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HekoTopsle BOMPOCH! TEOPHH aKYCTHUECKOTO Nazepa

Mpennoxena TeopeTHyecKas cxeMa aKyCTHYECKOro aHajora Jasepa (cocepa),
AHQIOrHYHas XOPOILUO M3BECTHOH CXeMe Jalepa Ha CBOOONHBIX 3/IeKTpOHAX, [AE
3JIEKTPOMarHUTHOE H3NTydeHHe BO3HHMKAeT BCIENCTBHE CaMOCHHXPOHM3AlMH /€K~
TPOHHOTO MYyYKa, JBHXKYILETocs Yepe3 nepHOIHYECKH MEeHSIOIEEeCT MarHUTHOE MoJIe.
YucnenHasd Mofielb U1l cocepa ONMHMCHIBAETCS CHCTEMOM TpeX HelUMHelHBIX nudide-
PEeHUMATLHBIX YpaBHEHMI ¢ yacTHbIMHM Npou3sossbiMu. [IpoBexeno mnccneposanue
MOIENH MOCPEACTBOM MaTeMaTHYeCKOr0 MONENHPOBAHHUS C MOMOILBI0 KOMIBIOTEPa.
MonenupoBaiyde npoBeNeHO B ILUHPOKOM HAMAma3oHe (PU3MYECKUX [apaMeTpoB,
OMHCHIBAIOIIMX AKTHBHYIO Cpelly M Pe30Harop cocepa. PesynbTaTsl HAXOmATCH B XO-
poleM KauyecTBEHHOM CONIacHH ¢ TCOpCTH‘-leCKHMH pe3ynbTaTaMu IS fasepa
Ha CBOGOMHEIX 3MEKTPOHAX.

PaGora Brinonnena B J1aGopaTopHu BHIYMCIHTENBHOM TEXHHKH H aBTOMATH3aLMH
OUAHN.

Coobenne OObeIMHERROrO HHCTHTYTA ANEPHBIX HCCneaoBaHuil. lybHa, 1997
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On Some Questions of Theory of the Acoustic Laser

A theoretical scheme of acoustic analog of laser (saser) was suggested
and investigated numerically with the help of computer simulation procedure.
The suggested scheme for the saser is analogous to a well-known scheme of free-
electron laser (FEL) where an electromagnetic emission is created by self-synchro-
nized electron beam moving through magnetic periodic systems. A computational

- model of the saser was described by a sytem of three nonlinear differential equations

~with partial derivatives. A simulation was performed in a wide range of physical

parameters for active media and resonator. The obtained results are in good

i agreement with the results known for FEL.

| The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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1. THEORETICAL BACKGROUND

At the present time, the problem of creating an acoustic analogue of the laser
(which will be referred below as 'saser' - sound amplification by stimulated emission of
radiation or 'acoustic laser' ) is of great interest not only because of its evident

fundamental significance but also because there are a variety of potential applications for

" such devices. As generators of directed shock waves, they could be used for direct
underwater communication and impact action on underwater objects. Propagation into
other dense media could give rise to medical, engineering and underground remote
sensing applications. If propagation through appreciable distance of more rarefied media,
notably air, could be achieved, many more applications would be opened up.

' Recently, a theoretical scheme for a saser has been proposed by one of the present
authors in Refs.[1-6], Fig.1-a. A liquid dielectric with uniformly distributed dispersed
particles was suggested as the active medium. Different types of oils, liquefied gases or
distilled water can be used as a liquid dielectric. Gas bubbles was suggested in Refs.[1-
6] as dispersed particles due to, firstly, their very high compressibility and, secondly,
their ability to give sound emission of the monopole type. The sound emission from solid
corpuscles is of dipole type and much less efficient. The suggested scheme for a saser is
analogous to that of a free-electron laser ( FEL ). It is well known that the useful
electromagnetic radiation is created by an electron beam moving through magnetic
periodic systems. These systems are called ondulators or wrigglers. Ondulators play the
role of pumping. Inside such a system each electron oscillates and, hence emits
electromagnetic waves. Initially the emission of each electron is added to the emission of
others but different spat1a1 phases. Thus, the resulting emission is equal to zero. In order
to obtain non-zero emission we should put this system in a resonator to reflect back some
part of useful energy. In optical lasers this is usually realised by means of half-silvered
mirrors. In the FEL the reflection of the useful electromagnetic wave can be realised by
means of a metal net. Then, under the action of a pump wave and the useful wave,
electrons become grouped in so-called bunches. As a result, the emission becomes
coherent. It leads to amplification of the electromagnetic field. This mechanism is well
known as self-synchronisation. In the saser gas bubbles play role of the electrons in the
FEL. Unlike common optical lasers, in which atoms can emit spontaneously, gas bubbles
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can only oscillate under an external action, but not spontaneously. As has been' shown in
Refs.[1-6], external pumping of this active medium can be achieved by electrical ( see,

