


If we assume that all charges are located within or on the surface of the electrodes, the
potential obeys the Laplace equation:

Ad=0. )]
The resulting problem is to find the solution of this equation which fulfils certain
boundary condition. The Laplace equation is difficult to solve. Since an exact analytical
solution cannot be found for most of the cases, numerical methods should be applied.
The numerical methods for solving the Laplace equation can be classified into two
groups: B
1) Methods approx1matmg the solutlon of the Laplace equation in the region of interest
by dlscretlsatlon (finite-element method, finite-difference method).
2) Methods approximating the boundary values by superimposing exact analytical
solution of the Laplace equation (charge-simulation method or integral-equation
method) [1]. '

The integral-equation meth(;d (IEM) is the most appropriate for determining the
optical propertiéé of the electron optics. The IEM approximates the potential
dlstrlbutlon by a sum of exact analytlcal solutions of the Laplace equation. Since the
electrlc field i is also glven by a sum of analytical functions, numerical differentiation is
then avoided. Generally the calculation of electromagnetic fields in electron,optlcal
systems requires a.numerical solution of the three-dimensional boundary-value
problem. it is important to study all possibilities reducing dimension in actual field
calculatfons which are  then cbnsiderably simplified. Two-dimensional  field
calculatlons are quite famﬂlar for the systems rotationally symmetric about the optical
axis (z) _The boundary values of the potential V. may depend on the azxmuth P..
Determination of the field source  distribution on a given two-dimensional boundary S
implies a numerical solution of a Fredholm equation [2] for unknown Y(r) while Ur) is ...

given:
IK(r,r')Y(r’)dzr' =U(r) - (res). A 2)
The rnethods of the ﬁrst group prov1de an alternative possibility for computmg the

electromagnetlc fields in electron optlcal systems. In the rotationally symmetric system

the potential dlstrlybutlon‘t‘b(r,(p,z) can be expressed as a Fourier series of harmonic
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components @, (r,z)[3,4]. They can be calculated by minimizing the variational

functionalr

ol o, , d¢m2 mbd,
Jm—g;so[( S () )]mdrdz. 3)

For the solution of equations (2) and (3) the knowledge of special methods of
mathematical physics is necessary.

The purpose of this ’paper is to present a new technique of solution that avoids the
difficulties of FDM, FEM, and IEM described above thus making it more acceptable for

general applications.

2.‘ALGEBRAIC ITERATIVE METHOD
" The propdsed algebraic iterative method is applicable to solve the boundary and
main problems of electrostatics for the conductors of an arbitrary form assuming that
conductor potentials satisfy the Laplace equation. The motivation of the method and
some examples of the solutions of the boundary problems of electrostatics are given in
[5]- The method is based on the uniquiness theorem saying that if there i is any solutlon
found for the potential satisfying the boundary condltlons, it means that thls solutlon is
the only one. ‘
The algebraic method is based on the fact, that there exist "image" auxiliary
charges inside the electrodes which, in the region outside the electrodes, produce the
same potential distribution as the real surface charges. Since the potential and eleeﬁic

field of these charges inside the electrodes are not of our interest, the unknown

potential distribution outside the electrodes can often be calculated using a simpler’

distribution of "image” point charges inside the electrodes. To minimize the number of

the charges, they. must be adapted to the geometry of the problem. The total fields and
potentials are obtained by a linear superposition of the fields and potentials due to these
point charges. Therefore the method is based on the well-known formula for the
potential at a point P produced by the point charge Q: @=Q/4ne, d, where ¢, is
permittivity of free space and d is the distance between the point charge and the point P.
The substitution of the real charges by the point ones placed inside the conductor
volume substantially simplifies mathematical calculations when solviné the boundary
problem. It also avoids uncertainties \;vhich appear at r—0. Similar method using the
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linear charges inside the conductor was applied earliexj to calculate electrie fields,
potentials and some other characteristics of multiwire particle detectors [6,7]. This
approach lies in the basis of the computer code used to design the multiwire detectors
for experiments in high energy physics [8].. It was also applied to solve boundary

problems of electron optics [9]. However in [9] the rings, the wires and the point

. charges, all together forming the field, were used.

