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HSEIGV — nporpamma [u1st pacueTta ypoBHEil 3HEPIHH

H paIHaIbHBIX BOJHOBBIX (DYHKUHI B METOIE CBA3aHHBIX KaHAJIOB
runepcgepHIecKoro anHabaTHIecKoro noaxona

[pencrasnena nporpamma HSEIGV (FORTRAN 77) mna pacuera ypoBHeid
9HEPIMH H PaXHATbHBIX BOJHOBBIX (DYHKUMI ABYX3JIEKTPOHHBIX CHCTEM B anuaba-
THYECKOM MNpPHOIHXEHHH U B NpHOMMXEHMH METoda CBA3aHHBIX KaHAIOB IMIlep-
cepuyeckoro anuabaTHyecKoro noaxona. B 3ToM noaxose pemeHue mMeCTHMEPHOTO
ypaBHeHHs IllpemuHrepa, onMchiBalOLIee OMHAMMKY MABYX?JIEKTPOHHOH aTOMHOI
CHMCTEMBI, CBOOUTCA K PEUICHHI0 CHCTEMBbl CBA3aHHBIX AH(depeHUHanbHBIX YpaB-
HEHHii N0 panuansHoil KoopauHare ( p) cTokHoBeHHA. CHcTeMa panMaIbHBIX ypaB-
HEHUH, coflepXaias MaTpUuHble K09 PUUHEHTHI CBA3H KaHANOB NPH NepBoii Npous-
BOJHOM, pelaeTcsd METONOM KOHEYHBIX 3JIEMEHTOB C HCIIONb30BAHHEM arlIpOKCH-
Mallti¥ BBICOKOTO INOpSAKa TOYHOCTH. IIpuBefieH npuMep NpUMEHEHHS NpOrpaMMbl
11T BEIYHC/IEHHS 3HaYeHHIi 9HEPTHH OCHOBHOIO M HECKOJIBKMX ABaXIbl BO30yXaeH-

HBIX COCTOSHMI MOHAa H ™~ HHUXe BTOpPOro mnopora n =2,

Pa6ora BoinonseHa B J1TaGopaTopHH BHIYHCITHTEIBHOH TEXHMKH H aBTOMATH3alHH

u JlaGoparopun teoperuueckoii ¢usuku uM.H.H.Goronwo6osa OUSH.
MpenpunHT OGBENMHEHHOTO UHCTUTYTA SAEPHBIX HccaeaoBaHuid. dyOHa, 1997 -
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HSEIGV — a Program for Computing Energy Levels

and Radial Wave Functions in the Coupled—Channel Hyperspherical

Adiabatic Approach

A FORTRAN 77 program is presented which calculates energy values and radial
wave functions of two-electron systems in the adiabatic and coupled-channel
approximations of the hyperspherical adiabatic approach. In this approach,
the solution of a six-dimensional Schrodinger equation describing the dynamics
of a two-electron atomic system is reduced to the solution of a system of coupled
second-order ordinary differential equations in scattering (radial) coordinate p.
The resulting system of radial equations which contains the first-derivative coupling
terms is solved using high-order accuracy approximations of the finite element
method. The program is applied to the calculation of the energy values of the ground

state and several doubly excited states of H ™~ below the n =2 threshold.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation and at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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PROGRAM SUMMARY .

Title ofprogram HSEIGV ' : S

Computer for which the program is designed and others on which it has been tested:
Computers: SGI Indigo?, IBM RS/6000, Intel Pentium Pro200 PC; Installatzon Depa.rt—
ment. of Chemistry, University of Toronto, Toronto, Canada -

Computers: DECstation 3000 ALPHA AXP Model 800, IBM R‘;/GOOO Model 320H; In-
stallation: Department of Chemical Physics, The Weizmann Institute of Science, Israel
Computers: Sun-Elc, HP 715, Sgi~35D; Installation: Computmg Center of the szmann
Institute of Science, Israel

Operating systems under which the program has been tested: Digital UNIX v4.0, AIX:
3.2.5, SunOs 4.1.3, HP/UX 9.01, Irix 6.1, Linux 1.0.9 ’

Programming language used: FORTRAN-77 '

Memory required to execute with typical data: depends on (i) the number of differential
equations; (ii) the number and order of finite elements; (iii) the number of hyperradial
points in which the tabular values of potential curves and radial matrix elements are
given; and (iv) the number of eigensolutions required. Test run requires 10 M3

No. of bits in a word: 64

No. of processors used: one

Has the code been vectorized? no

Qverlay structure: none

Pcripherals used: line printer, scratch disc store

No. of lines in distributed program, including lest dala, cle: 2671

Keywords: atomic, molecular, chemical physics, two-clectron systeins, hyperspherical co-
ordinates, Schrédinger equation, adiabatic approximation, cigensolutions, ordinary dif-
ferential equations, finite element method, high order accuracy dppr()xlmahons doubly

excited states

Nature of physical problem

In the hyperspherical adiabatic approach [1], the solution of a six - dimensional Schrodinger
cquation for a two clectron system is reduced after separating the scattering coordinate
(hyperradius p) from the rest of angular variables to the solution of coupled second-order
ordinary differgntial equations which contam the first-derivative coupling terms. The.
purpose of this paper is to prese nt the ﬁmtc element method procedure based on the use
of high-order accuracy approximations for calculation of the approx1mate eigensolutions
for such systems of coupled differential equations. s s G
Method of solution o

The coupled differential ‘equations are solved by the finite element method using high-
order accuracy approximations [2]. The generalized algebraic eigenvalue problem AF =
EBF arising after the replacement of the differential problem by the finite-element ap-,
proximation of high order of accuracy is solved by the subspace iteration method [3] using’
the SSPACE program {3]. S
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Restrictions on the complexity of the problem : - T
The computer memory requirements depend .on: a) the nurnber of dlfferentlal‘equatlons,

b) the number and order of finite elements chosen, c) the total number:of hyperradial
points in which the tabular values of potential curves and radial: matrix elements are
given, d) the maximum size of the table matrices of radial couphng given, and e) the
number of eigensolutions required. Restrictions due to dimension sizes may.be easily al-
leviated by altering PARAMETER statements (see Long Write-Up and listing for details).

