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If we assume that all charges are located within or on the surface of the electrodes, the 

potential obeys the Laplace equation: 

(1) 

The resulting problem is to find the solution of this equation which fulfils certain 

boundary condition. The Laplace equation is difficult to solve. Since an exact analytical 

solution cannot be found for most of the cases, numerical methods should be applied. 

The numerical methods for solving the Laplace equation can be classified into two 

groups: 

l) Methods approximating the solution of the Laplace equation in the region of interest 

by discretisation (finite-element method, finite-difference method). 

2) Methods approximating the boundary values by superimposing exact analytical 

solution of the Laplace equati<:m (charge-simulation method or integral-equation 

method) [l]. 

The integral-equation method (IEM) is the most appropriate for determining the 

optical properties of . the electron optics. The IEM approximates the. potential 

distribution by a sum of exact analytical solutions of the.Laplace equation. Since the 

electric field is also given by a sum of analytical functions, n.umerical differentiation is 

then avoided. Generally the calculation of electromagnetic fields in electron optical 

systems require~ a. numerical solution of . the threeadimensionfl boundary-value 

problem. It is important to study all possibilities reducing dimension in actual field 

calculations which are then considerably simplified. Two-dimensional field 

calculations are quite familiar for the systems rotationally symmetric about the optical 

axis (z) ... The bpundary values of the potential V may depend on the azimuth <p'.. 

Determination of the field source . distribution on a given two-dimensional boundary S 

implies a numerical solution of a Fredholm equation [2] for unknown Y(r) while U(r) is 

given:. 

f K(r,r)Y(r·)d 2r = U(r) · (r ES). (2) 
s 

The methods of the first group provide an alternative possibility for computing the 
,·., ' . 

electromagnetic fields.in electron optical systems. In the rotationally symmetric system 

the potential distribution.~(r,cp,z) can be expressed as a Fourier series of harmonic 



components <l>m(r,z) [3,4]. They can be calculated by minimizing the variational 

functional 

J m == Jf~o[(d<l> m )2 + (d<l> m )2 + (m<l> m )2 ]m dr dz. 
s2 ar az r (3) 

For the solution of equations (2) and (3) the knowledge of special methods of 

mathematical physics is necessary. 

The purpose of this paper is to present a new technique of solution that avoids the 

difficulties of FDM, FEM, and IEM described above thus making it more acceptable for 

general applications. 

2. ALGEBRAIC ITERATIVE METHOD 

The proposed algebraic iterative method is applicable to solve the boundary and 

main problems of electrostatics for the conductors of an arbitrary form assuming that 

conductor potentials satisfy the Laplace equation. The motivation of the method and 

some examples of the solutions of the boundary problems of electrostatics are given in 

[5]. The method is based on the uniquiness theorem saying that if there is any solution 

found for the potential satisfying the boundary conditions, it means that this solution is 

the only one. 

The algebraic method is based on the fact, that there exist "image" auxiliary 

charges inside the electrodes which, in the region outside the electro4es, produce the 

same potential distribution as the real surface charges. Since the potential and electric 

_field of these charges inside the electrodes are not of our interest, the unknown 

potential distribution outside the electrodes can· often be calculated using a simpler' 

distributfonof "image" point charges inside th~ electrodes. To minimize the number of 

the charges, they.must be adapted to the geometry of the problem. The total fields and 

potentials are obtained by a linear superposition of the fields and potentials due to these 

point charges. Therefore the method is based on the well-known formula for the 

potential at a point P produced by the point charge Q: <JJ=Q/41!& 
0 

d, where & 
0 

is 

permittivity of free space and dis the distance between the point charge and the point P. 

The sµbstitution of the real charges by the point ones placed inside the conductor 

volume substantially simplifies mathematical calculations when solving the boundary 

problem. It also avoids uncertainties which appear at r➔O. Similar method using the 
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linear charges inside the conductor was applied earlie~ to calculate electric fields, 

potentials and some other characteristics of multiwire particle detectors [6,7]. This 

approach lies in the basis of the computer code used to design the multiwire detectors 

for experiments in high energy physics [8]. It was also applied to solve boundary 

problems of electron optics [9]. However· in [9] the rings, the wires and the point 

charges, all together forming the field, were used. 