for example, Refs.[1-3,5] ) or mechanical ( see, for example, Refs.[4,6] ) methods. -
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F1g 1. Scheme of the acoustrc laser
.1 - active medlum
2- resonator,
in3- electrodes

In the ﬁrst case the electrrc ﬁeld actmg on such a system results in the deformatron

) (electrostnctron ) of the dielectric and, hence; changes particle volumes. “The value of the

effective pressure acting on ‘the partlcle is proportronal to the square of electric: 1ntens1ty“
E and the d1fference betWeen d1electr1c constants-of liquid bubble and gas. For gas the
dlelectrrc constant is very-close to 1: As for llqulds a high value of this constant is found' ‘
in distilled water: ( about 81 ). It is clear that for electric pumping, distilled ‘water'is’
preferable with respect: to-other d1electr1cs However, the’ electnc pumped ‘saser has one
weak pomt The'electric mtens1ty necessary to common saser generation in, for example-b
distilled ‘water with air bubbles, is of the order of a few tens of kV/cm. This is'close to
the breakdown' potent1al That is why in Refs.[4,6] a new ‘simple scheme of saser with
mechanical pumping has been ‘proposed. In‘accordance with this scheme, the pumping
can be achieved by -a plane piezoelectric ‘emitter of a piston type in'the case of a
rectangular resonator [4] or by radlal mechamcal pulsatlons of a cylmder in the case of B
cylindrical resonator [6].~ .
In the saser, the role of a laser mirror can be played by a wall of any material with
acoustic 1mpedance much ‘greater ( or much less ) than that of the gas-liquid mixture. As
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has been shown in Refs.[1-6], the bubble bunching can be realised by means of well
known acoustic radiation forces. These forces:are similar to those which group the
electrons in bunches in the FEL. In the saser, gas bubbles are grouped in planes in which
their emision becomes coherent. Generation conditions for a saser were evaluated in
Ref.[2]. It was shown that two types of losses must be overcome for generation to begin.
The first type results from the energy dissipation in the active medium and the second
one is caused by radiation losses at the boundaries of the resonator.

A further important step is made in Ref.[3] where the non-linear stage of saser
operation and a saturation mode are investigated by numerical -methods taking into
account the role of bubble coagulation under the action of Bjorkens forces These forces
can be important when the gas bubbles are grouped in coherent planes. It is well known
that usual magnetostrictive and electrostrictive generators are working as generators of
piston type with large spatial directionality. Fig.4 shows that the saser radiation is a set
of many pistons or a phased array [3]. It is possible that the saser directional pattern will
be narrow-beam. Moreover, the saser differs from the above systems pamcularly in that it
is a three-dimension system because the whole volume of an active medrum emits. [t is
new physical quality. :

What does it mean 'saser'?

In optics, ’laser ( llght ampllﬁcatlon by stlmulated emission of radlatron ) means a*

generator of coherent ‘electromagnetic waves “which has a- narrow-beam directional
pattern. Most of all, such- interpretation. is suitable. for lasers operatmg as stationary
generators. But, if lasers are working as generators of short pulses (for example chemical
single-pass lasers ), than this interpretation.leaves much to be desired. In fact, the length
of short impulses may be of the: same-order. as wavelength. In this case, what does
coherency mean? In this case laser may:be obviously defined as a generator of short
impulses which has a narrow-beam directional pattern. It is clear that the last definition is
more general than the first one. But, there is one-additional very important matter. Laser
is a device in which the mechanism of self-synchronisation of elementary emitters ( for
example, atoms in optical laser,))is realised..In saser, small gas bubbles play the role of