Trpzcal Runmng time N

The running time depends cr1t1cally upon: a) the number of coupled dlﬁerentlal equa-
tions; b) the order and number of finite elements on interval [0,pyay], and ¢) the number
of required eigensolutions. The test run which: accompames this paper took 11.8 s'on’the
DECstation 3000 Model 800.
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LONG WRITE—UP
1 Introduction

Signiﬁcant progress toward an understandingof two-electron correlations in atoms: has
resulted from a hyperspherrcal adrabatlc (HSA) approach [1- 3] The approach is based
on the use of hyperspherrcal coordlnates as collectlve varrables (p, a) replacmg ‘the
independent—electron radial coordinates r; and r2 and assumption-about the adiabatic
nature of the correlated electron motion in atoms. In the hyperspherical coordinat‘es;,vthe
hyperradius p = \/rfTr;‘f represents the ove.rall size of the. electron pair and.the hyper-
angle a = tan~'(ry/r) represents relative distance of two electrons from the nucleus
In the ad1abat1c representatlon the motion of electrons in 'RG space is separated mto a
fast rotation over the surface of the “hypersphere” S5 (€ = {a,#1,1;}) and a slow radial

motjon along hyperradius p treated as an adiabatic parameter.

g

The adiabatic approximation, in which the radial coupling between channels is ne-
glected, has proved to be remarkably fruitful for the description and visualization of-the
correlation patterns of the doubly excited states of two-glectron systerns {2-4]. This ap-
proximation (which is-analogous to the Born-Oppenheimer approximation for diatomic
molecules) has been extensively used for sélving a wide range of atomic problems(scc,
e.g., [1-12]). It has also been very useful for the study of onc and multi- photon ion-
ization of He and photodissociation of H~ (:;ee7 e.g., [13-16]). The main success of the
approach owes much to the conceptual and computational simplicity and effectiveness
of this approximation. Howevcr, the adiabatic-approximation appeared unsuitable (al.
least for low-lying states) for high-precision computations for which nonadiabatic affects
should be accurately taken into account (sce, c.g., [7,17 24]). In the recent papers [19
21}, the high rate of convergence of the hyp(-rsph(rri'('n,l adiabatic (IISA) expansion of the
total ‘two-electron wave fllll('ii()!l‘ for the ground dn(l doubly excited states has b(:(n Cs-
tablished It was sh()\vn that the (()upl( xd channel llSA «\ppr(m( b allows oue to ()b(mn
lh( cnergy. specttrum of d()ubly excited atoms with hlgh accuracy using only a few (qua-
tions. The hlgll accuracy of the bound state calenlations can also be obtained within the
diabatic- by S(:('t()r approach {22, 23], while providing the slower rate of convergence of
the sector diabatic expansion of the total wave function. a

In our previous papers [25. 26], (lvsrripl‘i.ons'of the HSTERM program designed for
the calculation of potential curves and matrix elements of radial coupling within the HSA
approa('h’an(l progrnhl ASYAIPT for computing usymptmics ot' adiabatic potential (:1’1rvcs
with an accuracy of O{p™?) have been pr(‘svnt(‘,d {see also Ref. [27]) In this papér, we
prvsvnt a program for computing energy levels and radial wave functions of two-electron
systems in the adiabatic and coupled channel approximations of the HSA approach using
potentials prepared by the above mentioned programs. The solution of the bound state
problem for a system of coupled radial equations, arising after separating the hyperradius
p from the rest of angular variables (@, £y, ;) in the two-electron §chr0dlnger equatlon is
carried out using the finite element method (FEM) {28, 29] In our recent work [30], hlgh—
order polynomial approximations for the finite-element solutions of systems of coupled
ordinary differential equations have been studied in details. The effectiveness and high
accuracy of such high-order approximations of the FEM have been demonstrated [30]

on the basis of numerical experiments performed for a wide set of quantum-mechanical



problems. . In the present-paper we generalize this method to deal with the first-derivative
radial coupling terms arising in the adiabatic representation. The program elaborated is
a general purpose program, the use of which is not limited to two—electron syel;ems only.
The HSTERM program can be applied to the solution of a wide range of bound state
problems of atomic and molecular physics reducing to the solution of a system of cpupled
ordinary differential equations with the first-derivative coupling terms. - ’

.. The paper is organized as follows. In Section 2 we give a short description of the
hyperspherical adiabatic approach. The construction of the finite-element high—order
schemes is discussed in Section 3. A description of .the HSEIGV program is given in
Section 4:. Subroutine units are briefly described in Section 5. Test run is considered in

Section 6.

2 Hyperspherical adiabatic (HSA) repvre'sentatiron

In the hyperspherical coordinates, ‘after\”inl:roducing the reduced Wa\}e function ¥(p, ) =
p5/ ? sin a cos (11/)(1‘1 , r2) (1/)(1‘1 ,r2) is the whole two-electron wave functlon) theé Schrédinger
equatlon for a twoelectron atomic system wrth nuclear charge Z and total energy E can

be written as (h —=e= =m, = 1):

[ 8822 —,—‘41—2,.4— h(p) —AQE ,\Il(p,Q) =0, Lo e : (1)

by

where » —. «/1‘1 + riis the hyperradlus a = tan~(ry/ry) is the hyperangle, and  denotes

ﬁve angles {a, rl,rz} The adiabatic Hamrltonlan is
~h@r=qﬂ%m+—vmmu»:»~', T (2)
p p
where

& B B
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LAY =~

is the generalized angular momentum operator,
S L vy . . -
Vi{a,02) = — — , o 4
(@, 612) cosa sino + /1 —sin2a cos 6,2 o “)

is the interaction potential, I; is the operator of the orbital angular momentum of the ith

electron 912 = cos~![(r; -r3)/rirs], and F; is a set of the usual spherical angles (0:,0:), 1 =
1 2. ’

Treating p as a slowly varying adiabatic parameter, the reduced wave function ¥(p, Q)
can be expressed in a close-coupling expansion by a set of N adiabatic channel functions

{2.(9; p)}., at each p as

N
Q) =Y Fulp)2u(® p). « (5)

u=1

“The adiabatic channel functions ®,(£2; p).are defined as the eigensolutions of the fol-

- lowing equation

h(p)u(; p) = Un(p)2u(; p). ' | )

Eq. (6) must be solved for each value of parameter p to obtain the hyperspherical potential
U,(p). The method of computation of the five-dimensional basis functions ®,(€); p)-has
been discussed in details in our previous paper [25].