2.1. DESCRIPTION OF ALGORITHM

In the new proposed method all intermediate calculations are carried out only in relative

units. Assume that the total number of charges is equal to m. The potentials are defined

~in control points on the electrode surface at the nearest distance from the appropriate

charges.
Assuming that u(j) is the relative potential at the control point of the electrode after -
th iteration, ';he charge in the next iteration is ) v '
' | q(i+1)=q(/u(i). N O
This expression (4) is in the basis of the algorithm for the solution of the boundary
problem. Clearly, the necessary condition for the convergence of this iterative process
is the existence of the limit #(i)—1 at i—>c0. Only under this condition it is possible to
apply the expression o ' ‘ '
A ki) O
1o calculate a new value of charge q(k,i+1) using the charge q(k.i) ya'nd also of
potential u(ki) produced by all the charges in previbué iteration. In (5) ke(l,m) is the
number of p01nt charges and control pomts, i is the number of iteration. It is clear
from equatlon (5) that the charge in the next iteration decreases if u(A, t)>u(k,1 -1 ), while
1t increases 1f u(k, )<u(k,t .
The algonthm for one charged conductor of a potentlal U , consists of 8 steps )

and can be discribed as follows:

‘ 1. The calculation of the coordinates of the auxiliary charges and the

control points on the conductor surface which are placed at the shortest
. distances from the corresponding auxiliary charges. , B

2. Value assignment g=1 to all the auxiliary charges.



3. The calculation of the relative potentials u(k) at control points on the conductor ~
surface. ' ' : ' o
4. Normalization of the all new potz‘ential’values u(k,i), obtained after each
i-th iterat’ion:' uk, i)=u(k,i)/u(l,i), u(l,i) is the reference potential.
5. Calculation of the all new charge values for the next iteration using the '
expression g (k i+1) =q (k i) /u (k i) . ' ’
6. ‘Normalization of all the calculated charge values to the value of the reference one.
7. Repeating the points 3 to 6 until the normalized potential
u(k, i)e(1-6u, 1+3u) for all the points of the surface, du is agiven
accuracy. ’ ' R '
8. The calculation of all new values of the charges q(%) which will produce
potential u=1 over all the surface with the given accuracy‘ §u Final =~

result will be obtained according to expression g(k) = q(k)xU R

The first index 1 or 2 denotes the first or second electrode. The second index 1 or 2

corresponds to the first or second stage. As a result of calculations we obtain a system
of charges Q(1,1) and Q(2,1) for the case The problem of several charg'ed conductors is
sol\r_ed in a similar way provided the absolnte values of their potentials ar:e equal.
2.2. ARBITRARY SYSTEM OF CHARGED CONDUCTORS.

It is cler that equation (5) relating the charges and the potential:
qlki+1)=q(k i)/u(ki) is absolutely not applicable for the systems containing at least

one conductor with the zero potential. Let us consider two electrodes, the potential of -

one of them u(1)=1I and the second one having a potential equal to zero. To solve the
problem, we can apply the superoosition principle. ‘ : “ ‘
The solution is searched for in two stages. In the first stage we assume the eqnallty
of the potentials, the charges of both electrodes having-the same sign. In the ‘sec_ond
stage we assume the electrodes with the same position of the charges but opposite sign
potentials: T o k
w1 =u@ =1 u(l2)=-u22=I 6)

with equal potentials, and a system of charges Q(1,2) and -Q(2,2) for the case with the .