elementary. emitters and the self-synchronisation takes place as well. Thus, saser may be -

defined -as a sound generator which has a narrow-beam directional pattern:and, .the

operation. of which is based on.the mechanism of self-synchronisation.. This definition is:

very - important - for: -the followmg :consideration: because . it: :can ' cause »some
misunderstanding. Let:us:imagine that we:have:a set of coherent small piezoelectric
emitters. The number of them may be, for example, a few. tens. These emitters may.be
synchronised but it is an’artificial synchronisation; not self-synchronisation’even if.the
directional pattern. may be quite- narrow-beam -(if we increase this: number . then :the

directional pattern will improve) None the less, such a system is not a saser but only a:

phased array, It is clear that in the, case. of: saser scheme suggested - above . there. are

millions of small ,gas bubbles which can never be synchromsed amﬁcrally, but only using .

the mechanlsm of self- synchronrsatlon But one can ask,,what are advantages of a saser

with respect to a phased array? The answer will be given below. : In°addition, we will .
consider another example of a. sound .generator which could-have-a narrow-beam .

dlrectronal pattern (thls scheme was suggested by Prof. F.V .Bunkin within one -of our

discussions ). Let us take a cylmder and wind it around by detonation flex. The velocity
of detonation wave in flex is about 7.5 km/s. Let us select the turns (these system may not
be a periodic one) from the condition of synchronisation of flex detonation wave velocity
(in axial cylinder direction) with shock wave velocity in air (which is about 330 m/s ).
Thus, we will build a single-pass shock wave generator. But, it is clear that this device is
not a saser as well. This is a source of directed explosion. It should be noted that using’
this device we may build a single-pass amplifier for shock waves. If we can synchronise a
shock wave impulse with a start moment of detonation wave (in axial cylinder direction)
i.e.-at the entrance to this device then it is evrdently, we can obtam an amphﬁcauon of
thls 1mpulse at the exrt ‘ Rt ‘ : e

Altemative schemes for saser

= It should be noted that there is a number of papers in which theoretical schemes"
for..an acoustic laser were ‘suggested.- We 'can’ distinguish;’ at least, four. alternative
approaches.. First, the self-synchronisation’ (due to- nonlinear effects ) in-a system of-
incoherent mechanical oscillators:( monopoles, for example, gas bubbles in liquid ) and
the amplification oftan acoustic field were considered by Kobelev et:al [7]. Secondly,
sound oscillations in a Helmholtz resonator with overcooled vapour were investigated by
Kotusov -and Nemtsov [8]: :However,' neither -of - these *schemes  have ‘been ‘realised
experimentally because of the weak self-synchronisation mechanism: A third approach is
developed by Prieur [9,10], Tucher [11], Hutson [12] at al. The active 'medium -in this
approach is a piece of solid (for example, pure silicon) at a temperature of 0.5 K. Authors
of these works suggested phonon transitions. to amplify sound pulses. However, such
phonons have frequency of the order of-tens GHz. At such:the frequencies; phonons
were absorbed very quickly in solid (thus to eliminate phonon absorption, all experiments:
were carried out at low temperatures). It is clear that such an approach is not useful to
build a saser as a“generator of shock: waves, although the: researches believe , that,
eventually, acoustic lasers will be used as sensitive particle detectors (New Scientist, 27
April 1996 ). Finally, the fourth approach very interesting for us, was ‘developed by Prof.
VK. Kednnsku etal. [13, 14] who suggested the use of chemically active media to build
an . 'acoustic laser ( although they did not use thls terminology ). Kedrmskys group
would like to create a saser by means of so-called chemlcally active media, i.e. liquid (for
example, water) w1th gas bubbles contammg hydrogen - oxygen or hydrocarbon - oxygen

_mixture. A shock wave runs through this medium, compresses gas bubbles ‘which take

fire leading to the amplrf ication of the shock wave amplitude and so on. Thus, we have a
single-pass shock wave amplifier. In our opinion, this approach may be an alternative
scheme of a saser (alike the scheme suggested by the present authors).

What are potential advantages ofa saser ?