2.1. DESCRIPTION OF ALGORITHM 

In the new proposed method all intermediate calculations are carried out only in relative 

units. Assume that the total number of charges_is equal tom. The potentials are defined 

· in control points on the electrode surface at the nearest distance from the appropriate 

charges. 

Assuming that u(i) is the relative potential at the control point of the electrode after i

th iteration, the charge in the next iteration is 

q(i+ l)=q(i)/u(i). (4) 

This expression (4) is in the basis of the algorithm for the solution of the boundary 

problem. Clearly, the necessary condition for the convergence of this iterative process 

is the existence of the li~it u(i)-->1 at i➔oo. Only under this condition it is possible to 

apply the expression 

q(k;i+ J)q(k,i)/u(k,i) (5) 

to calculate a new value of charge q ( k, i + 1) using the charge q(k, i) and also of 

potential u(k,i) produced by all the charges in previous iteration. In (5) ke(l,m} is the 

number of point charges and control points, i is the number of iteration. It is clear 

from equation (5) that the charge in the next iteration decrease~ if u(k,i)>u(k,i-1), while 

it increases if u(li,i)<u(k,i-1). 

The algorithm for one charged conductor, of a potential U , consists of 8 steps 0 . 

and can be discribed as follows: 

I. The calculation of the coordinates of the auxiliary charges and_ the 

control points on the conductor surface which" are placed at the shortest 

, distances from the corresponding auxiliary charges. 

2. Value assignment q=l to all the auxiliary charges. 
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3. The calculation of the relative potentials u(k) at control points on the conductor 

surface. 

4. Normalization of the all new potential values u(k, i), obtained after each 

i-th iteration: u(k,i)=u(k,i)lu(J,i), u(l,i) is the reference potential. 

5. Calculation of the all new charge values for the next iteration using the 

expression q (k, i+ 1) =q (k, i) lu (k, i) . 
6. Normalization of all the calculated charge values to the value of the reference pne. 

7. Repeating the points 3 to 6 until the normalized potential 

u(k, i)e(J-ou, l+ou) for all the points of the surface, ou is a given 

accuracy. 

8. The calculation of all new values of the charges q(k) which will produce 

potential u= 1 over all the surface with the given accuracy ou. Final 

result will be obtained according to expression q( k) = q( k) x U . 
. o. • 

The first index 1 or 2 denotes the first or second electrode. The second index I or 2 

corresponds to the first or second stage. As a result of calculations we obtain a system 

of charges Q(l, I) and Q(2, I) for the case The problem of several charged conductors is 

solved in a similar way provided the absolute values of their potentials ar_e equal. 

2.2. ARBITRARY SYSTEM OF CHARGED CONDUCTORS 

It is cler that equation (5) relating the charges and the potential: 

q(k,i+J)=q(k,i)lu(k,i) is absolutely not applicable for the systems containing at least 

one conductor with the zero potential. Let us consider two electrodes, the potential of 

one of them u(l)=l and the second one having a potential equal to zero. To solve the 

problem, we can apply the superposition principle. 

The solution is searched for in two stages. In the first stage we assume the equality 

of the potentials, the charges of both electrodes having the same sign. In the second 

stage we itSsume the electrodes with the same position of the charges but opposite sign 

potentials: 

u(l,l) =u(2,l)=l u(l,2)= -u(2,2j=J (6) 

with equal potentials, and a system of charges Q(l ,2) and -Q(2,2) for the case with the 

potentials of the electrodes equal in magnitude but opposite in sign. 

The corresponding charges of the electrodes are then summed up in pairs with the 

weight k=0.5. As a result we obtain a system of charges Q(l)=k(Q(!,l)+Q(2,l)) for the 
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first electrode and Q(2)=k(Q(2,l)-Q(2,2)) for the second electrode, producing the 

required potentials u(l)=l and u(2)=0. 