potentials of the electrodes equal in magnitude but opposite in sign.
The corresponding charges of the electrodes are then summed up in pairs with the

weight k=0.5. As a result we obtain a system of charges Q(1)=k{Q( 1,1)+Q(2,1)j for the

first electrode and Q(2)=k(Q(2,1)-Q(2,2)) for the second electrode, producing the
required potentials u(/)=1 and u(2)=0.
To solve the problem for arbitrary potentials, let us consider a combination Q(1) of
the charges for the first electrode and Q(2) for the second one: ) :
Q)= aQ(LDBQ(2,1), Q2= aQ(1,1)-Q2,1). (7
These combinations of the charges Q(1) and Q2) produce potentials of the first and
second electrodes respectively: ‘ - |
u(l)=( @By, u@)~( a-pju. 8)
Equations (6) and (8) are generalized for a system of four conductors:
u(l,1)=u(2,1) = u(3,1) =u(4,1)
u(1,2) = u(2.2) = u(3,2) =- u(4.2)
u(1,3) = u(2,3¥ =-u(3,3) =u(4,3) - 9)
u(1,4) =u(2,4) =-u(3 4)=-u(4,4),

u(D)=(a+p+y+6)u, u(2)=(a+B+y-8)u,
u)=(ortB-y-8)u, u(4)=(a--y-Su. (10)

Equation (10) allow one to define the weights values o, B,7,0 and, using them, to
find the charges producing the given potennals of the four charged conductors.
Slmllarly to equatlon (7) the ‘charges are determrned from the following relations:
Q1= aQ(1,1)+BQ(2,1)+86Q(3,1)+yQ(4,1),
Q@)= aQ(1,1)*+BQ(2,1)+8Q(3,1)-y Q(4,1), amn
Q@)= aQ(L1)+B Q(2,1)-8Q(3,1) -y Q(4.1),
Q@)= o Q(1,1)-B Q(2,1)-8Q(3,1)- ®(Q(4,1) .
Based on-the above examples, one can see the principle to form the system of
equations solving the problem for m conductors. Let us compose a matrix of signs +

+++...++ and - forthesystem of m conductors. Signs in the i-th matrix row

:::---’" determine the signs of the terms in the i-th equations of the systems
........... similar to (9,10,11). The signs before the .unit potentials of the system
: Foss elements corresp_ond to the matrix signs. The signs of the first matrix row

are taken for the first linear equation, signs of the second matrix row for
the second one and etc. So, the stage of the matrix composition and the completion of
the calculation of the charge values of the system from m elements is the 9-th
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concluding step of the proposed algorithm solving the problem of electrostatics of the

arbitrary 3D systems satisfying the Laplace equation.

3. APPLICATION OF METHOD TO SOLVE THE BOUNDARY PROBLEM
'FOR THE TWO-TUBE ELECTROSTATIC LEN.S.

As an example of the application of the proposed method, let us consider a solution of
the boundary problem for a two-tube electrostatic lens. We put the inner diameter of
each tube D=‘10mm, the length of the cylindrical electrode L=30mm, the value of the
gap §=1mm. » ‘

Auxiliary char'ges‘were placed on the cylindrical surface with the radius of 5.4 mm.
The potential was calculated in 80 control points located along the inner surface of the
electrode. The ‘total number of auxiliary charges was equal to 2x60x80.

Fig.1 show_s'the potential distribution at the control points in relative units. The
non-regularities at the beginning and the end of the distribution (edge effects) can be
suppressed by insignificant cha.nges‘of the positions of the charges cdrresponding to
these non-regularities [7]. The discrete character of the auxiliary cﬁarge distribution
results in a wave-like potential surface. Its maxima are located ai the posit-ions closest to
the point charges, the minima correspond to the center of the interval between
neighbouring charges. Mathematical simulation has shown that d-distance from a point
charge up to the surface should satisfy the ine;quality d 2 a, where q is a distance
between the neighbouring charges [7]. The influence of the discrete position.of the
point charges can be seen in fig. 2, where the potential distribution is shown along the
part of the inner surface of the lens electrode. The distribution of the calculated
potential along the axis of the lens électrode is shown in ﬁg. 3. The calculated value of
the electric field in the gap of the electrode along the fadius is given in fig. 4. k

