlinear equations. The system, which
arises at use of a finite-differences method, is solved by the Newton’s method
with use of LU-decomposition of the system matrix. At an evaluation of the LU-
decomposition and solution of the system the regularization was applied.
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