To solve the problem for arbitrary potentials, let us consider a combination Q(l) of 

the charges for the first electrode and Q(2) for the second one: 

Q(l)= aQ(l,l)+PQ(2,l), Q(2)= aQ(l,l)-PQ(2,1). (7) 

These combinations of the charges Q(l) and _Q2) produce potentials of the first and 

second electrodes respectively: 

u(l)=( a+p)u, u(2)=( a-P)u. (8) 

Equations (6) and (8) are generalized for a system of four conductors: 

u(l,l) = u(2,l) = u(3,l) =u(4,l) 

u(l,2) = u(2,2) = u(3,2) =- u(4,2) 

u(l ,3) = u(2,3)'=-u(3,3) =-u(4,3) 

u(l,4) =-u(2,4) =-u(3,4)=-u(4,4), 

u( 1 )=( a+p+y+o)u, u(2)=( a+p+y-o)u, 

u(3)=(a+p-y-8)u, u(4)=(a-p-y-8)u. 

(9) 

(10) 

Equation (10) allow one to define the weights values a, p, y, 8 and, using them, to 

find the charges producing the given potentials of the four charged conductors. 

Similarly to equation (7) the ·charges are determined from the following relations: 

Q(l )= aQ(l, I )+PQ(2, 1 )+8Q(3,l)+yQ( 4, I), 

Q(2)= aQ(l,l)+pQ(2,1)+8Q(3,l)-y Q(4,l), 

Q(3)= aQ(l,l)+p Q(2,l)-8Q(3,l) -y Q(4,l), 

Q(4)= a Q(l,1)-P Q(2,1) 0 8Q(3,l)-y(Q(4,l). 

(11) 

Based on the above examples, one can see the principle to form the system of 

equations solving the problem for m conductors. Let us compose a matrix of signs + 

+ + + •.. + + and - for the system of m conductors. Signs.· in the i-th matrix row 
+++ .•. +-
+++ ... - -

+ +- .... -
+--. : .. --

determine the signs of the terms in the i-th equations of the systems 

similar to (9, 10, 11 ). The signs before the unit potentials of the system 

elements correspond to the matrix signs. The signs of the first matrix row 

are taken for the first linear equation, signs of the second matrix row for 

the second one and etc. So, the stage of the matrix.composition and the completion of 

the calculation of the charge values of the system from m elements is the 9-th 
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concluding step of the proposed a!.gorithm solving the problem of electrostatics of the 

arbitrary 3D systems satisfying the Laplace equation. 

3. APPLICATION OF METHOD TO SOLVE THE BOUNDARY PROBLEM 

. FOR THE TWO-TUBE ELECTROSTATIC LENS. 

As an example of the application of the proposed method, let us consider a solution of 

the boundary problem for a two-tube electrostatic lens. We put the inner diameter of 

each tube D= I 0mm, the length of the cylindrical electrode L=30mm, the value of the 

gaps=Imm. 

Auxiliary charges were placed on the cylindrical surface with the radius of 5.4 mm. 

The potential was calculated in 80 control points located along the_ inner surface of the 

electrode. The total number of auxiliary charges was equal to 2x60x80 . 

Fig. I show~ the potential distribution at the control points in relative units. The 

non-regularities at the beginning and the_ end of the distribution (edge effects) Cat?, be 

suppressed by insignificant changes of the positions of the charges corresponding to 

these non-regularities [7]. The discrete character of the auxiliary char~e distribution 

results in a wave-like potential surface. Its maxima are located at the positions closest to 

the point charges, the minima correspond to the center of the interval between 

neighbouring charges. Mathematical simulation has shown that d-distance from a point 

charge up to the surface should satisfy the inequality d c a, where a is a distance 

between the neighbouring charges [7]. The influence of the discrete position of the 

point charges can be see,n in fig. 2, where the potential distribution is shown along the 

part of the inner surface of the lens electrode. The distribution of the calculated 

potential along the axis of the lens electrode is shown in fig. 3. The calculated value of 

the electric field in the gap of the electrode along the ~adius is given in fig. 4. 