Substituting expansron (5) into the Schrédinger equation (1), one obtains the close-
couplrng equatrons for expansron ‘coefficients F,(p), whichi can be written in ‘the expllcrtly

Hermitian form as

2 N
(V) =2 ) B+ VB =0 = 1,2N), ()
where*
V(o) = Walp) £ 2 i 8
w(P) = L ;{U(P) + %Qw(p) + qu(/’)%y , , . , v ( )
Woalp) = = b + U)o+ Hue), BN )

1%@=mm&<i(ﬂm

Q(QPO L )

Qu(p) =”—QL,;(P) == <<I)u(Q§P) 5;\"45”(9; p)> h (11)

In the above the brackets ( +|+) mean 1ntegratron over ﬁve angular variables (a £y, ).

The radlal functrons F (p) satrsfy the D1r1chlet boundary conditions

SF(0)=F,(00)=0, p=12,..,N. - . S (12)



This is the coupled—channel HSA approximation. Neglecting the‘coupling terms .in Eq.
(7), we obtain the uncoupled adiabatic approximation [31, 32]: . .

(‘5:7 $+U()+Hw(p)—2E)Fu(p)=0- ' (13)

The presence of a positively defined diagonal rhatrix element H,,,(p) (see Eq. ‘(10)) ensures
the cnergy spectrum shift upwards, i.e.\eigenvalues of Eq. (13) give the upper bound to
the exact values of energy E: If we neglect all coupling elements in Eq. (7) including

1,,(p) elements, we obtain the extreme adiabatic approximation [32]:

(‘dii;;‘ﬁﬁw(n)—w) Flo)=0. - s ()

“This approximation corresponds to the Born-Oppenhéimer one in molecular physics. In

this approximation cigenvalues of Eq.: (14) give the lower bound to exact energy E (see,

c.g., [6, 8, 31, 32]). P R T Lo

3 . High-order approximations of the finite~element
method '

In order to solve numerically the Sturm-Liouville problem l;o'r;[‘)qs.\(7),‘(13) or (14) sub-
ject to the boundary conditions (12) the high order approximations of the l;ihitc clement,
method (l“[“M) (28, 29] elaborated in our previous paper (30] have been used. Such highs
order approximations of the FEM have been prove »d [30] to be ve ry accurate, stable, and
effective for a wide set of quantum mechanical problems. The Slurm Liouville problem
(7), (12) is cquivalent [28, 29] to the following variational Rayleigh-Ritz lunctional (prime

means the differentiation in variable p):

R(F) = {/Dwz [Fl(ﬂ)Fl(p)éw + L)Wl Fu(p) + Eu(p) [Qup) Eu(p))

+ E(p)QulnF, (p] }{ I > 5o

Computational schemes ol the high order of accuracy are derived from the variational

-1
6,wdp} (15)

functional (15) on the basis of the finite element method. The éenerel idea of the FEM
in one-dimensional space is to subdivide interval [0, Prmax} into many small domains called
elements. The size and shape of elements can be’defined very-freely so that physical

properties can be taken into account.

SO,

Qe

In the present paper we use the isoparametric Lagrange elements {¢(n)}%.; of order
P which have been determined in [30]. For the sake of completeness, we briefly descrlbe

them here as follows. On interval [-1,1] nodes

W= —142ifp, i=0,1,...p, e
are glven Functlons ¢p( ) are determmed from conditions

¢p(n_7)—,6ij7 iaj:(]’lv-"ap' R . - . . . (17)

= [ps-1,p5] in

such a way that A = |JI_; A;, where n is the number of subintervals. The finite element

Now, we cover the interval A = [0, pmax] by-a system of subintervals A;

grid w? consists of mesh points py, p1, ..., pn and nodes
p;i =pis1+05(p; —pio )1 +70), i=1,2,.,p~1,1=1,2,...,n. (18)
In cach point p}; of grid w? we define function

M) = { e

1= 1,2,’...‘, =1, I=(G-1p++, hy=p,—p;-r.

p=pic +05h;(1+), ol <1 . ‘
N ~ (19)

These functions have the following form in points pg, py, ... p,:

o7 (n), p=po 0501 +7) |y <1
NP (p)=C o), p=p; 40500+, gl <L o i=G—-Dp. . (20
0, PEN; U A .
Funetions {.\’,”(/))},":(,; L = np+ 1, form a;basis in the space of polynomials of the p-th
order. Now, we approximate the global Tunction F(p) = (Fi(p), Fo(p), s Fn(p))T by a

finite sumrof local functions A7 (p) .

R =Y BN ()

and subsiitute ¢ xpamion (21) into the functional (15). From the minimum condition (28,
29] for this fun(tmnal we obtain that vector—solution F* js the elgenvector of generalized

algebralc problcm

AP Fh — Eh B? Fh o . S o (22)



The following estimations for FEM. eigensolutions of problem'(22) are valid {28]:

RN RS B

BY - Bl <a(B)R®, - ™
[E5(p) — Fulp) [lo < ea(En) B, | o (24)

where k is the maximal step of the ﬁnlte—element grid, n is the number of the correspond-
ing solution, and constants ¢; and ¢; do not depend on step h. The A? and BP matrices
are symmetric and have a banded structure, and B? matrix is also positively defined.

They have the following form

Apzjag, Bv=ibg, f B e

where the local on the element A; matrices a} and bf are calculated by the formulae

) +1 ’ . b
+ ZQ o 198 (85,) + (¢5,)'%] }dn, ’ (26)

+1 . . . ‘
G "—dn, | (27)
Lo -1

Jq JTZ

: ‘pzpj_l+0.5h~(l+7]) g,r=0,1,....p, p,v=12..,N.

