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On Some Questions of Theory of the Acoustic Laser 

A theoretical scheme of acoustic analog of laser (saser) was suggested 
and investigated numerically with the help of computer simulation procedure. 
The suggested scheme for the saser is analogous to a well-known scheme of free
electron laser (FEL) where an_ electromagnetic emission is created by self-synchro
nized electron beam moving through magnetic periodic systems. A computational 
model of the saser was described by a sytem of three nonlinear differential equations 
with partial derivatives. A simulation was performed in a wide range of physical' 
parameters for active media and resonator. The obtained results are in good 
agreement with the results known for FEL. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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I. THEORETICAL BACKGROUND 

At the present time, the problem of creating an acoustic analogue of the laser 
(which will be referred below as 'saser' - sound amplification by stimulated emission of 
radiation or 'acoustic laser' ) is of great interest not only because of its evident 
fundamental significance but also because there are a variety of potential applications for 
such devices. As generators of directed shock waves, they could be used for direct 
underwater communication and impact action on underwater objects. Propagation into 
other dense media could give rise to medical, engineering and underground remote 
sensing applications. If propagation through appreciable distance of more rarefied media, 
notably air, could be achieved, many more applications would be opened up. 

· Recently, a theoretical scheme for a saser has been proposed by one of the present 
authors in Refs.[1-6], Fig. I-a. A liquid dielectric with uniformly distributed dispersed 
particles was suggested as the active medium. Different types of oils, liquefied gases or 
distilled water can be used as a liquid dielectric. Gas bubbles was suggested in Refs. [ I -
6] as dispersed particles due to, firstly, their very high compressibility and, secondly, 
their ability to give sound emission of the monopole type. The sound emission from solid 
corpuscles is of dipole type and much less efficient. The suggested scheme for a saser is 
analogous to that of a free-electron laser ( FEL ). It is well known that the useful 
electromagnetic radiation is created by an electron beam moving through magnetic 
periodic systems. These systems are called ondulators or wrigglers. Ondulators play the 
role of pumping. Inside such a system each electron oscillates and, hence emits 
electromagnetic waves. Initially the emission of each electron is added to the emission of 
others but different spatial phases. Thus, the resulting emission is equal to zero. In order 
to obtain non-zero emission we should put"this system in a resonator to reflect back some 
part of useful energy. In optical lasers this is usually realised by means of half-silvered 
mirrors. In the FEL the reflection of the useful electromagnetic wave can be realised by 
means of a metal net. Then, under the action of a pump wave and the useful wave, 
electrons become grouped in so-called bunches. As a result, the emission becomes 
coherent. It leads to amplification of the electromagnetic field. This mechanism is well 
known as self-synchronisation. In the saser gas bubbles play role of the electrons in the 
FEL. Unlike common optical lasers, in which atoms can emit spontaneously, gas bubbles 
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can only oscillate under an external action, but not spontaneously. As has been shown in 
Refs.[1-6], external pumping of this active medium can be achieved by electrical ( see, 
for example, Refs.[1-3,5]) or mechanical ( see, for example, Refs.[4,6]) methods. 
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Fig. 1. Scheme of the acoustic laser .. 
1 - active m~dium; 
2 - resonator; 

> 3 - electrodes. 
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In the first case the ele'ctric field acting on such· a system results in the deformation 
( electrostriction ) of the dielectric and, hence; changes particle volumes. ~The value of the 
effective.pressure acting ori'the particle is proportional to the square of electricintensity 
E and the· difference, between dielectric constants of liquid bubble and gas. For gas the 
dielectric constant is very close to L: As· for liquids, a' high value of this constant is found 
in , distilled water· ( aboui 81 ). It is clear that for electric pumping; distilled water is 
preferable with respect to other dielectrics. However, the electric pumped· saser has cine 
weak point. The. electric intensity necessary to common saser generation in, for example 
distilletl:water with air bubbles, is of the order of a few tens of kV/cm: This is close to· 
the breakdown'potential. That is why in Refs.[4,6] a new simple scheme of saser 'witn 
mechanical pumping· has. been proposed. Iri' accordance with this scheme, the pumping 
can be achieved by a: plane piezoelectric emitter of a piston type in the case of a 
rectangular resonator [4] or by radial' mechanical pulsations of a cylinder in the case of 
cylindrical resonator [6]: ·• . . .. 
In the saser, the role of a laser mirror cari be played by a wall of any material with 
acoustic impedance much ·greater ( or much less ) thari that of the gas-liquid mixture. As 
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has been shown in Refs.[I-6], the bubble bunching can be realised by means of well 
known acoustic radiation forces. These forces are similar· to those which group the 
electrons in bunches in the FEL. In the saser, gas bubbles are grouped in planes in which 
their emision becomes coherent. Generation conditions for a saser were evaluated in 
Ref.[2]. It was shown that two types of losses must be overcome for generation to begin. 
The first type results from the energy dissipation in the active medium and the second 
one is caused by radiation losses at the boundaries of the resonator. 