In [4] a linear variation of the potential in the gap between adjacent electrodes·was 

assumed thus making the calculations substantially easier. The real dependence is 

shown in fig. 5. It appears to be linear except for the regions near the electrodes. Fig. 6 

shows the cross section of the surface of the electrode near the gap. The points denote 

the position of the auxiliary charges. The normal compo~ent of the electric field is 

connected with the surface charge density cr by the following relation: E. = cr/e0 , 

where e
0 

is the permittivity of free space . Fig 7 shows the surface charge density as a 

function of the distance p along the initial part of the electrode. The local minimum at 
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Fig. I. The calculated relative values of the potential at control points of one of the lens 

electrodes. 
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Fig.2. The calculated relative values of the potential along the inner part of the lens 

electrode. The distribution maxima are located at the positions closest to the 

corresponding point charges, the minima correspond to the center of the interval 

between the neighbouring charges. 
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Fig.3. Distribution of the calculated potential value in relative units along the axis of 

the tube electrode. 
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Fig.4. The radius dependence of z component of the electric field calculated in the 

region between the electrodes. 
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Fig.5. Distribution of the calculated relative potential value in the gap between the lens 

electrodes. 
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Fig.6. Cross section of the potential surface of the lens electrode near the gap. Points 

show the position of the auxiliary charges. 
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Fig.7. Distribution of the calculated value of the surface charge density along the part 

of the electrode. The local minimum at the beginning of the curve corresponds to the· 

flatted forward part of the electrode shown in fig. 6. 
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Fig.8. Distribution of the electric field along the axis of the lens electrode calculated in 

relative units. 
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Fig.9. Distribution of the calculated the surface charge density along the part of the 

electrode where the electric field direction changes. 

9 



Rmm 

51--'-----l-------t--r----.rl-----r----+-~-----1 

4~~' I ! 111 \ J.,~~ 

2 I I ,A»,"J IJ,t:,f/'k I 

I '~...-::::1 ' • I' X' )(_/ I I ""-- I z mm 

ol -r== I ' 1 "1"1 " 1 1 

12 14 16 18 20 22 24 

Fig.IO. The equipotentials (a) and electric field lines (l-6) in the region where the 

electric field changes direction. Values of the potentials in the units relative to the 

potential of the electrode are: .9995; .9994; .9993; .9992; .99915; .9991. Potentials 

correspond respectively to the curves l, 2, 3, 4, 5, and 6 . 
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Fig. I I. Equipotentials in a part of two-tube electrostatuc lens of 60 mm length; shown is 

the distribution to the left from the symmetric plane. The corresponding relative values 

of the potentials increase from left to right with a step of 0.1 starting from 0.1. 
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the beginning of the curve corresponds to the flatted part of the electrode near the gap 

(fig. 6). The distribution of the electric field along the electrode axis of the lens is given 

in fig. 8. In the region where the direction of the electric field changes, the distribution 

of the surface charge density in arbitrary units along the surface electrode is shown in . 
fig. 9. The value of the surface charges density in this region is approximately by 5000 

times less than the value of the surface charge density in the gap of the tube electrodes. 

Fig. 10 presents equipotential and field lines in the region where the direction of the 

electric field changes. The values of the potentials are shown in relative units. Fig. 11 

shows the axial section through one electrode of the lens near the gap. The curves 

represent the equipotential lines of the physical model of the electrostatic Jens. The 

corresponding relative values of. the potentials increase from left to right with a step of 

0.1 starting from 0.1. 

4. CONCLUSIONS 

A simple method of the solution of the boundary problem in electrostatics is 

• proposed. It does not require the application of the usual rather complicated methods 

of mathematical physics. The corresponding computer code is quite easy to write, it 

doesn't require special programming skills. For the example calculations discussed here 

the computer code was written in C language. Total computing time for 100 iterations 

on PC-486 (66MHz) was"" 30 minutes. 