- Let wus consrder some advantages of a saser wrth respect to_other sources of
sound. At the present time, five main types of acoustic generators exist: electrodynamrc
electrostatic, magnetlc, ‘magnetostrictive and electrostrictive. The first three types are
generally used in air while the latter two ones'are applied in underwater acoustics because
of their high' mechanical self-impedance. In general, these - generators- act as two-
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dimension generators (piston type), because only a single two-dimension working surface

effects emission in the medium. Besides, such types:of generator have large spatial

d1rect1v1ty In addition, magnetostrictive and electrostrictive generators lack: a discrete
spectral distribution of sound emission. It is therefore of interest to create new generator
types that do not suffer from these shortcomings. One possibility is the saser. First of all,
it is envisaged that these enable large output powers for sound emission to be obtained
due to the very high compressibility of gas bubbles (close to 1, as compared: to usual
piezoelectric crystals for which the maximum: compressibility not resulting in damage is
about 0.001 ). Secondly, in saser, under the action of both the pumping wave and a useful
mode inside the resonator gas bubbles become grouped in planes ( similarly to electrons

in free-electron lasers ) in which their emission becomes coherent . Thus, a saser acts as a-

phased array. Unlike the usual magnetostrictive and electrostrictive : emitters (2-
dimension working systems ) the whole 3- dimension volume of the active medium
emits. This is-a new concept. Thirdly, the sound velocity: inthe gas-liquid mixture is a
function of gas content. Using this fact, we can more easily change the frequency of saser
emission than that of magnetostrictive and electrostrictive. emitters. Fourthly, it:is very
difficult to build an effective generator of strong: sound ‘waves in:air because of huge

difference between the acoustic impedance of air.and the self—1mpedance of the emitter. It

is well known that by changing the .gas volume. content, we' can: easily: obtain sound

velocity: in. such_a:gas-liquid mixture to be less than the sound velocities both in- pure’
liquid. (w1thout bubbles) and pure gas. At the first sight, this mlght seem strange, but a’

gas-liquid mixture :is- quite .an unusual: médium. . Its. density .is almost: completely
determined by that of the liquid component, but its compressrblhty is determined only by

that. of the gas component (- the liquid : phase can :be considered to: practically:

incompressible::). It is ‘possible  that: one can: adjust..the* impedance ‘of air. and - self-

1mpedance of the saser: and, thus buxlt an’ effectxve generator of strong sound wave in air.”

IL SCHEME OF THE ACOUSTIC LASER s

Let us con51der an acoustic resonator’ contalmng partlcles dlspersed in a hqu1d.

dielectric as active medium. For example,' we can use different- types of oils or distilled
. water as‘a'liquid dielectric. It is well known that the dlstllled ‘water has'a’ hxgh dielectric
constant. Static - electri¢” field acting on the’ system (3 Fig3) causes deformatlon

(electrostrlctlon) of the dielectric particles [16] The value of the effectlve pressure actmg

on the partlcles is equal to [16 17]

3 ENE —8) T
- i E7 (g, p) )

87 (2¢,+¢,) _
Here £ and £, are the dlelectnc constants for lquId and drspersed partlcles respectlvely,
E is the electrrc field mtensrty In the case of an a1r bubbles in water (8 ~Lg, = 81)

and at an electric intensity E = IOkV/ cm the value of AP is of order of 0.5 kPa. Let us

suppose that E is a periodic time function: E = E, cos(Q) . The electromagnetic waves
propagate through the medium with the velocity of light . (for this - medium), which is
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much greater than the velocity of sound. Consequently, the pumping pressure wave can
be considered as being independent on the spatial co-ordinate, :

P(t) = P, exp(iot) (2)

Here, @ =2Q is an angular frequency. The pressure amplitude of the pumping wave P,
can be easily calculated from (2). The constant term in (2) is omitted. Under the action of
pumping wave, the particles oscillate and emit sound waves. The initial distribution of -
particles is spatially homogeneous. The waves created by the dlspersed particles are
summed with different phases and result zero pressure for the useful wave. However, for
active medium in the resonator, an acoustic mode can appear. Then the particles would
grouped to bunches by the acoustic radiation forces. Moreover, it is well known that the
state of the medium with the spatially homogeneous bubble distribution is unstable not
only for a steady but also for a traveling wave [18]. This leads to self-synchronisation of
the oscillating particles and the amphﬁcatlon of a pressure wave. ‘