I the above, W;, and Q3 are the values of matrix elements Wuy( ) and @,.(p) in the s
nodes of elements Aj, respectively, and 77 denotes differentiation. In Srder to interpolate
thbulaf matrices’ W and Q in the FE grfd‘points,‘w the same order of the interpolating
pol}}neihial as the order of the finite—element approximation is used. The integrals in
Eqs.(?ﬁ) and (27) are calculated using the Gauss integration rule [33] with p + 1 nodes.
In order to solve the generalized eigenvalue problem (22), the subspace iteration
;nefhod [28, 29] elaborated by Bathe [29] for the solution of large symmetric banded
matrix eigenvalue problems has been chosen. This method uses a skyline storage mode,
which stores components of the matrix column vectors within the banded region of the
/r’natrix, and is ideally suited for banded finite element matrices. The procedure chooses
a vector subspace of the full solution space and iterates upon the successive solutions in
the subspace (for details, see [29]). The iterations continue until the'desired set of solu-

tions in the iteration subspace converges to within the specified tolerance on the Rayleigh

quotients for the eigenpairs. Generally, 10-16 iterations are required for the subspace
iterations to converge the subspace to within the prescribe tolerance. If matrix AP in

Eq.(22) is not positively defined, problem (22) is rep‘laced by the following problem:
APF* = BPBPFR (28)

,where A? = A? 4 oB?. The number a > 0 (the shift of the energy spectrum) is chosen
in such a way that matrix AP is positive. The'eigenvectors of problems (22) and (28) are

the same, and E* = Eh —a.

4 Description of the program

Fig. 1 presents a flow diagram for the HSEIGV:program. The function of each subroutine
is described in Section 4. The HSEIGY program is called from the main routine (supplied
by a user) Which sets dimensions of the arrays and is responsible for the input data. In.the
present code ea.ch array declarator is written in terms of the symbolic names'of constants.

These constants are defined in the followmg PARAMETER statement in the main routine:
PARAMETER (MTOT=1250000,MITOT=55000,NMESH1=11)

where ' ) -
. MTOT is the dimension of the workmg DOUBLE PRECISION arra.y TOT.
. MITOT is the dimension of the working INTEGER array ITOT

T e NMESHI is the dimension of the DOUBLE PRECISION array RMESH containing
the information about the subdivision of Fhe'hyperradial interval [0, pynay} on subin-

tervals and number‘ of elements on each one of them. NMESH1 is always odd and

>30

A more concrete assignment of these dimensions is discussed below. In order to change the
dimensions of the code all one has to do is to modify the single PARAMETER statement
defined above in the main program unit. o

The calling sequence for the subroutine HSEIGV is:
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CALL HSEIGV

(TITLE, NROOT; NDIM, MDIM, IDIM, IADT, NPOL, NMESH,
RMESH, NSPL, NITEM, RTOL, SHIFT, IPRINT, IPRSTP,

EGRND, FNOUT, IOUT, POTEN, IOUP, ASPOT, IASP, EVWFN,
IOUF, IOUW, TOT, MTOT, ITOT; MITOT)

where the arguments have the following type'and meaning: o PREAT
Input q’dia .
TITLE CHARACTER title of the run to be printed on the output listing. The
‘ “e o title should be no longer than 70 characters.
NROOT INTEGER number of cigenvalues (encrgy levels) and eigenvectors (ra-
‘ , "~ dial wave functions) required.
NDIM INTEGER number of coupled differential equations.
MDIM INTEGER number of potential curves stored in file POTEN. It defines
o " the maximum dimension of potential matrices /1, and @,
“to beread from this file (for details, sce [25]). MDIM >
NDIM. :
IDIM INTEGER * flag specifying the number of potential curve /,(p) or adi-
abatic potential W,,,(p) required (= IDIM). It is used (if
NDIM '= 1) for computing energy levels and radial wave
' ' functions in the adiabatic¢ approximation. 1DIM < MDIM.
IADT INTEGER flag specifying the type of adiabalic approximation (it is
‘ : used only if NDIM = 19): ' '
= 0 “uncoupled adiabatic¢ approximation (see I8q. (13));
=1 extreme adiabatic approximation (see Eq. (14)).
-'NPOL"" "INTEGER sorder of finite elément shape functions (interpolating La-
' IR grange polynomials). Ustially sct to 6-8.
NMESH  INTEGER dimension of array RMESIH. NMESH should always be odd
' ' and > 3. . ) CE S
RMESII  REAL*8 array’ RMISSII contains information about subdivision of
AR interval [pminy pmax] of hyperradius p on subintervals. The
4 wholc interval {pmin, pinax] 18 divided as follows: RMESH(1)
= pmin, RMESH(NMESH) = pn.,, and the values of
RMESH(I) set the number of eleménts for each subinterval
T ERIE T [RMESH(I41); RMESH(I+1)], where I=2, 4,..., NMESH-1.
NSPL INTEGER*:  number of records written in file POTEN by the HSTERM

program; i.e. number of hyperradial points from the in-
terval' [0, pmax] in which potential curves U.(p) and radial

‘matrix elements -H,,(p) and Q,,(p) have been calculated
‘and stored into file POTEN. Potential matrices read from
+file’ POTEN are interpolated using

11



NITEM

RTOL
SHIFT

IPRINT

IPRSTP -

FNOUT

 POTEN

sl

. IOUP

:

. ASPOT .

INTEGER

REAL*8
REAL*8

INTEGER

INTEGER
REAL*S .
CHARACTER

INTEGER

CHARACTER -

_ INTEGER

CHARACTER

. =5 - the hlghest level. of print.
_mass matrices together with all current information about
.the course of the subspace iteration method solution of the

the cubic spline interpolation. Using.the spline coefficients
calculated in the NSPL points the values of potential ma-
trix elements are computed in the NGRID nodes of the

finite-element grid.

maximum number of subspace 1terat10ns permitted (usu-
ally set to 16).
convergence tolerance on eigenvalues (1.D-06 or.smaller). .