A further important step is made in Ref.[3] where the non-linear stage of saser 
operation and a saturation mode are investigated by numerical methods taking into 
account the role of bubble coagulation under the action ofBjorkens forces These forces 
can be important when the gas bubbles are grouped in coherent planes. It is well known 
that usual magnetostrictive and electrostrictive generators are working as generators of 
piston type .with large spatial directionality. Fig.4 shows that the saser radiation is a set 
of many pistons or a phased array [3]. It is possible that the saser directional pattern will 
be narrow-beam. Moreover, the saser differs from the above systems particularly in that it 
is a three-dimension system because the whole voh.nne of an active medium emits. It is 
new physical quality. · 

What does it mean 'saser'? 

In optics, 'laser' ( light amplification by stimulated emission of radiation) means a· 
generator of coherent electromagnetic waves which . has a :narrow-beam directional 
pattern. Most of all, such interpretation is suitable for lasers operating as stationary 
generators. But, if lasers are working as generators of short pulses (for example, chemical 
single-pass lasers), than this interpretation.leaves much to be desired .. In fact, the length 
of short impulses may be of the same·. order as .wavelength. In this case, what does 
coherency mean? In this case laser may be. obviously defined as a generator of short 
impulses which has a narrow-beam directional pattern. It is clear that the last definition is 
more general than the first one. But, there is one additional very important matter. Laser 
is a device in which the mechanism of self-synchronisation of elementary emitters ( for 
example, atoms. in optical laser,) 'is realised. In saser, small gas bubbles play the role of 
elementary emitters and. the. self-synchronisation takes place as well.· Thus; saser may be · 
defined ;as a sound generator which has a narrow~beam directional pattern: and, the 
op~ration .of which is based on'. the mechanism of self-synchronisation. This definition is 
very important for the following consideration because it .can cause . some 
misunderstanding. LeH1s:imagine that•we have a set of coherent small piezoelectric 
emitters. The number of them may be, for example, a few tens. ;These emitters may be 
sym;:hronised but it is an artificial synchronisation, not self-synchronisation· even if the 
directional pattern may be quite narrow-beam (if .we increase. this number. then; the 
directi~nal pattern will improve). None the less, such a system is not a saser but only a 
phased array. It is clear that in the. case:.of saser scheme suggested above there are 
millions of small gas bubbles .which can never be synchronised artificially, but only using 
the ~echanism of self-synchronisation. But one can ask,,what are advantages of a.saser 
with respect to a phased array? The answer will be given below. '. In addition, we will 
c9p.sid_er another example_ of a sound generator which could have a .narrow-beam 
directional. pattern (this scheme was suggested by Prof. F.V.Bunkin within one of our 
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discussions ). Let us take a cylinder and wind it around by detonation flex. The velocity 
of detonation wave in flex is about 7.5 km/s. Let us select the turns (these system may not 
be a periodic one) from the condition of synchronisation of flex detonation wave velocity 
(in axial cylinder direction) with shock wave velocity in air (which is about 330 mis ). 
Thus, we will build a single-pass shock wave generator. But, it is clear that this device is 
not a saser as well. This is a source of directed explosion. It should be noted that using 
this device we may build a single-pass amplifier for shock waves. Ifwe can synchronise a 
shock wave impulse with a start moment of detonation wave (in axial cylinder direction) 
i.e:,at the entrance to this device then,it is evidently, we can obtain an amplification of 
this impulse at the exit. 

Alternative schemes for saser 

It should be noted that there is a number of papers in which theoretical schemes · 
for . an acoustic laser were · suggested'. We can' distinguish, at least, four. alternative 
approaches., First, the self-synchronisation' ( due , to nonlinear effects ) in a system of 
incoherent mechanical oscillators ( monopoles, for example, gas bubbles in liquid ) and 
the amplification ofan acoustic field were considered by Kobelev et al [7]: Secondly, 
sound oscillations in a Helmholtz resonator with overcooled vapour were investigated by 
Kotusov and Nemtsov [8]; However; neither of· these schemes have been· realised 
experimentally because. of the weak self-synchronisation mechanism; A third approach. is . 
developed by Prieur [9,10], Tucher [I I], Hutson [12] at al. The active medium .in this 
approach is a piece of solid (for example, pure silicon) at a temperature of 0.5 K. Authors 
of these works suggested phonon transitions to amplify sound pulses. However, such 
phonons have frequency of the order of tens . GHz. At such. the frequencies, phonons 
were absorbed very quickly in solid (thus to eliminate phonon absorption, all experiments· 
were carried out at low temperatures). It is clear that such an approach is not useful to 
build a saser as a· generator of shock waves, although the. researches. believe that, 
eventually, acoustic lasers will be used as sensitive particle detectors (New Scientist, 27 
AprjJ I99~). Finally, the fourth approach yery interesting for us, was developed by Prof. 
V.K.Kedrinskii et al. [13,I4]who suggested the use of chemically active meaia to build 
an 'acoustic laser' ( although. they did not use this terminology ). Kedrinsky's group 
would like to create a saser' by means of so~called chemically ll.Ctive media, i.e. liquid (for 
example, water}' with gas bubbles containing hydrogen - oxygen or hydrocarbon - oxygen 
mixture. A shock wave runs through this medium, compresses gas bubbles which take 
fire leading to the amplification of the shock wave amplitude and so on. Thus, we have a 
single-pass shock wave amplifier. In our opinion, this approach may be. an alternative 
scheme of a saser ( alike the scheme suggested by the present authors). 

