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ASYMPT — nporpamMa BHIYHCHEHHS aCHMNTOTHK
runepcdepuyecKUX anHabaTHYECKHX TEPMOB H NOTEHIHATOB

[Mpeacrarnena nporpaMMa ASYMPT (FORTRAN 77) and BelyUCIEHHsS aCHMII-

-2
TOTHK TEPMOB M anuaGaTHYECKUX MNOTEHLWANOB C TOYHOCThI0 O (p °) B rUmeEp-
cthepuueckoM aguabarnueckoM nogxone (HSA). ITokasano, 4To MaTpHYHBIE 37IEMEH-

THI 9KBUBAJIEHTHOTO OMNEpPaTopa, COOTBETCTBYIOLIETO BO3MYILEHHIO p'z, HUMEKT Mpo-
cToii BMn B Oa3uce KYJIOHOBCKHMX NapabonmuyeckKux (PYHKUMH BO Bpalawmieiics
CHCTEME KOOpPOMHAT W JIerKO BBIYUC/SIOTCS UM OONMBIIMX 3HAYeHHH NOJHOrO
OpOHTANILHOTO MOMEHTa H HoMepa nopora. [lonpaBku BTOporo mopsaka kK axuaba-
THYECKUM TE€PMaM MOJy4eHbl KaK pelleHHs COOTBETCTBYIOUIETND CEKY/ISPHOIO ypas-
HeHHs.. ACHMITOTHKH MOTEHIMATIOB MOXKHO MCTIOTB30BaTh [UT BRIYMCIEHUS YPOBHEMH
SHEPrHH M palMalTbHBIX BOMHOBLIX (PyHKUMH ABYXSJIEKTPOHHBIX CHCTEM B aguaba-
THYECKOM NMpUGIMXXKEHHH H B METO/e CBA3aHHBIX KaHanmoB HSA noaxona.

Pa6ora BrinonHeHa B JIJaGopaTopHH BRIYHCITHTETBHOM TEXHHKH U aBTOMATH3aLHH
u JlaGoparopun Teopernueckoit ¢puznxku uM.H.H.BoromoGosa OUSIH.
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ASYMPT — a Program to Calculate Asymptotics ‘
of Hyperspherical Potential Curves and Adiabatic Potentials

A FORTRAN 77 program is presented which calculates asymptotics of potential

curves and adiabatic potentials with an accuracy of O ( p_z) in the framework
of the hyperspherical adiabatic (HSA) approach. It is.shown that matrix elements

of the equivalent operator corresponding to the perturbation p"2 have a simple form
in the basis of the Coulomb parabolic functions in the body-fixed frame and can be
easily computed for high values of total orbital momentum and threshold number.
The second-order corrections to the adiabatic curves are obtained as the solutions
of the corresponding secular equation. The asymptotic potentials obtained can be
used for the calculation of the energy levels and radial wave functions of two-electron
systems in the adiabatic and coupled-channel approximations of the HSA approach.
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PROGRAM SUMMARY

Title of program: ASYMPT

Computer for which the program is designed and others on which it has been tesled:
Computers: SGI Indigo?, IBM RRS/6000 Model 3201, Intel Pentium Pro200 PC; Installa-
tion: Department of Chemistry, University of Toronto, Toronto, Canada

Computers: DECstation 3000 ALPHA AXP Model 800, IBMRS/6000 Model 320H; In-
stallation: Department of Chemical Physics, The Weizmann Institute of Science, Isracl
Computers: Sun-Elc, P 715, Sgi-35D; Inslallatwn Computing (,ontcr of the Weizmann
Institute of Science, Israel N o

Operating systems under which the program has been tested: Digital Unix v4.0, AIX 3.2.5,
SunOs 4.1.3, HP/UX 9.01, Irix 6.1, MS-Windows 95, LlnllX I 0.9

Programmmg language used FORI'RAN (A

Memory required to execute with typical data: depends on the maximum values of total
orbital momentum and threshold number considered. Test run requires 528 KB