III. PRINCIPAL EQUATIONS

For simplifications of calculations, we supposed that the dispersed particles are spherical.
Their pulsation was investigated in numerous papers (see, for example, [18-20]). In a
monopole approximation, the equation for the particle radius pulsation is:

A

—rrgriPeexpliat) + P (r, )] 3)

R(t)

The right hand side of this formula contains the resulting pressure on a particle. The first
term corresponds to the pumping wave (2), the second one describes the pressure created
by the oscillations of other particles; A is the scattering amplitude; r is the position
vector of a particle in the liquid; R, is the mean particle radii; p, is the liquid density.
The monopole approximation holds true at the condition kR, <<1 (k; is a wave number
in the liquid). The case of a liquid with gas bubbles gives [19]
: R @

(0, / ®)° -1 +1i3
where @, = @,(R,) is the resonance frequency of the bubble, & is the absorption
constant. The sound pressure wave P'(r,t) is described by the known equation [18]

ap- L 2P o O Tamir, R, HRIR(DAR ®)

clzatz—Platzo-’ov oy 0
where ¢, is the sound velocity in the pure liquid (without particles), n(r,R,,f) is the
particle size distribution function (nis equal to the number of the particles per unit
liquid volume with mean radii between R, to R, +dR, ). Let us suppose that at t=0 the
distribution of the particles is spatially homogeneous, i.e.,
n(r, Ry,0) = no(Ry) ©)
For sound pressure created by the external pumping, one can obtain
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1 &P . '
AP—c—lz-at2 ~(a +i PP = (a + i PP exp(i ot) )
where )
o = or, t) = 4n Re T[An(r, Ry t)dR, (8)/
B = Ar, t) = -4n|m°jAn(r, R, t)dR, ©

0
In the case of the liquid with gas bubbles we have

@©

R(l - o2/ o) -
ofr, t) = 4z (1 =00/ @) of R, )dR, (10)

a =
(-0l l o) + 8
o o R6 .
= r, t = )
b=HReb 47:01(1 -0l 0)? + Szn(r, Ro t)dR, ~an

If the spatial distribution is invariable and homogeneous as time passed, thén |
P(rt) = P,(t) = (o, +2|B(,)PE exp(i ot) 1
ki = (o, +i P {12)

Here o, =a(r,0),5, = f(r,0) are inde | 4
) - V), 0 pendent of r, and k, =w/c,. Th i
amplitude is also spatially homogeneous, 1 : ® resiing

P(t) = P exp(iat) + P, (1) - —eoxp(iob) "
. 1 - %o + i BO ( )
k?

The appearance of the factor

. -1 \
Folpo % *1B :
2 (14)
is caused by the presence of dispersed particles. The t i i icle i
et Sk e p . The translation motion of thg particle is

4n -1 du
3[9, +EPP]R§_8T=F,+FZ+D+F, + Fy - (15)

The left part of this equation contains the usual icle 4 ; i
| su mas§ of particle m, = 3 mp, Ry (pyis
the density of particles) and apparent mass m, =§7’[p,R§ ( see for example, [22] ):

1 . :
F = - 2 i
i —47r(pp+2p,)RoU(dR,/ dt)is the drag force due to the particle volume

osci}lati?ns (its .time averz'lge(F,) =0); F, is the buoyant force which is small for small
particles; D is the viscous drag force which for small Reynolds number
Re=2RUp,/py, -. (- u, isthe liquid viscosity ) is given by Stoke’s low,

L fo—

D= —672'/.[ Roljf ‘ ’ (1 )
i v 6
2

where f,is the correcting factor which is given f, =1 for solid particles and f, = 3

for gas bubbles [22]; F, is the time-average acoustic radiation force. The expression for
F, is very complicated but in the case being considered it can be represented as

LY AT '
F, == (ROVPE0), an

where R(f) = R, + R,(t) is the current particle radius, P(r,f) is the resulting pressure
acting on a particle, the numerical factor f, is'given as follows:

ZCZ
{1 r2 % B‘;—C—Z
f _ P P&y (18)

[l + 2 Eﬁ}
o]

F, is the so-called secondary Bjerness force [23] which is caused by the interaction
between particles (this force is cieated by the secondary radiation of the particles and is
usually smaller with comparison to F.). Substitution of all these terms into (15) and the
time averaging gives the following equation: '

YU = —aVP[' +ifP VP - PVP) , (19)
Here the functions @ and S are given by the formulas (8) and (9) , respectively,
y = 12ﬂy,R0p,w2va / f, where N(r,t) is the full number of bubbles per unit volume of

" the liquid at the point r. To simplify the calculations, all particles are assumed to have

equal radivs, i.¢.,

r, Re t) = Nr, )&Ro- R) (20)
Equations (7) and (19) must be supplemented with the balance equation (we shall neglect
the coagulation for particles)

_‘;tﬂ +divny =0 @y

IV. SOME SIMPLIFICATIONS OF EQUATIONS

Let us consider the equations

on é
_ 4+ —{Nn =0
ot ax( Y .

o 9P B, o OP oP’
U= (P -P

Y ox y( ax o
where

o = -4z Re [An(x, Ry, 1)dR, = 471 (x,1)Re 4
[}



B=-4zIm j An(x, Ry, t)dRy = ~47m' (x,1) Im(4)

Neglecting by the terms of higher orders one can get:

U—_Ep‘f_ﬁpa_P_'_;i Bp P B P _ 4 atiB £~_a_—_i_ﬁp-§f_'

oy & Ty oy Xy T Ty P Ty P m
&~ ﬂ P ﬂ:— + P 'QE

Yo ox ox
Then the equation (21) takes the form
@_&i[npﬁﬁ-aj
at Yo OX ox ox
Representing the pressure as
P = Py(t) + ¥x t) : 22)
we have obtained the following equation where unknown functions are Y(z,0),n(z,t)
oo Eii(n i(PO\P' + PY + W)) =0 (23)
ot Yo OX ox ‘
Substituting (22) into (7) one can get the equation
FY 1 Y . ' . o . 1 &P
pvE fFF—(a+|[§)‘P =(a + i PP’ + (o +iPPt) +578t20
and after simplifications one can find : ,
;Y 1Y, , - , 1 &P,
27 —77—(a+tﬂ)‘P=(a+tﬂ)PEe +(a+'ﬂ)Pf>(t)+c_z d‘zo 24
where the following substitution have been used & = 2
¢

Y 1 Y - . o
Poriile (@ +iP¥Y = (d+ B )FPe'

and " given by

n n
a‘“ao'ﬁo_;ﬂ_ﬂo No
V.NUMERICAL SOLUTION OF THE EQUATIONS

Let us consider non-linear equation system of second order with complex
coefficients:

10

s oo

e s

FY 1Py N 5\ NN
& @ ar Gty sif) =k,
0 0
25
ﬂ=ﬂZ[N(ﬁ(P'\P+P w‘+w‘))) B
a y,& &\’ ' ’

where (x, t) e Q Q = [0 L] x [@ ®); L - resonator length; P(x, t)-wave
function ; ¥:Q - C; : k .
N(x, t)- particle density near x at moment t; N:Q — R;

+ Py = FP.e'" - pressure created by external génerator'of frequency o and intensity of

Pe in the media characterised by F [24]; Yo b a, B,
Initial conditions are as follows:

WX t)i.o = W(x)
M(x, t)

o b
N, t), = Ny(x) = const ‘
Boundary conditions for function ¥ are as follows:

R - are parameters [24].