What are potential advantages of a saser ? 

· Let us consider some ad~~tag~~ of a saser with respect to other. sources of 
sound. At the present tim'e; five mairi types of acoustic 'generators exist:, electrodynamic, 
electrostatic, magnetic, 'magnetostrictive and electrostrictive. The first three types are 
generally used in air while the latter two ones are applied in underwater acoustics because 
of their high· mechanical self~impedance. In general, these · generators act as two-
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dimension generators (piston type), because only a single two-dimension working surface 
effects en.1.ission in the medium. Besides, such types,.of generator have large spatial 
directivity. In addition, magnetostrictive and electrostrictive generators Jack a discrete 
spectral distribution of sound emission. It is therefore of interest to create new generator 
types that do not suffer from these shortcomings: One possibility is the saser. First of all, 
it is envisaged that these enable large output powers for sound emission to be.obtained 
due to the very high compressibility of gas bubbles (close to 1, as compared to usual 
piezoelectric crystals. for which the maximum compressibility not resulting jn damage is 
about 0.001 ). Secondly, in saser, under the action. of both the pumping wave and a useful 
mode inside the resonator gas bubbles become grouped in planes ( similarly to electrons 
in free-electron lasers ) in which their emission becomes coherent . Thus, a saser acts as a· 
phased array. Unlike the usual magnetostrictive and electrostrictive emitters (2-
dimension working systems ) the whole 3- dimension volume of the active medium 
emits. This is a new concept. Thirdly, the sound velocity, in.the gas-liquid mixture is a 
fun~tion of gas content. Using this fact, we can more easily change the frequency of saser 
emission.than that of magnetostrictive and electrostrictive emitters. Fourthly,it is very 
difficult to build an effective generator of strong• sound waves in.air because of huge 
difference between the acoustic impedance of air.and the self-impedance ofthe'emitter. It 
is well known that by changing the gas volume content, we can easily, obtain sound 
velocity :in such a, gas-liquid mixture to be Jess than the sound velocities both in pure' 
liquid (without bubbles) and pure gas. At the first sight, this might seem strange, but a 
gas-liquid mixture is quite an unusuaL medium. Its density .is almost· completely 
determined by that of the liquid component, but its compressibility,is determined only by 
that of the gas component ( the liquid phase can be considered to practically 
incompressible .). It is possible that one can adjust the' impedance of air and self
impedance of the saser and, thus, built ari effective generator of strong sound wave in air. 

II. SCHEME OF THE ACOUSTIC LASER 

Let· us consider an acoustic resonator containing particles' dispersed in a li,quid. 
dielectric as active medium. For example, we can use different types ofoils or distilled 
water as a· liquid dielectric. It is well known that thh distilled water has a high dielectric 
constant. Static electric field acting on the system :,(3,Fig3) causes deformation 
(electrostriction) of the dielectric particles [16]. The value of the effective pressure acting 
on the particles is equal to [16,17] · 

' ', 2 ,, 
3 c1E (c1 -cp) 

11P= 
81r (2c, + c P) 

(1) 

Here c I and c P are the dielectric constants for liquid and dispersed particles respectively, 

E,js the eleftric field interi~ity)n the case of_an,air bubbles in,~ater {cP:.: l,c, ,;,81) 
and at an electric intensity E =,I0kV le,µ the value of 11P is ,of order of 0.5 kPa. Let us 
suppose that E is a periodic time function: E = E0 cos(Qt) . The electromagnetic waves 
propagate through the medium with the velocity of light . (for this medium), which is 
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much greater than the velocity of sound. Consequently, the pumping pressure wave can 
be considered as being independent on the spatial co-ordinate, 

P(t) = PE exp(imt) (2) 

Here, m = 2Q is an angular frequency. The pressure amplitude of the pumping wave PE 
can be easily calculated from (2). The constant term in (2) is o.mitted. Under the action of 
pumping wave, the particles oscillat~ and emit.sound waves. The initial distribution of 
particJes is spatially homogeneous. The waves created by the dispersed, particles are 
summed with different phases and result zero pressure for the useful wave. However, for 
active medium in the resonator, an acoustic mode can appear. Then the particles would 
grouped to bunches by the acoustic radiation forces. Moreover, it is well known that the 
state of the medium with the spatially homogeneous bubble distribution is unstable not 
only for a steady but also for a traveling wave [18]. This leads to self-synchronisation of 
the oscillating particles and the amplification of a pressure wave. 