In [4] a linear variation of the potential in the gap between adjacent electrodes ‘was
assumed - thus making the calculations substantially easier. The real dependence is
shown in fig. 5. It appears to be linear except for the regions near the electrodes. Fig. 6
shows the cross section of the surface of the eléctfode néar the gap. The points denote
the position of the auxilia‘ryr charges. The normal compohent of the electric field is

connected with the surface charge density o by the following relation: £, =o/e,,

where ¢ is the permittivity of free space . Fig7 shéws the surface charge density as a

function of the distance p along the initial part of the electrode. The local minimum at
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Fig.1. The calculated relative values of the potential at control points of one of the lens
electrodes.
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‘ Fig.2.. The calculated relative values of the potential along the inner part of the lens

electrode. - The distribution maxima are located at the positions closest to the
corresponding point charges, the minima correspond to the center of the interval

between the neighbouring charges.
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Fig.3. Distribution of the calculated potential value in relative units along the axis of
the tube electrode.
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Fig.4. The radius dependence of z component of the electric field calculated in the

region between the electrodes.
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Fig.5. Distribution of the calculated relative potential value in the gap between the lens

electrodes.
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Fig.6. Cross section of the potential surface of the lens clectrode near the gap. Points

show the position of the auxiliary charges.
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Fig.7. Distribution of the calculated value of the surface charge density along the part
of the electrode. The local minimum at the beginning of the curve corresponds to the

flatted forward part of the electrode shown in fig. 6.
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Fig.8. Distribution of the electric field along the axis of the lens electrode calculated in

relative units.
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Fig.9. Distribution of the calculated the surface charge density along the part of the

electrode where the electric field direction changes.
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Fig.10. The equipotentials (a) and electric field lines (1-6) in the region where the
electric field changes direction. Values of the potentials in the units relative to the
potential of the electrode are: .9995; .9994; .9993; .9992; .99915; .9991. Potentials

correspond respectively to the curves 1,2,3,4, 5,and 6.
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Fig.11. Equipotentials in a part of two-tube electrostatuc lens of 60 mm length; shown is
the distribution to the left from the symmetric plane. The corresponding relative values

of the potentials increase from left to right with a step of 0.1 starting from 0.1.
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the beginning of the curve corresponds to the flatted part of the electrode near the gap
(fig. 6). The distribution of the electric field along the electrode axis of the lens is given
in fig. 8. In the region where the direction of the electric field changes, the distribution
of the surface charge density in arbitrary units along the surface electrode is shown in
fig. 9. The Qalue of the surface cﬁarges density in this region is ap;;roximately by 5000
times less than the value of the surface charée density in the gap of the tube electrodes.
Fig. 10 presents equipotential and field lines in the region where the direction of the
electric field changes. The values of the pbtentials are shown in relative units. Fig. 11
shows the axial section through one electrode of the lens near the gap. The curves
represent  the equipoténtiél lines of the physical model of the electrostatic lens. The
corresponding relative values bf_ the potentials increase from left to right with a step of

0.1 starting from 0.1.

4, CONCLUSIONS

A simple method of the solution of the boundary problem in electrostatics is

* proposed. It does not require the application of the usual rather complicated zhethods

of mathematical physics. The corresponding computer code is quite easy to write, it
doesn’t require special programming skills. For the example calculations discussed here
the computer code was written in C language. Total computing tirﬁe for 100 iterations
on PC-486 (66MHz) was ~ 30 minutes.