= \Pl(x)'

¥(x,1) 3¥(x,1)
T a0 :0’_—_—]x=L =v.
& &

\After conversion the system (25) using the variable substitution as follows:

‘P(x,t) = FPEei’q)(l, T),

M,

. @
KK=y,0t=7,Kk=—,
c
introducing rational variables Qn @,

o 1) = @ 7+ 10, 1),

and setting

P _ % o By aoKFF.PEZ

a0=—2, 0=—2-,q=*———’
¥ o€

(2:7)=20,(1,7)+ 9} (1,7) + 03(1.7),
one can get the following system of three non-linear equations with unknown functions

@6 ) @(x 7} n(x 1)

Fo. T L%

0},2 P 5 @, =na.p, — 1By, +(77—1)q:)’ (26)
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@%-%’?—2%+% = nabe, + 1By +(1-1By, (27
%4

o _ i(,,é’i) (28)

7 T\

z e[O,/cL].

with following initial conditions: |
¥, o= 0 é’(pl(x,r) _ ¥,

¢1(z’0)= FP H ¢2(z’ )" H & =0 Cl)FPE

E .
a¢2(z7 r) - \PO ) .
or " FPR

and with following boundary conditions:

ﬁ¢1(Z”T) 5(0|(Zss7) =0

TIFO fO s ’TL:‘L >

3p,(2>7) ey

2=l

_ 5¢2(lnT)
O il=°_0 > S |

Computation were performed with next initial conditions for functions ¢,, ¢,:
0.(,0)=107 cos(z) ;
0:(20)=0 ;

op,
—(x0)=0;
7 &)
P2 (1,0)=0
= (2:0)=0 .

2 . .
Resonator length was choose as follows L = 77: . Discretisation of system (26)-(28) was

performed using grids with step T for variable T and with step h for variabyle %:

x =hk k=20..N

t=7, J =0..

We‘have used formulas of second order of accuracy to approximate de.rivativ'es of
functions @,,®,,n with variable y and derivatives of functions @, with variables

1 in the interval (Q2x) and the formulas of first order of accuracy to approximate

derivatives of function m with variable 7 in the interval (0 27).
The initial values of functions ¢,” and ¢,” were approximated by formulas of

second order of accuracy. Boundary conditions for function T one can obtain from
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boundary conditions for functions ¢, and ¢, . Boundary conditions obtained in such way
are as follows:

n(a 1) = exp[q]i;? (a e)de),

n(kL '1) = exp[q]'i;? (2n,‘9)deJ

If we replace the integrals in above expressions by their approximations calculated by

trapezium formulas then we get boundary conditions of second order accuracy. Finally
the following discrete equations were obtained: ~

Prjn =P =y s . (29)
?‘P:Jn +¢:Ju = B;.._, s \ (30)
T 2 T D, _azm )
s —qﬁgl‘-iﬂ’h“vm +qﬁa kit oo = T H“IT;IT kjet] o €)))
j=l.,k=1..N-1,. )
where

?2

= ! 1 t ) 1
A= h_z{(ohu -2¢,,+ (Dk_,li} +20, =@ i
70! 2+ 70! =2 1 '
TP T @y —a(')r],‘_j‘r Py
=2 1 —3
ol ;T Py +ab(77kJ - l)r ,

?2

B, =717{(Pi+u - 2(”11,' f‘Pi—\J} + 2(/7}2(‘} - ¢ili—1
~ 2 -

TP, TP, — QT O

—ﬁbmﬁz (/7;(,_,' - ﬂ;)(ﬂk‘j - 1)?2 )

k=1..N-1j=2...

with the following initial conditions:

Pro =’10‘6 cos(hk) , @;,=0,

¢;(,l =(0;(.o ) ¢12(,1 =(0:,o s
.’h,o =1,

k=0...N .

and with the following boundary conditions
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49, - 05, =300, =0,
49}, - 03, 300, =0,
49— P2y = 30w =0,
403, — Py~ 305, =0,

b7
770.1'*'] =ex?{q(051 . foo ZT [ 0510”1 IOM)} ,
‘ 70 _J0D
My jor =exp{ (051 lNO ZT l +0515,Z |~,+1)} 5

where

oy, 1) = 20,(x 7) + oi(x T) + (Pz(X; 7)
A ﬁnal equatlon system represents the three layers scheme in respect to pair functions

Qs @;; and two layers scheme in respect to function 7, ; . The values of o', ¢ on
J+1 -th level at k-th point was calculated using following system of equations:
(Pk,j o - T‘Pk,j a1 = Ak,,'

= 2
T‘PL,;H T Qi = Bk,jv
The solutions of the system are the next:

A A
(P:(,jﬂ = “‘A—]v <P§_j+. = KZ"
where
A=1+7",
Ay=4,,+7B,; ,
A,=B,;~H,, .