III. PRINCIPAL EQUATIONS 

For simplifications of calculations, we supposed that the dispersed particles are spherical. 
Their pulsation was investigated in numerous papers (see, for example, [18-20]). In a 
monopole approximation, the equation for the particle radius pulsation is: 

R1(t) = - ~ 2 [PE exp(i rot) + P (r, t)] 
P1 Ro ro 

(3) 

The right hand side of this formula contains the resulting pressure on a particle. The first 
term corresponds to the pumping wave (2), the second one describes the pressure created 
by the oscillations of other particles; A is the scattering amplitude; r is the position 
vector of a particle in the liquid; R0 is the mean pru:ticle radii; p 1 is the liquid density. 

The monopole approximation holds true at the condition k1R0 << 1 ( k1 is a wave number 
in the liquid). The case of a liquid with gas bubbles gives [19] 

A = . Ro (4) 
( ro O / ro) 2 

- 1 + i o 
where m

0 
= m

0
(R0 ) is the resonance frequency of the bubble, o is the absorption 

constant. The sound pressure wave P'(r,t) is described by the known equation [18] 

· 1 a2P a2 
"' 2 

LiP- -
2 

-
2 

= p1 -
2 
J 41tr(r, R0, t)R0 R1(t)dR0 (5) 

C 1 at at 0 

where c1 is the sound velocity in the pure liquid (without particles), n(r,R0 ,t) is the 
particle size distribution function ( n is equal to the number of the particles per unit 
liquid volume with mean radii between R0 to R0 + dR0 ). Let us suppose that at t=0 the 
distribution of the particles is spatially homogeneous, i.e., 
n(r,R0 ,0) = n0 (R0 ) (6) 
For sound pressure created by the external pumping, one can obtain 
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~P - ~ a
2
~ - (a. + i f3)P = (a. + i f3)PE exp(i rot) 

c, at 
where 

., 
a. = a(r, t) = -41t Re J An(r, R0, t)dR0 

- 0 

., 
P = fXr, t) = -41t Im J An(r, R0, t)dR0 

0 

In the case of the liquid with gas bubbles we have 

"' Ro{l - ro~ / ro 2) 
a. = a( r, t ) = 41t J 2 2 2 2 n( r, R0, t ) d R0 

0 ( 1 - ro 0 / ro ) + o 

"'J . R00 P = IX r, t) = 41t 2 2 2 2 n( r, R0, t) d R0 
0 (1 - ro 0 / ro) + o 

(7) 

(8) 

(9) 

(IO) 

(11) 

If the spatial distribution is invariable and homogeneous as time passed, then 

p (r t) = p (t) = (a. 0 + i PJPE exp(i rot) 
,. 0 k2 ( · Ill 

I - O.o + I I-'/ 

(12) 

Here a 0 = a(r,0),P0 = P(r,O) are independent of r, and k1 = w I c1 • The resulting 
amplitude is also spatially homogeneous, 

PoC,t) = PE exp(i rot) + P O (t) = 
PE exp(i rot) 

_ [ O.o ;/ Po] 

(13) 

The appearance of the factor 

F = [1 - a. 0 
;/ Po r (14) 

is caused by the presence of dispersed particles. The translation motion of the particle is 
given by the equation [21], 

41t [ 1 ] 3 dU - P1 + - Pp R0 - = F1 + F2 + D + F, + F8 3 · 2 dt 
(15) 

The left part of this equation contains the usual mass of particle ~ 4 R3 ( . - 1tpp O Pp IS 
3 

the density of particles) and apparent mass m1 = 3._ 1rp1Rg ( see for example, [22] ): 
3 

F; = -41r(pP +}__p1)R;U(dR1 I dt)is the drag force due to the particle volume 
2 . 

oscillations ( its time average ( F;) = 0 ); F; is the buoyant force which is small for small 
particles; D is the viscous drag force which for small Reynolds number 
Re =;,_2R0Up1 I µ 1 • ( µ 1 is the liquid viscosity) is given by Stoke's low, 

8. 

i 

I 
~ 

~ 

\ 

t" 

D = -61rµ
1
R

0
Ufv (16) 

where f vis the correcting factor which is given fv = 1 for solid particles and f,. = ¾ 
for gas bubbles [22]; F, is the time-average acoustic radiation force. The expression for 