In comparison with the other methods for solving the problems of the electron 

optics: finite-difference method (FDM), finite-element method (FEM) and integral

equation method (IEM), - the proposed method is universal ·and can be applied to 

arbitrary three-dimensional electrostatic systems. 
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lllac!JpaHoB M . .[{. 
A.nre6patttieCKllll HTepaTHBHblll MeTO.ll pewemui KpaeBbIX 3a,llaq 
npOH3B0JlhHhlX 3JieKTpoCTaTHqecKHX CHCTeM, 
y.ooBJieTBOpll!OlllllX ypaBHeHHIO JlaTIJiaca 

El 1-98-255 

Tipe.llJIO)KeH HOBhlll anropHTM H anre6paHqecKHH HTepaTHBHhlll MeTO.ll peweHHll KpaeBhIX 
3a,llaq npoH3B0JlhHhIX 3JieKTpoCTaT1fqecKHX CHCTeM, y.ooBJiernopllIOIUHX ypaBHeHHIO JlaTIJiaca. 
Anre6panqecKHH MeTO,ll OCHOBaH Ha pa3MeIUeHH~ «H3o6p~eHHH» BCTIOMOraTeJihHhIX Toqeq
Hh!X 3apll.OOB BHYTPH 3JieKTpO.OOB, KOTOphie C03,llaIOT TaKoe )Ke TIOTeHUHaJihHOe pacnpe.oe
JieHHe, KaK H peaJibHbie nosepXHOCTHhie 3ap!Ulhl. 3JieKTpnqecKHe TIOJill H TIOTeHUHaJihl 
nonyqaIOTCll JIHHeHHOH cynepil03HUHei1 noneil: H noTeHUHaJIOB, C03,llaBaeMbIX ToqeqHhIMH 
3ap.11.llaMH. Me-ro.o 6a3HpyeTCll Ha ll3BeCTHOH cpopMyne ,llJill IlOTeHUHaJia ToqeqHoro 3ap.ll,lla q: 
u = q / 4 7t i::0 d, r.oe d - pacCTol!HHe Me)K,lly rnqeqHhIM 3ap.11.00M H HeKoTopou ToqKoil: 

npocTpaHcTBa. 
B npe.orrOJIO)KeHHll TOro, qTo II (i) - OTHOCHTeJihHhlH IIOTeHUHaJI B KOHTpOJihHOH TOqKe 

IIOCJie i-il: HTepauuu, 3ap.ll,ll .llJill CJie.OyIOIUeH HTepauuH onpe.oeJllleTCll H3 Bblp~eHH.11 
q (i + 1) = q (i) / u (i). 3TO Bb!pa)Keime llBJilleTcll ocHosoil: anropuTMa peweHH.11 KpaeBhIX Ja.oaq. 

B Kaqecrne npuMepa paccMoTpeHo npHMeHeHne npe.llJIO)KeHHoro MeTo.oa K peweHHIO 
Kpaesoii H OCHOBHOH 3a,llaq 3JieKTpOCTaTHKll .llJill .osyx::ineKTpO,llHOH JIHH3hl. 

Pa6oTa BhIIlOJIHeHa B Jla6oparnpuu csepXBhICOKHX 3Heprnil: OIUIM. 

TTpenpttHT Om,e)ltttteHHOro HHCTttryra ll)lepHbIX HCCJle)lOBaHHii. Jly6Ha, 1998 
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Algebraic Iterative Method to Solve Boundary Problems 
of Arbitrary Electrostatic Systems Satisfying the Laplace Equation 

The new algorithm and algebraic iterative method to solve. boundary problem 
of arbitrary electrostatic systems satisfying the Laplace equation are proposed. 

The algebraic method is based on the fact, that there exist «image» auxiliary point 
charges inside the electrodes which, in the region outside the electrodes, produce the same 
potential distribution as the real surface charges. The total fields and potentials are obtained 
by a linear superposition of the fields and potentials due to these point charges. Therefore 
the method is based on the well-known formula for the potential at a point P produced 
by the point charge q: u = q / 4 7t i::0 d, where d is the distance between the point charge 

and the point P. The potentials are defined in control points on the electrode surface 
at the nearest distance from the appropriate charges. 

Assuming that 11 (i) is the relative potential at the control point of the electrode after i-th 
iteration, the charge in the next iteration is q (i + I)= q (i) / u (i). This expression 
is in the basis of the algorithm for the solution of the boundary problem. 

As an example of the application of this method, a solution of the boundary problem 
for a two-tube electrostatic lens is considered. 

The investigation has been performed at the Laboratory of Particle Physics, JINR. 
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