-shift of the energy spectrum. If SHIFT = 0 the value of the

energy shift is determined automatically by the program;
otherwise, the NROOT eigenvalues and eigenvectors clos-
est to the shift given are calculated (the nonzero value of
SHIFT is recommended since it significantly speeds up the
calculation).

level of print:

=.0 ~ minimal level of print. The initial data, short 1nf0r—
matlon about the numerical scheme parameters, main flags
and keys, and energy values calculated are printed out;

= 1 — radial functions calculated are printed out with step
IPRSTP additionally; .

= 2 - potential matrix is printed out w1th step IPRSTP
=3- m_formatlon about nodal point distribution is printed
out;

= 4 global matrices A and B are printed out addition-
ally;

The local stiffness and

generalized eigenvalue problem are printed out.

.- step with which potential matrix and radial wave functions
. .are printed out.

ground state energy (in a.u.) of a system. It is used only if
the energy values (in eV) measured relative to the ground
state energy are required. Default- value is zero.© .

name of the output file (up to 55 characters) for printing

. out the results of the calculation. It is system specific and

may. include a complete path to the file location.

. number of the output logical device for printing out the

results of the .calculation (usually set to 7).
name of the input file (up to 55 characters) containing po-
tential curves and matrix elements of radial coupling cal-

. culated and stored by the HSTERM program [25].-:
~.number of the logical device for reading data from file

POTEN. :

name. of ‘the input ﬁle (up to 55 characters) containing
the second-order corrections (the eigenvalues of the cor-
responding equivalent operator) and matching points

12
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IASP INTEGER
EVWFN CHARACTER
IOUF INTEGER
I0UW INTEGER
TOT REAL*§ -
MTOT- INTEGER.
ITOT INTEGER
MITOT INTEGER

Qutput data

between the relevant numerical and asymptotic curves cal-
culated and stored by the ASYMPT program (for details,
see [26]). It is used only if IASP > 0.

number of the logical device for reading data from file
ASPOT.

name of the output file (up to 55 characters) for storing
the results of the calculation, namely, the energy values,
finite-element grid points, and radial wave functions. It is
used only if IOUF > 0.

number of the logical device for storing data into file
EVWFN.

scratch working file. :
working vector of the DOUBLE PRECISION type
dimension of the DOUBLE PRECISION array ITOT. The

Jlast address ILAST of array TOT is calculated and then
compared with the given value of MTOT. If ILAST >

MTOT the message about an error is printed ‘and:the exe-
cution of the program is aborted. In the last case, in order
to carry out the required calculation it is necessary to in-
crease the dimension MTOT of array TOT to the quantity
ILAST taken from the message.

working vector of the INTEGER type.

dimension of the INTEGER working array ITOT. The last
address ILAST of array ITOT is calculated and then com-
pared with the given value of MITOT. If ILAST. > MITOT
the message about an error is printed and the execution of
the program is aborted. In the last case, in order to carry
out the required calculation it is necessary to increase the
dimension MITOT of array ITOT to the quantity ILAST
taken from the message.

The results of the calculation of energy values and radial wave functions are writ-

ten using ‘unformatted segmented records into file EVWFN according to the following

operator:

;

WRITE (IOUF) NDIM,NN,NROOT,(EIGV(II),II=1,NROOT),
(RGRID(JJ),JJ=1,NGRID),
((WFN(I,J),I=1,NN),J=1,NROCT)

In the above, parameters presented in the WRITE statement have the following meaning:
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e NDIM is the number of radial equations.

e NGRID is the numbervof- frnite—element‘grid points.

e NN = NGRID * NDIM.

e NROOT is the num‘berz of roots (energy levels). -

o Array EIGV contains the energy vaiu/es calculated.

o Array RGRID contains the values of the finite-element grld points.

. Two dlmensxondl array WFN - contains NROOT eigenfunctions each per NN =
Nl)lM * NGRID elements in }ength stored by the following way: for each of the
NGRID mesh points per NDIM elements of-eigenfunction (see scheme below):

1-st root - 2-nd root . .. last root

1 1 1

‘ 2 e 2. 2
1-st point .. = '~ ' 1l-st point. . .o 1-st point .
NDIM Co 0 wpmM NDIM

1 1’ 1

2 2 2

2-nd point . 2-nd point . . . . 2-nd point .
NDIM NDIM NDIM

14:

1 1 1

2 2 2

last point . B last point . ... .. last point .
NDIM NDIM NDIM

5 ‘Descri‘ption of Subprogram unit:s‘

A flow diagram for the HSEIGV prograrn is presenfed in P:ig. 1. The function of ecach
subroutine is brieﬂ;{ described beloigv., Additional details may be found in COMMENT

cards within the program.

e Subroutine ADDVEC. assembles the clement vector. ST1FI into the corresponding

global vector using a compact storage form.

o Subroutine ASSMBL controls the calculation of clement. stiffness and mass matrices

and assembles them into the bcorrés:ponding global matrices.

. Subroutine B()UNDC sets l,hc Dirichlet or Neumann l)()undary conditions.

¥

. Subroutm(‘ ( OLMIIT (d](uldt(‘s (olumn he lghls in bande (l ma.tnx

e Subroutine DEC ()Ml’ cale u]at(s L (l)) L' l'a(‘.l,orizal.lon ()f stiffness matrix. This
factorization is used in subroutine REDBAK to reduce and back-substitute the

iteration \'/(?(',l,()fs.
. Subroutm( LMASS calculates a dlagonal part of the local on element mass matrix.

. gubroutme ERRDIM prints error messages when hlgh speed storage requested by

a user is exceeded ‘and stops the execiition of program HSEIGV

o Subroutine ESTIF1 calculates a diagqnal part of the local on element stiffness ma-

trix.

e Subroutine ESTIF2 calculates a non-diagonal ‘part of the local on element stiffness

matrix.
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Subroutine EVSOLV prepares all input data for the SSPACE program, prints out
the calculated eigensolutions, and writes them into the file EVWFN if necessary.

Subroutine FEGRID calculates nodal points for the finite-element grid.

Subroutine GAULEG [34] calculates nodes and weights of the Gauss-Legendre quadra-

ture.