F, fs very complicated but in the case being considered it can be represented as 

F, =-
4
; (R 3 (t)VP(r,t))f, (17) 

where R(t) = R
0 

+ R
1 
(t) is the current particle radius, P(r,t) is the resulting pressure 

acting on a particle, the numerical factor f, is•given as follows: 

[ 
2c2] 1 + 2 Pp - 3 p~ ~ 

f = P1 P1 c, (18) 

r [1 + 2 :~] 
F

8 
is the so-called secondary Bjemess force [23] which is caused by the interaction 

between particles (this force is created by the secondary radiation of the particles and is 
usually smaller with comparison to F,). Substitution of all these terms into (15) and the 

time averaging gives the following equation: 

yU = -a.VIPl2 + i fXP·vp - PvP·) (19) 
Here the functions a and p are given by the formulas (8) and (9) , respectively, 

r = 121rµ
1
R

0
p

1
w 2 Nfv If, where N(r,t) is the full number of bubbles per unit volume of 

the liquid at the point r . To simplify the calculations, all particles are assumed to have 

equal radius, i.e., 
- -

n( r, Ro, t) = f\{ r, t) c'( Ro - Ro) (20) 
Equations (7) and (19) must be supplemented with the balance equation (we shall neglect 

the coagulation for particles) 

an + di v(nl} = o (21) 
at 

IV. SOME SIMPLIFICATIONS OF EQUATIONS 

Let us consider the equations 

ari a - + -(nl} = 0 
at ax 
u = - ~ alPl2 + i Q. < p· aP 

yax r ax 
where 

., 

aP·) 
P ax 

a= -4,rRe f An(x,R0 ,t)dR0 = -4mi'(x,t) Re A 
0 
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/3 = -41rlm f An(x,R0 ,t)dR0 = -4mz'(x,t)lm(A) 

Neglecting by the terms of higher orders one can get: 

a . aP a ap· . 
U=--P---P-+1 

r ax r ax 
Q_ p· aP _ i Q_ P ap· = -i a + i 13 P aP· _ ~ p· aP 
y ax yax y ax y ax 

"' - Uo {p ap· + p· aP} 
Y_o f)x f)x 

Then the equation (21) takes the form 

an _ ~ ~ (n[P ap· + p· aP] 
at y 0 ax ax ax 

Representing the pressure as 

P = Po( t) + lJ{ x, t} (22) 

we have obtained the following equation where unknown functions are 'I'(z,t),n(z,t) 

an a 0 a ( a ( • • • )~ -- - - - n - P0 'I' + P0 'I' + 'I"I' = 0 (23) 
at YO f}x f}x 

Substituting (22) into (7) one can get the equation 

a
2
'I' 1 a

2
'I' ( . fl'llTJ ,- • mn irot ( • fl'IP(t) 1 a2Po 

--2 - 2 --2 - a + I..,, r = a + I ..,,rEe + a f 1 .._, 0 + -
2 
--

2 f)x cat cat 
and after simplifications one can find 

o2
'I' 1 ?'I' ' . 1 o2 P, 

- 2- - 2 - 2--(a +i/3)'¥ = (a +i/J)P,,.e'"" + (a +i/J)Pa(t) + 2 -
2
-
0 (24) 

&-_ c a · c a 
where the following substitution have been used k = OJ 

C 

a
2
'I' 1 a

2
'I' ( ·m (~) "lt)Fn irol --2 - - 2 --2 - a + I .._, 'I' = u +I .., rEe 

i)x C at 
and · given by 

n n 
a = a o N , /3 = /3 o N 

0 0 

V. NUMERICAL SOLUTION OF THE EQUATIONS 

Let us consider non-linear equation system of second order with complex 
coefficients : 

10 

11 

'~ 

) 
!J 

o2
'¥ 1 o2'I' . N . N - N

0 -2 -2-2 -(ao +i/Jo)-'I'=(ao +i/Jo)-----'-Pa 
a- C a No No 

o; = ;: !( N(!(Pa''I'+Pa 'I'' +'I"¥'))) , 

(25) 

where ( x, t ) E Q Q = [ Q L] x [ Q CX)) ; L - resonator length; 'I'( x, t )-wave 
function; 'I':O ➔ C; 

~x, t )- particle density near x at moment t; N:Q ➔ R; 

, P0 = FPEe; "'
1 

- pressure created by external g~nerator of frequency ro and intensity of 

PE in the media characterised by F [24]; y 0, Ii, a 0, f3 0 R- are parameters [24]. 
Initial conditions are as follows: 

'I'(x, t )11 =o = 'I'o(x) 

a'I'(x, t ) I _ ( , 
at t =0 - '¥1 X} 

~x, t )1 1 =o = N0 {x) = const·. 
Boundary conditions for function 'I' are as follows: 