No. of bils in a word: 64 : AR PO
Peripherals used: line printer, scratch disc store

No. of lines in distribuled program, including lest data, cle: 1276

External subprograms used: F02ABF [1], SPLINE and SEVAL [2] -~

Keywords: atomic physics, two-clectron systems, hyperspherical coordinates, Schrédinger
cquation, adiabatic approach, potential curves, adiabatic potentials, p(-rturbdhon theory,-
dxpok' a.c.ymptotl( s

o

Nalure of physical problemn : v
"The purpose of this program is to calculate asymptotics of hyp(‘rsph(‘rl( al pot ential curves
and adiabatic potentials with an accuracy of O(p™?) within the hyperspherical adiabatic
approach [3]. The program finds also the matching points between the numerical and
asymptotic adiabatic curves within the given accuracy. The adiabatic potential asymp-
totics can be used for- the caleulation of the energy levels and radial wave functions of.
doubly excited states of two tl('(tr(m xyst(ms in the adiabatic and coupled- channel ap-
pm‘(nndh()ns

M Ihml r)f}.s'r)luliml

In order to compute the asynlptoti(s'k)f hyperspherical potential curves and adiabatic
potentials with, an accuracy of ()( ) it is necessary to solve tho corresponding secular
equation cigenvalues of which give the second order corrections in the a‘aymptotxc ex-
pansions of potential curves and effective potentials'in the powers of :p72 The matrix
elements of the equivalent operator corresponding to the perturbation /,—2 are calculated
in the basis of the Coulomb parabolic functions in the body-fixed frame. The asymptotics
of potential curves and adiabatic potentials are calculated within an:accuracy. of Q(p=?)
using the eigenvalues of the corresponding secular equation.

Restrictions on the complezity of the problem

The computer memory requirements depend on: a)the maximum value of the total orbital
momentum considered; and b) the number-of maximum threshold required. Restrictions
due to dimension sizes may be easily alleviated by altering PARAMETER statements
{see Long Write-Up and listing for details). 4
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Typical Running time
The test run which accompanies this paper took 0 3 son the DECsta,tron 3000 Model 800.
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LONG WRITE-UP
1 Introduction - . B

Theoretical studies of ’doubly excited states of atoms and Vions over the past few decad_es Ty
have established that ‘the existence and propertiesr of these states owe much to the strong
electron— electron correlatxons [1= 3] The propert1es of strongly correlated doubly exmted
states of two~electron systems are descrlbed ina most natural way w1th1n the hyperspher-
ical coordmate method [1- 3] The method ta.kes advantage of the hyperspherlcal coor-

dinates [1], 1. e’ a pair of collectrve varlables P and @ replacmg the independent—electron

radial coordmates ) and r2. In these coordlnates the hyperradius p=+/r} + r} repre-

sents the overall "size” of the electron palr and the hyperangle a =tan"Y(ry/r) represents
relative distance of two electrons from the nucleus. In the most widely used adrabatlc
a.pprox1mat10n, the hyperradrus 4 is treated as an a,drabatrc parameter analogous to the
mternuclear distance in the. Born Oppenhermer approximation for molecules In this ap- !
prox1mat10n the energles and wave functions of doubly excited states are obtained as ‘the |

solutions of uncoupled radial equatlons for the correspondlng adlaba.tlc potentlals [1-3].

This approach has played a promment role in understandlng the strong electron—electron
correlatlons in two—e]ectron systems [1—4] descrlptlon of spectra of doubly excited states

) [1 -13], and: study of one+ and multl—photon ionization of He and photodrssoc1atlon of H-
[14-19]. ~ . '