Subroutine HQPOT reads potential curves and matrix elements of radial coupling
at the NSPL points from file POTEN and inter'polate them using the cubic spline
interpolation in the NGRID points of the finite-element mesh.

Subroutine JACOBI solves the generalized eigenproblem in subspace using the gen-'-

eralized Jacobi iteration.

’Subrorrtine"MAXHT calculates addresses of diagonal elements in banded matrix.

Subroutine MULT evaluates product of the two vectors stored in compact form.

Subroutine NODGEN generates a nodal point distribution for the ﬁnite—element

grid.
Subroutine SCHECK evaluates shrft for Sturm sequence check (called only 1f SHIFT 0).

i 1.

DOUBLE PRECISION functron SEVAL [35] evaluates the cubrc splme functron for

a grven value of X.
R,

Subroutine SHAPEF calculates shape functions of the given order and their deriva-

tives with respect to the master element coordinate 7] at a specrﬁed value of x.

Subroutlne SPLINE [35] calculates coeﬂicrents for the cublc 1nterpolat1ng splme

Subroutine SSPACE [28]. ﬁnds the smallest ergenvalues and correspondrng eigen-
vectors in the generalized ergenproblem using the subspace iteration method [28].
We have added to this program the possibility of finding the eigensolutions closest

to the energy spectrum shift given and also the possibility of using the previously

~calculated eigenvectors as the starting i/ectors for inverse iterations., The list of ar-

guments for this program is adequately commented in the routine, so, the interested
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reader is referred to the program listing for further details. Warning messages will
be issued if the requested accuracy RTOL is not obtained after NITEM iterations

or if the stiffness matrix A is not positively defined.-

6 Test deck

The HSEIGV program has been used [11,19- 21] for the calculation of the energy values
of the doubly excited states of He and H- in both the adlabatrc and coupled-channel

approximations of the hyperspherlcal ad]abatrc approach

The test run which accompames the HSEIGV program is devoted to the computation
of the ground state energy in the coupled—-channel approxrmatron and energy values of
the first four 'S¢ doubly excited states of H~ (below the n=2 threshold) in the adiabatic
approximation of the HSA approach It consists of the followrng three steps: ( i)calculation
of the potential curves and matrix elements of radial coupling using the HSTERM program
[25]; (ii) computation of the adiabatic-potential curve asymptotics and matching points
between the calculated and asymptotic curves using the ASYMPT program [26]; (iii)
ten—channel calculation of the'ground state energy of H~ and one—channel computation
of the energies of the first several 1ge. doubly excited states below the n.= 2 threshold
using the HSEIGV program. k 7

File hsterm.dat? containing the initial data for the calculation of the first ten poten-
tial curves and correspondihg radial matrix elements for the 'S¢ state of H™ using the

HSTERM progr'am is given below:

Hyperspherical potential curves for 1Se state of H-

-&RMESH IREAD=0;, IRBEG=1,IREND=250, i R T T
NGRID=11,RVALUE=0.DO, - B TR B
RGRID=0.1D0,0.1D0,15.1D0;0.25D0,30.1D0;" "

1.D0,45.1D0,5.D0,90.1D0,10.D0,200.1D0,

ZEND
@FLAGS  ISTATE=1,ISECTR=0,IDIPOL=0,INTGRL=2,
NGAUSS=0,IPRINT=0,IPRSTP=1,
IAS=0,RAS=0.D0, ;
&END
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&STATE1 JTOT1=0;MTOT1=O,ISPIN1=0,I§II=O,LMAX1=5,
~KMAX1=7 ,NCH1=10,SHIFT1=0.6500D0,Z=1.D0,
NPOL1=7 ,NELEM1=40,NITEM=16;RTOL=1.D-6,
' ZEND
%STATE2 - gEND
v&FILES I0UT=7, FNDUT=’hsterm out’,ST1FN1="hmlse. matrlx’
V A ST1FN2 ’hmlse ovlapm’ ST1FN3=’hmilse. asympt’
ST1FN4—’hmlse.fncrnt’ ST1FN5—’hm15e wavefn’
ST1FN6 ’hmise. acoeff’ ST1FN7-’hmlse fnsurf’
ST1INT1= 11 ST1NT2 12 ST1NT3 13 ST1NT4 14,
STINTS 15,ST1NT6=16,STINT7=17 NTWRKI 31,
NTWRK2= 32 NTWRK3=33 , NTHRK4= 34 NTWRK5=35,
&END

In order ‘to:carry out. this calculation, dimensions ol several arrays listed in the PA-
‘RAMETER statement of the ISTERM program should be changed: These dimensions
are: MTOTAL=31000, MITOT=5000, NRTMAX=7, NSTMAX=281, NCLMAX=6, and
:NCIIMAX=10. As-a result, we obtain potential matrix clements calculated for 246 val-
ucs ol hyperradius p taken (with a nonunilorm step) on interval [0.1,200.1].. This part
of:the (‘.al(tulation»'r('quir(‘s 13.6 min on DECstation 3000 Model 800. The results of the
computation arc written into file "hmlse.natrix’,

The initial data for the ASYMPT program are given (using the Fortran. operator

DATA) as follows:

DATA FNPOT /’hmise.matrix’/, FNASP-/’hmise:aspot?/-
DATA FNOUT /’asympt.out’/, EPS/2.D-6/," . CHARGE/1.DO/
DATA RMIN/20.D0/,RMAX/200.D0/,RSTEP/0.001D0/,ICFS/15/.

DATA LMIN /0/, LMAX /o/, LSTEP /1/, . IPRINT/0/
DATA NTHRMN/1/, NTHRMX/4/,  NPCMAX/10/, NPTMAX/246/
DATA IASPOT/2/, ICURVE/O/, - -IDFLAG/1/, . .- IUNITS/1/
DATA IoUtT /7/, 1IPLT /o/, IPOT ./10/,. IASP /11/

In order to carry out the calculation, dimensions of workiﬁg arrays TOT and ITOT in

the PARAMETER statement of the main routine of the ASYMPT program should be
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set as follows: MTOT =.5000 and MITOT =:900. This part of the test run requiréé.l.l
s. The results of the computation of the second-order (dipole) corrections' V,‘(,":) (in Ry)
and matching points between the calculated adiabatic potentials and asymptoti;c ones (for
details, see [26]) are written into file Thmlse.aspot’. h

For the ﬁnal part of the test run, the initial data for the HSEIGV program are given

as foolows:
.