8¥(x,t)I b'-I'(x,t)I · 
-0-- -o lZC x=O - ' lZC x=L - • 

After conversion the system (25) using the variable substitution as follows: 
' 'I'(x,t) = FPEe;' <JJ(X, r), 

Nt,t) = TJ(x, r), 
0 

m 
KX=z,mt=,,K=-, 

C 

introducing rational variables <Pt, cp 2: 

cp(X, .) = 'P1(X, .) + j 'P2(X, .), 
and setting 

• 2 

a~= ao ,/3~ = /Jo ,q = a 0KFF PE 
Kl K2 y oC 

<I>(x, r) = 2q., 1(x, r) + q.,:(x, r) + q.,~(x, r), 
one can get the following system of three non-linear equations with unknown functions 

'P1(X, •) 'P2(X, •) Tl(X, 1:): 

?q.,1 - &rp1 + 2 O(fJ2 + 'P1 = 7Ja~'P1 - 1J/J~'P2 +(1J- l)a~, 
o,r2 &2 or · (26) 
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?<p2 - ?<p2 -2 o<p1 + <p2 = 17a~<p2 + 17/3~<p1 +(17- l)/J~, 
q2 &2 & 

:=q~(11:) ' 
X e[0,KL]. 

(27) 

(28) 

with following initial conditions: 

'¥ oq.,1(x,r)I -~ 
'P1(x,O) = F;~ ' q.,i(x,o) = 0 ' or r=O - mFPE ' 

oq.,i(x,r) I = _ '¥0 

or r=O FPE. 

and with following boundary conditions: 

o<p1(x,,r)I =0 o<p1(x,,r)I =0 
£7,t" . z:O ' CX' z:rl. 

o<p2(x,,r)I =0 o<p2(x,,r)I =0 
CX' z:O ' CX' z:rl. 

Computation were performed with next initial conditions for functions <pi, cp 2 : 

<p1(x,o) = 10-6 cos(x) 

<p 2(z,0)=0 ; 

~I (z,0)=0 ; 

o<p2 (z,0)=0 . 
& 

Resonator length was choose as follows L = 2n . Discretisation of system (26)-(28) was 
, K 

performed using grids with step i for variable 't and with step h for variable x, : 

X 

't 

hk, 

ij, 

k = a .. N 

= Q ... 

I 

We have used formulas of second order of accuracy to approximate derivatives of 
functions cp I' <p 

2 
, ri with variable x, and derivatives of functions <pi, <p 2 with variables 

't in the interval (Q 2n) and the formulas of first order of accuracy to ~pprox1mate 

derivatives of function ri with variable 't in the interval (Q 2n). 
The initial values of functions cp 1 ' and cp 2 ' were approximated by formulas of 

second order of accuracy. Boundary conditions for function ri one can obtain from 

12 

boundary conditions for functions cp I and cp 2 • Boundary conditions obtained in such way 
are as follows: 

( 
, a'<1> ) 

ri(Q 't) = exp q I ax2 (Q e)de, 

· ( , a'<1> ) 
ri(k L, 't) = exp q I ax 2 (2n, e)de 

If we replace the integrals in above expressions by their approximations calculated by 
trapezium formulas then we get boundary conditions of second order accuracy. Finally 
the following discrete equations were obtained: ' 

q.,!_j., - rq.,;_j., = A,.j (29) 

rq.,!_j., + q.,;,j., = s,., (30) 

r at> r at, · ( _ a'<I> J 
11,.;,, -q 2h o,r /,.;,,'l,+1,j+1 +q 2h o,r /.,1.,11,.1.j+I = 17,.; I +qr o,r' /,.i•' (31) 

j=l ... ,k=l ... N-1," 
where 

-2 

A T{1 21 1}21 I kJ = 11" <pk+IJ - <pkJ + <pk-1,i + <flk,i - <flk,i-1 

- 2 2 -2 I , -2 I 
-T<pkJ-1 +i- <flkJ -aorh,jT <flkJ 

/3 , -2 I , ( 1)-2 + o'hJT <flk,; + ao T/kJ - T , 
-2 

B T{2 22 2}22 2 kJ =11" <pk+IJ - <flk,i +<flk-lJ + (f}k,i -<pk,i-1 

- I 2 -2 2 , -2 2 
+T<flk.j-1 +T <flkJ -aoT/k,;' (f)k,i 

/3 , -2 I /J' ( 1)-2 - oT/k,i' <flk,j - 0 T/k,i - ' ' 
k=I ... N-lj=2 ... , 
with the following initial conditions: 

<p~.o = 10-6 cos(hk) , <pi,0 = 0 

, I I 2 2 
(f}k,1 = <flk.O • <flk.l = <flk.O ' 

T/ k .o = I ' 

k=O ... N 
and with the following boundary conditions 
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4<p
1