The equation (29) was solved by factorisation method. So one needed the following steps
to create the full procedure:

1) A given initial conditions allow one to calculate functions @', @° at 0-th and 1-th
levels; using this values and values of the function n on 0-th level the values of n on I-
th level on boundary points one can successively calculate:

2) The values of 7 at the points k=1..N-1 on 1-th level;

3) The values @', @? on j+1-th level at the points k=1..N-1;

4) The values of @', @* on boundary points at j+1-th level;

5) The values of n at the boundary points on jt1-th level;

6) The values of 7 at the points k=1..N-1 on j+1-th level.
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The constructed algorithm was tested on the model tasks with known exact solutions. A
good agreement between exact and numerical solutions was obtained. The algorithm was
used to obtain the solution of the formulated above task and investigation of the solution
was performed using increasing density grids. The results were published in [25] ‘

VI. NUMERICAL RESULTS

The constructed in this work procedure. was realised using the following- values for
physical parameters:

al, =001 ,
£, =0001 ,
q=0.045 ,
=21,

A grid step of h= —126% for x and a grid step of 1= 1—112_ for = was used. Following

problems were solved:
1.The task was solved with parameter PeF/Pst=10 and initial conditions @ =107 Scos(x),

©2=0. Values of the functions ®(x t)and n(x t) on-layers numbers N=1000, 2000,
3000, 4000 ,5000 are represented in Flg 2,3. The bunchmg is shown.
' 004 . ) T 4,10,

002/ /\ ' 105 Q B
000 1,00 i
0,02
095 .
004 :
2 40 6~ 80 - 100

. 090

1\ 20 40 60,‘8'01,160’

Fig.2 Values of the ®(y, t) on the layers Fig.3. Values of n(y, t) on the layers
numbers numbers N—IOOO 2000 3000 4000 numbers N= 1000 2000 3000, 4000 5000
,5000. '

2. The task was solved w1th parameter PeF/ Pst = 10, and initial conditions
(p1—106cos(3x), ©=0. A grid step of h=2pi/300 for x and a gnd step of 1 -—E for

1 was used. The values of the function n at the layers 3000, 4500, 6000, 7500 are shown
on the fig.4 . One can see that the bunching at this values of parameters don’ t take place.
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0,0004

0,0002

0,0000

-0,00021

0 50100 150 200 280 300 " 0.0004)

/\

I 6
1,2} A A N=20
/}\ i\ 4} :
1,0 \ 7\ ” " /NE0
08/ \\7’ / ‘\’ \ 2
d 0 5 i
06t 2t \
041 “© NE30
i “r
02
s
09 20 40 B 100 0 20 20 €0 80 100

Fig.8. T](x, ‘L') on the Iayers numbers
N=10,20,30,40. "~

Fig.9. CD(X, ‘l:) on the layers numbers ‘

" N=10,20,30,40.

Fig.4. ‘r|(x, } ‘L') on the layers numbers
N=3000,4500,6000,7500.

Fig.5. (D(X, ‘L') on the layers numbers
N=3000,4500,6000,7500.

3. The task was solved on the following values of parameters: P, F/Py=1, and at the

following - initial conditions: @y= cos(x), @,=0. The results on the layers numbers
N=100,200,300, 400 500,600 are presented on the fig. 5. The bunching is shown. Due to
lack of factor 10 nonlinear effect has appeared

G

10 3
9 ol
8

7 1
5 L
. 0
4 -1
3

2 2r
1 3
% o 40 8w 10 0 20 4 .60 8 10

Fig.7. (D(x ‘L') on the layers numbers
N=100, 200 300, 400

Fig.6 ’r](x, 1:) on the layers numbers
N=100,200,300, 400

4. The task was Solved on. the followmg value of parameter PeF/Pst O 5, and 1n1t1al

conditions: @;= cos(3x) ¢2=0. The results on the layers numbers N=100,200, 300, 400,
500, 600 are presented on the fig. 8. The bunchlng is shown,
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Considered examples show the bunching effect if saser parameters are in the
definite range and absence of the bunching in other range. The bunching character
also depends on initial conditions

This work was supported by RFFI grant 97-01-01040.
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