DATA FNOUT /’hseingoﬁt’/, POTEN /’ﬂmlse.macrix’/<
DATA ASPOT /’hmise.aspot’/,RTOL/1.D-10/,SHIFT/0.528D0/
DATA EGRND /0.DO/,RMESH/0.16D0,200.D0,30.D0/

DATA NMESH/3/, 10UT/7/," IOUF/0/, - 10UW/20/,

DATA IQﬁP/lO/,viASP/Qk,,;NSPL/246/, NITEM/16/ .

DATA NDIM/10/, MDIM/10/; IDIM/1/, ' - IADT/1/-

DATA NROOT/1/, NPOL/6/,  IPRINT/0/, IPRSTP/135/

The, ten-channel calculation of the.ground state cnergy of I~ gives the value F =
-0.527737 a.u. which is in excellent agreement with the variational (:alculation Byar =
—0.527751 a.u. [36] (/ompanson with the energy value I/M(,lll = -—0 527542 a.u. ob-
tained {37] by the multiconfigurational Ilartree-Fock metliod usmg 32’ conﬁguratlons
shows that our value calculated using only 10 states of the IISA basis is more accurate.
The second part of the test run is designed to show how to use the HSEIGV program
for computing the energies of high’ lymg states.: Consider; as an ¢ xample the calculation
of the first four doubly excited 'S' states of 1= below the n = 2 threshold In order to
perform such calculation the values of several parameters and flags should .be. changed.
These parameters can be chosen, as follows: NI{O()T =4, NDIM =1,IDIM =2,IADT =
0, IASP = 2, IPRINT = 1, EGRND = —0. 527751D0 SHIFT =0. 132D0 NMESH = 5,
RMESH(1) = 0.16D0, RMESH(2) = 120.D0; RMESH(3)-=30.D0; RMESH(4) = 580.D0,
RMESIH(1) = 200.D0, RTOL = 1.D~7: The results of this calculation are presented in
Table 1 where they are compared with reéults;obtained by several other methods. It is
evident that our ad:abatxc energles agree very well w1th other calculations. If the hlgher
accuracy is desired, the adiabatic energies obtained can be used for the calculation of the
energy values of doubly excited states in the coupled—channel approxunatlon as the energy

spectrum shifts for the HSEIGV i)fogféin. This test run (for the combined computation
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Table 1: Energy values ~E (in a.u.) of the 'S¢ doubly excited states of H™ below the
second threshold.

Method E]ﬂ E2 E3 E4
HSA® 0.148911 0.125995 0.124976 0.124399
POM? 0.148782

TDM¢ 0.147896 0.125973 0.125012

CRM* 0.148777 -

FPMe 0.148695 - 0.126015 0.124662

*HSA, present HSA calculation in the adiabatic approximation

YPOM, Projection-operator method using a Hylleraas basis functions [38}
“TDM, Truncated diagonalization method with hydrogenic basis functions [39]
¢CRM, Complex rotation method with Hylleraas-type functions [40] .~ .
°FPM, Feshbach-projected method using a Slater-type basis [41]

of the energy values of the ground state and four doubly excited states) requires '11.8 s

on the DECstation 3000 Model 800.
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TEST RUN OUTPUT

PROBLEM: Ground state energy of H-
kR Ak

CONTROL INFORMATION

NUMBER OF DIFFERENTIAL EQUATIONS.
NUMBER OF ENERGY LEVELS REQUIRED.

NUMBER OF FINITE ELEMENTS .
NUMBER OF GRID POINTS

NUMBER OF INTERPOLATION POINTS.

ORDER OF SHAPE FUNCTIONS

ORDER OF GAUSS-LEGENDRE QUADRATURE .

ADIABATIC CURVE NUMBER (IF NDIM=1).

UPPER (0) OR LOWER (1) BOUND (IF NDIM=1).

SHIFT OF ENERGY SPECTRUM .

(NDIM
(NROOT
(NELEM
(NGRID
(NSPL
(NPOL
(NGQ
(IDIM
(IADT
(SHIFT

0.528000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:

ok ok R ook KRR KR K s o Sl i S o S Sk 3 s 3K 3 ke sk Sk s sk kel ek o kR ok ok o ok

NO OF NUMBER OF BEGIN OF LENGTH OF

GROUP ELEMENTS INTERVAL

0.16000

ELEMENT

0.14920

GRID

0.024867

TOTAL SYSTEM DATA

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.

TOTAL NUMBER OF MATRIX ELEMENTS.

MAXIMUM HALF BANDWIDTH .
MEAN HALF BANDWIDTH .

THERE ARE

0 ROOTS LOWER THEN SHIFT

CONVERGENCE REACHED FOR RTOL 0.1000E-09

24

(NN )
. (NWK)
(MK )
(MMK)

END OF
STEP INTERVAL

30.000

11990
484745
70

40

ITERATION NUMBER 4
RELATIVE TOLERANCE REACHED ON EIGENVALUES -
0.6332E-11

sk 3 o oK ok o o ke ok ok ok sk koK oK ok oK ok ok 3Kk ok K ok oK oK ok ok e sk e sk oK sk sk ok ok sk sk ok ok sk ok e ok ok ok ok ok ok ok ok ok K sl sk sk ok sk ok ok s ok dk ok Kok s okok ok ok ok

LEVEL NUMBER ENERGY (A.U.) ENERGY (RY)

1 -0.52773741D+00 -0.10554748D+01

sk e ke 3k 3 e koK ok 3 3 ok o o e ok e e ok ok ok koK ok ok ok ok ok ke 3 e e ok ok sk s ok ke ok ok ok o ook ke ok o ok ok ke ok ok koK ok s o ok o sk s ok ke ok ok s ok ok ok ok kK ok ok ok ok ok