1 
. - <p~ . - 3<p

0

1 

. = 0, J ,] J 

4q,; - q,; . - 3<p~ = 0, J ,I J 

4<p~-IJ - <p~_ 2,j - 3<p~,j = 0, 

4<p~-IJ - <p~_ 2J - 3<p~J = 0, 

{ ( 
_ a2<I> .ii _ ti<l> _ ci<I> )} 

1/o,j+I = exp q 0.5, oX2 I o,o + ~" oX2 J o,p +0.5, ~2 J o,j+l ' 

{ ( 
_ 0 2 <1> .ii _ 0 2<1> _ 0 2

<1> )} 
17NJ+i =exp q 0.5, oX2 IN.o+~, oX2 IN.P+0.5, oX2 INJ+1 

where 

<l>(X, t) = 2cp,(X, t) + cp;(x. t) + cp;(x. t) 
A final equation system represents the _three layers scheme in respect to pair functions 

cp ~. i , cp ~. i and two layers scheme in respect to function Ji k, i . The values of cp 
1
, cp 

2 
on 

j+ 1 -th level at k-th point was calculated using following system of equations: 
I - 2 A <pk,j +I - t<pk,j +I = k,j • 

- I 2 8 t<pk,j +I + <pk,j +I = k,j' 
The solutions of the system are the next: 

I ~I 2 ~2 
<pk,j +I = -;; • <pk,j +I = ~ 

where 

~=I+ r2 

~, = Au + t=Bk.j 

~2 = Bk,j - rAk,j 

The equation (29) was solved by factorisation method. So one needed the following steps 

to create the full procedure: 
1) A given initial conditions allow one to calculate functions cp 

1
, cp 

2 
at 0-th and 1-th 

levels; using this values and values of the function ri on 0-th level the values of rJ on 1-
th level on boundary points one can successively calculate: 
2) The values of ri at the points k=l...N-1 on 1-th level; 

3) The values cp 1, cp 2 onj+l-th level at the points k=l...N-1; 

4) The values of cp 1, cp 2 on boundary points atj+l-th level; 

5) The values of ri at the boundary points on j+ 1-th level; 
6) The values of ri at the points k=l...N-1 onj+l-th level. 

14 

The constructed algorithm was tested on the model tasks with known exact solutions. A 
good agreement between exact and numerical solutions was obtained. The algorithm was 
used to obtain the solution of the formulated above task and investigation of the solution 
was performed using increasing density grids. The results were published in [25] · 

VI. NUMERICAL RESULTS 

The constructed in this work procedure. was realised using the following values for 
physical parameters: • 

a~= 0.01 , 

/J~ = 0.001 , 

q =; 0.045 '· 

KL =2ff , 

A grid step of h = 2
7t for x and a grid step of t = ~ for t was used. Following 

100 · 12 
problems were solved: . 
I.The taskwas solved with parameter PeF/Pst=lO and initial conditions cp1 =10"

6
cos(x), 

cp2=0. Values of the functions <l>(X, t) and ri(x. t) on layers numbers N= 1000, 2000, 
3000, 4000 ,5000 are represented in Fig. 2,3. The bunching is.shown. 

0,04 

0,02 

0,001,--~=---,'----=----' 

-0,02 

-0,04 

20 40 60 80 

Fig.2 V~lues of the <l>(X, ,) _on the layers 
numbers 'numbers N= 1000,2000,3000,4000 
,5000. ; . . . 

1,10 

1,05 

1,00 

0,95 

0,900 
20 40 60 80 100 

Fig.3. Values of ri(x.. ,) on the layer~ 
numbers N=l000,2000,3000,4000,5000. ,, . __ , . ,. 

2. The task was solved with parameter PeF/ Psi = 10, and initial conditions 

cp1=106cos(3x), cp2=0. A grid step of h=2pi/300 for x and a grid step of t = ~ for 
12 

twas used. The values of the function ri at the layers 3000, 4500, 6000, 7500 are shown 
on the fig.4. One can see that the bunching at this values of parameters don't take place. 
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~.N=1500,N=6000,N=7500 

Fig.4. TJ(X, 't) on the layers numbers 

N=J000,4500,6000,7500. 

-0.0002 

-0,0004 

Fig.5. <l>{X, 't) on the layers numbers 

N=3000,4500,6000,7500. 

3. The task was solved on the following values of parameters: Pe F/P51=1, and at the 
following· initial conditions: cp1= cos(x), cp2=0. The results on the layers numbers 
N=I00,200,300,400,500,600 are presented on the fig. 5. The bunching is shown. Due to 
lack of factor 10-6 nonlinear effect has appeared: 

10 
9 N=400 

N=300 
8 

N=200 
7 N=100 
6 
5 
4 
3 

2 
1 

00 80 100 

Fig.6 TJ(X, 't) on the layers numbers 

N= I 00,200,300,400. 

3 

2 

0 

-1 

-2 

-3 

0 20 40 . 60 80 100 

Fig. 7. <l>{X, 't) on the layers numbers 

N=I00,200,300,400. 