_In papers [20? 21] programs designed to-calculate potential curves and matrix elements
of radial coupling for two—electron atoms within the hyperspherical adiabatic approach
have been presented. These potentials can be used for the calculation of the energy spec-
trumn of the doubly excited states and also scattering and photoionization cross sections
using the adiabatic or coupled-channel approxrmatlons In order to reduce the compu-
tational expenses in obtaining accurate potentlal curves a,nd wave functrons in the large
p-region it is desirable to match numerical solutions at small p to asymptotic expansions
at large p. Such asymptotic expansions for adiabatic potentials and wave functions for
two—electron atoms have been proposed in [1,22-24] using basis sets constructed from La-
guerre polynomials and bipolar harmonics in space—hxed frame. Matrix elements of the
corresponding potential operators expressed in terms of products of 3.J- and 6J-symbols
require summation of oscillatinig series and take a rather complicated form for large values
of total momentum and threshold number [22-24]. \

Recently, a new method for the calculation of asymptotics of hyperspherical potential
curves and adiabatic potentials with an accuracy of O(p7?%) for a system of three distin-
guishable charged particles has been suggested [25, 26]. It alloyvs to simplify significantly
the calculation of matrix elements of potential operators using ‘the baslsconstructed from
linear combinations of the Coulomb parabolic functions in the rotating coordinate system.
The extension of this approach onto the case of two—electron systems has been carrled
out in [27]. The adiabatic potentials calculated in the second—order approximation have
been used [12 13, 28] for calculatlon of the energy spectra of the doubly excrted states of
He and H~ in the adrabatlc and coupled—channel approx1matlons .

In the present paper we present a program to calculate a.symptotlcs of llyperspherxcal
potential curves and adlabatlc potentlals w1th an accuracy of O( %) usmg thc method
developed in {25 27] The second—order correctlons to the potentrals are obtalned as
the solutions of the corresponding secular equatlon The program automatrcally ﬁnds
matching points between numerical and asymptotic adrab‘atrc curves with'the given accu-

racy. These asymptotics can be used for the calculation of energy levels and radial wave

functlons of the doubly excited states of two-electron atoms.

The paper is organized as follows. In section 2 we glve a short descrxptlon of the



method. A description of the ASYMPT program is glven in Sect]on 3. Subroutine units

are brleﬂy described in Section 4. Test run is “considered in Sectxon 5

R

2 Method
2.1 Hyperspherical adiabatic representaflan ’

The Schrodmger equation for a tw0~electron atomic system with nuclear charge Z and

total energy E, expressed in the hyperspherical coordinates

p=qfrit+rd a:tan_l(rz/r{), : S (1)

has the following form (A =( ;imq =1)

—ﬁ _ ! h( ) 28| ¥(p, ) =0 . ) " | (2)
ap? 4 2 * e P2 =5 ' o
where
5 VP I
h‘(p) = _A (Q) + "V(O’,Or)), L E (3)
p? P
VR 13 ,
. A = da? ' cos?a - sin‘a’ ' ' ()
and ’
, 2z 27 2 '
* V(b)) = ~ - + (5)

cosa  sina m

In thé aboﬂ;é, wave furllc“tionr \Il(/'),’Q)l 1s comlw('t'(’d wit h the total two- electron wave ful1("ti0n
¥ by relation Y(p,Q) = (p5/2smacos a)z/: ) roprosonts the five angles {a, By, E,}; 1 is
the operator of the orbital momentum of the 1th electron, and 0,3 = cos l[ (v - rz)/l‘[rgl

The hypersphencal adiabatic (HSA) statcs {@ (Q p)] - "are defined as the cigenso-
lutlons of the followmg equatlon . o
iz(p)%(n;p) =U,(p)2,(% p)- . , , (6)
Eq. (6) must be solved for each value of parameter p to obtain the hyperspherical potential
Uu(p)- The methods of computation of the five-dimensional channel functions ®,(€; p)
have been discussed in our previous papers [20, 21]. For large values of g the HSA

functions take on the form of the hydrogenic wave functions perturbed by a distant charged

particle.: For p close to the origin.the HSA states resemble the hyperspherical harmonics
(K-harmonics.[2, 3]), defined as the eigenfunctions of A%(Q), the generalized angular
momentum operator.

Treating p as'a slole varying adiabatic parameter, ¥(p,{1) can be expressed in the
close-coupling expansion by a set of N adiabatic channel functions {®,.(%; p) _; at each
p as

. °N.