PROBLEM: Doubly excited states of H-'below the n=2 threshold
ok ok ok ok

CONTROL INFORMATION

NUMBER OF DIFFERENTIAL EQUATIONS. (NDIM

) -
NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 4
-NUMBER .OF FINITE ELEMENTS+.:.:: . :-. : i (NELEM:) = ~700
NUMBER OF GRID POINTS . (NGRID ) = 4201
NUMBER .OF INTERPOLATION POINTS. (NSPL ) = 246~
ORDER OF SHAPE FUNCTIONS . . . (wpoL ) = 6
ORDER OF..GAUSS-LEGENDRE: QUADRATURE R ¢ (¢} ) = 7
ADIABATIC-CURVE NUMBER. (IF:NDIM=1). - ... (IDIM ) = 2
UPPER (0) .0R LOWER (1) BOUND (IF NDIM—l) (IADT: ) = 0
SHIFT @ OF ‘ENERGY  SPECTRUM . . (SHIFT ) = 0.132000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
kK ok ok o o Rk KK oK ok oK o K KoK ok o ok ok Kok ki s o ok ok sk ok ok ek koK kK

NO OF NUMBER OF BEGIN OF. LENGTH OF GRID END OF
GROUP ELEMENTS- INTERVAL - ELEMENT STEP INTERVAL
1 120 0.16000 0.24867 0.041444  30.000

580 30.00000 0.29310- 0.048851 200.000
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TOTAL SYSTEM DATA

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 4199
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = " 18887
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 7

= 4

MEAN HALF BANDWIDTH . . . . .. . . . . (MMK)

DIPOLE ASYMPTOTICS OF ADIABATIC POTENTIALS:
kR s ok o ok ok ko ok ok o ok sk o o Rk R K ki Kok e sk o ok oK ok ok

CHANNEL  THRESHOLD MATCHING DIPOLE

- NUMBER NUMBER RHO-POINT COEFFICIENT ‘
2 - 2 88.80800 -5.082763
THERE ARE 1 ROOTS LOWER THEN SHIFT

CONVERGENCE REACHED FOR RTOL 0.1000E-06
ITERATION NUMBE-R -17
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.6116E-11 0.1761E-11 0.8361E-08 0.3249E-07
» . - o N G e
'********************************************************************************
LEVEL NUMBER ENERGY (a.u.)

ENERGY (Ry) ! ENERGY (eV)

.14891133D+00 .7 --.29782265D+00 07.10308837D+02

1 - -

2 -.12599542D+00 -.25199084D+00" “ - 0.10932415D+02
3 <.12497592D+00 -.24995183D+00 - -0.10960158D+02 "
4 -.12439947D+00 -.24879893D+00 0.10975844D+02 °

AR ARAAAA R AR AR oK AR R A AR AR SRR KK AR e KR R K oK o e oo o s s ok sk o K oo o

R RADIAL., EIGENFUNCTIONS.

0.201444 0.2452D-06 "0.5785D-07 0.2328D-07 0.3132D-07
5.796444 0.1726D+00 0.3689D-01 0.1478D-01 0.1983D-01
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11.391444 0.3389D+00 0.3470D-01 0.1332D-01 0.1744D-01
16.986444 0.1553D+00 -.5919D-01 ~.2440D-01 ~.3322D-01
22.581444 0.5320D-01 ~-.1240D+00 ~-.4848D-01 -.6407D-01
28.176444 0.1722D-01 -.1572D+00 ~-.5720D-01 ~-.7238D-01
34.445402 0.4705D-02 ~-.1666D+00 ~-.5260D-01 ~-.6051D-01
41.040230 0.1175D-02 ~-.1575D+00 -.3722D-01 ~-.3299D-01
47.635057 0.2872D-03 ~-.1391D+00 -.1632D-01 0.1143D-02
54.229885 0.6754D-04 --.1179D+0Q 0.6453D-02 ' 0.3528D-01
60.824713 0.1549D-04 -.9725D-01 0.2877D-01 0.6485D-01
67.419540 0.5029D-05  -.7862D-01 0.4921D-01 0.8697D-01
74.014368 0.3373D-05 -.6263D-01 0.6700D-01 0.1001D+00
'80.609195 0.2040D-05 -.4931D-01 0.8175D-01 0.1036D+00
87.204023 -.5504D-07 ~-.3847D-01 0.9338D-01 0.9806D-01
93.798851 - -.1793D-05 --.2981D-01 0.1020D+00 0.8449D-01
100.393678 -.2147D-05 = -.2299D-01  0.1079D+00: :0.6442D-01
106.988506 -.1080D-05  ~.1765D-01 0.1112D+00 0.3960D-01 .
113.583333 0.5827D-06  -.1351D-01 0.1121D+00 0.1196D-01
120.178161 0.1807D-05 ~-.1030D-01 0.1109D+00 -:1652D-01
126.772989 0.1959D-05 -,7838D-02 . 0.1078D+00 ~-.4391D-01 .
133.367816 0.1066D-05 -.5947D-02 0.1029D+00 -.6843D-01
139.962644 -.3265D-06 -.4499D-02 0.9649D-01° =~.8856D-01
146.557471 ~-,1500D-05 -.3392D-02. 0.8882D-01 -.1031D+00
153.152299 -.1926D-05 -.2545D-02 0.8005D-01 ~-.1112D+00
159.747126 -.1467D-05 -.1896D-02 0.7037D-01 =-.1125D+00
166.341954 ~-.3777D-06 ~-.1395D-02 0.5993D-01 - -.1069D+00
172.936782 0.8449D-06 -.1005D-02 0.4888D-01 ~-.9500D-01 .
179.531609 0.1689D-05 -.6950D-03 0.3737D-01 -.7741D-01
186.126437 0.1826D-05° -.4405D-03 0.2552D-01 -~.5528D-01
192.721264 0.1220D-05. -.2215D-03 0.1345D-01 . -.2992D-01
0.1247D-06 -.2048D-04 0

199.316092 .1266D-02 -.2845D-02
i******%***********f*********y*****{******************t*y***g*******i**********
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