In comparison with the other methods. for solving the problems of the electron
optics: finite-difference method (FDM), finite-element method (FEM) and integ;al-
equation method (IEM), - -the proposed method is universal ‘and can be applied to

arbitrary three-dimensional electrostatic systems.
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Ilacpanos M.I. E11-98-255
Anre6paMdeckHii HTEpATHBHBI METOM PELICHHS KpaeBhIX 3afay

NIPOU3BOJIBHEIX IEKTPOCTATHYECKHX CHCTEM,

YOORIETBOPSAIIMX YpaBHeHMIO Jlamnaca

Tpennoxen HOBHH aIropUTM H anre6pandyecKHii HTePaTHBHBIA METON PELIEHHS KPAeBbIX
3a7a4 [IPOM3BONIBHEIX 37IEKTPOCTaTHYECKHX CHCTEM, YIOBJIETBOPSIOIMX ypaBHeHHIo Jlamnaca.
Anre6paHyecKHil METOl OCHOBAH Ha pa3MEILleHHH «H306paXeHHii» BCIIOMOTaTeNbHBIX TOUed-
HBIX 32pSO0B BHYTPH A/IEKTPONOB, KOTOPHIE CONANT TaKOE Xe MOTEHUMANEHOE pacripefie-
JIeHHe, KaK H pealbHple MOBEPXHOCTHBIE 3apdlbl. DIEKTpHYecKHe MONs H NOTeHUMAalbl
MOJMYYAOTC JTIMHEHHOH Cyneprio3duMeil moneil U NOTEHLHAIOB, CO30ABAEMbIX TO4YEYHBIMH
3apsinaMu. Meron 6asupyeTcs Ha u3BecTHOI (opmyie M1 TOTeHIHana TOYEYHOro 3apija g:
u=q/4mne d, rme d — pacCTosHHE MeXjy TOYEUHBIM 3apSIOM M HEKOTOPOH TOYKOI

HPOCTPaHCTBA.
B npennanoxeHHH Toro, uto u (f) — OTHOCHTENBHEBIA MOTEHIHAN B KOHTPONBHOH TOUKe
nocne i-d WTepandH, 3apsi UIA Cleylolleidl MTepaudH onpeensercd W3 BhIpaXEHHA
q (i + 1) = q (i) / u (i). 310 BhIpaxXeHHE ARIAETCT OCHOBOH ATTOPHTMA peLLIcHHA KPAeBbixX 3aay.
B xauecTBe npHMepa pacCMOTPEHO NpPHMEHEHHE NPETOKEHHOTO MeToda K peuieHHIo
KpaeBoil ¥ OCHOBHOH 3afay ®JIEKTPOCTAaTHKU /Ul ABYX®JIEKTPOAHOM JTHH3BL.

Pa6ora BbinonHeHa B JlaGopatopiu cBepxBeICOKHX 3Hepruit OHSIH.

Mpenpunt O6beIMHEHHOTO HHCTHTYTA SACPHBIX McciefoBanuit. JyGHa, 1998

Shafranov M.D. E11-98-255
Algebraic Iterative Method to Solve Boundary Problems
of Arbitrary Electrostatic Systems Satisfying the Laplace Equation

The new algorithm and algebraic iterative method to solve. boundary problem
of arbitrary electrostatic systems satisfying the Laplace equation are proposed.

The algebraic method is based on the fact, that there exist «image» auxiliary point
charges inside the electrodes which, in the region outside the electrodes, produce the same
potential distribution as the real surface charges. The total fields and potentials are obtained
by a linear superposition of the fields and potentials due to these point charges. Therefore
the method is based on the well-known formula for the potential at a point P produced
by the point charge q: u=q/4 ng,d, where d is the distance between the point charge

and the point P. The potentials are defined in control points on the electrode surface
at the nearest distance from the appropriate charges.

Assuming that u (i) is the relative potential at the control point of the electrode after i-th
iteration, the charge in the next iteration is g (i+1)=¢q (f)/u(i). This expression
is in the basis of the algorithm for the solution of the boundary problem.

As an example of the application of this method, a solution of the boundary problem
for a two-tube electrostatic lens is considered.

The investigation has been performed at the Laboratory of Particle Physics, JINR.
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