4. The task ":'as 
1

solved on the following value of parameter PeFIPs1=0.5, and _initial 
conditions: cp1=cos(3x), cpz=0. The r~sults on the layers n~bers N=I00,200, 300, 400, 
500, 600 are presented on the fig. 8. The bunching is shown. 
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1 2V/'• _/\ :'> i\ '.' ,~\ 
' ,I ~\ '.'~ \\' 'I' , - \\' 

10 i\ /, .. ,. li1\J~,,
1
i'.\:I<\ 

' \\> .- \\.:.4 ~/'. \ 
0,8 \j \., \, 

0,6 

0,4 

0,2 

0,00 
20 40 60 80 100 

Fig.8. TJ(X, 't) on the layers numbers 
N=I0,20,30,40. , . 

6 

-6 

0 20 40 60 80 

Fig.9. <l>{X, 1') on the layers numbers 

N= I 0,20,30:40. 

N=10 

N=30 

100 

Considered examples show the bunching effect if saser parameters are in the 
definite range and absence of the bunching in other range. The bunching character 
also depends on initial conditions 

This work was supported by RFFI grant 97-01-01040. 

References 

[I] S.T.Zavtrak, Phys. Rev.E, 1995. V.51. N 3. P.P.2480-2484. 
[2] S.T.Zavtrak, Phys. Rev.E, 1995. V.51. N 4. P.P.376_7-3769. 
[3] I.V.Volkov, S.T.Zavtrak and I.S.Kuten, Phys. Rev.E, 1997. V.56. Issue July. 
[4] S.T.Zavtrak, JASA, 1996. V.99. N 2. P.P. 730-733. 
[5) S.T.Zavtrak and I.V.Volkov, JASA, I 997. 1997. V.l 00. Issue July. 
[6] S.T.Zavtrak andl.V.Volkov, Ultrasonics, 1996. V.34. N 6. P.P.691-694. 
[7] Yu.A.Kobelev, L.A.Ostrovsky, and I.A.Soustova, Izv. Vuzov. Radiofiz., 1986. V.29. 
P.P.1129-1136 (in russian). 
[8] A.N.Kotusov and B.E.Nemtsov, Akust. Zh. 1991. V.37. P.P.123-129.[ Sov. 
Phis.Acoust. V.37, 62 (1991)). 
[9] J-Y Prieur, H:Hohler and M.Devaud, 1993. Europhys. Lett. V.24. P.P.409-414. 
[IO] J-Y Prieur, Physica B, V.219/220. P.235. 
[l l] E.B.Tucker, Phys. Rev. Lett., 1961. V.6. P.P.547-548. 
[12] A.R.Hutson, J.H.McFee and D.L.\Vhite, Phys. Rev. Lett., 1961. V.7. P.P.237-239. 
[13] Kedrinskii V.K. and Mader Ch.L. Proc. of 16th Int. symp. on shock tubes and 
waves, Aachen, 1987. -Weinheim, 1987. 
[14] Kedrinskii V.K. Physics of Burning and Explosion, 1980. V.16.N.5. P.P.14-25 (in 
russian). · · ·. · · '. .. '.. 1 
[15) F.V.Bunkin, Yu.A.Kravtsov and G.A.Lyahov "Acoustical analogs of nonlinear 
optical phenomena"// Uspehi Fizicheskih Nauk, V.149. N 3. 1986. P.P.391-411. 

[16] C. Marshall, Free-Electron Laser ( MacMillan, New York, 1985) 

17 



[17]S. T. Zavtrak and E. V. Korobko, Akust. Zh. 37,944 (1991) [Sov. Phys. Acoust. 
37,491(1991)]. 
[18] K. A. Naugol'nykh and L.A. Ostrovsky, Nonlinear Processes in Acoustics 
(Nauka,Moscow, 1990). 
[19] K. Klei and G Medvin,Acoustic Oceanography (Mir, Moscow, 1980). 
[20] K.Yosioka and Y. Kavasima, Acustika,3, 167(1955). 
[21] Yu.Levkovsky,Structure of Cavity Current(Sudostroenie,Leningrad, 1978). 
[22] L.D.Landau and E.M.Lifshitz,Hidrodynamiks(Nauka,Moscow, 1990). 
[23] L.A.Crum,J. Acoust. Soc. Am. 53, 1163(1975). 
[24] I.V.Volkov, S.T.Zavtrak and I.S.Kuten, Phys. Rev.E, 1997. V.56. Issue July. 
[25} I.V.Puzynin, I.V.Amirkhanov, S.T.Zavtrak, O.V.Zeinalova, Sh.S.Zeinalov, 
Computer Simulation of Wave Generation Conditions in Acoustic Lasers, P11-96-510, 1996. 
(in russian) ' 