U, ) = Y Flr)0ul i p)- . m

s=1
Substitution of expansion (7) into Eq. (2) and averaging over the basis functions'®,(Q; p)
lead to a system of N coupled ordinary differential equations for exparlsidn coefficients -

F,

.(p), which can be written in the explicitly_llérrﬁil’.ian form as

d?
(_E;{ + v;m(P) -2

where

L) Ed0)+ Y Vil Blp) =0, (e =1.2000N),  (8)

T ov#s

1 . d d
VIW(/’) = _W‘Suu + Uu(p)byw + 'd_pQUV(/’) + (21“'(/)):[; + ”uu(_[’)r (9)

0.0 ,,)> } - (0

QIW(P) :-_Quu(f’) = - < u(Q P)

T d
”/w(/’) = Ilwt(/)) = <Z;¢u(”vp)

d : o
a—;‘l’v(ﬂ,p)> ) : (11)

2.2 Asymptotics of adiabatic potential curves at p — oo

As'shown in [27]’, the general classification of states of a two-electron system in the HSA
representation can be uniquely built in the molecular coordinate system. The transforma-
tion of the two-electron wave function, WLM”(:i,rz), given'in th(? space-fixed coordinate
system XYZ with the fixed axis Z, into the molecular system xyz with the zlxis z directed

along the vector ry, has the following form [27):

U (ry, 1) = Z UL (pya,br2) mM(‘I’ 9,¢), (12) _
u=(1=s)/2 ,



where lI',Ln"(p, @, 012) is the wave function in the molecular coordinate system e, = €@, ey =
eg, €, = €, in the total-momentum representationL,.D,ﬁ,(@,‘@,é) is a symmetrized
Wigner D-function [29], m and M are the eigenvalues of the projections L, and Lz of
the total orbital momentum operator L = 11-+ 1, onto the.molecuiar z and fixed Z axes,
7= (=1)"*2 = g(~1)f and.o = %1 are the eigenvalues of the operator.of total parity
P (r1 — —r1, r2 — —r3) and reflection Py, in the yz plané of the molecular coordinate
system: ¢ — 7 — ¢ (for details, see [27]), and 1; is the orbital momehtu/rn operator of the
ith electron. - B -

Consider now asymptotic solutions for a separated atom with charge Z and electron
1 in the field of the distant electron 2, omitting all intermediate computations that can

be found in papers [25-27]. The potential curves and solutions of the hyperspherical

eigenvalue problem (6) are expanded in a series over inverse powers of p:
Uulp) = UL + UDp + UPp™" + 0(57), | (13
(i p) = OO (0s) + B (o™ + 0(p7?), (14)

whére UL(,O) = —Zz/ﬁ2, ‘U;Sl) = —2(Z —1) and CD,(P)(QM) are, respectively, the zeroth
and first-order energy corrections and wave function of the zeroth approximation of the
Hydrogen—like atom with a fixed princ‘ipal iquantum number n, and {2, is the corresponding
set of angular variables (see [26, 27]). To construct the correct functions of the zero-order
approximation it is necessary {25-27] to take account of terms ~ p~? in:the expansion of
thé surface adiabatic Hamiltonian (3) which remove the Coulomb degeneration in a layer
of parabolic states [nynzm) with a fixed principal’ quantum number n = ny ¥ nz 4 m + 1,
m = |m|. An equivalent operator corresponding to the pfzz perturbation has the following
form [27]: .-

where A, is the z projection of the Runge-Lentz vector, | = 1, is the operator of electron
orbital momentum, and (L —1)? = L*+ 1> =21 - L. Here, 21- L = I, L_ + I_L, +2L2is
the operator of Coriolis interaction, and L 'and I are spherical icomponents (lr:z;j!sing and

lowering operators) of L and 1. Eigenvalues and eigenfunctions of the equivalent operator

A represent, respectively, the desired corrections U,Ez) in the expansion (13) and correct

functions of the zeroth approximation [27]:

min(L,n-1) n—m—-1

oOQ) = Y. Y ¥ ommn(s,)Dr3(2,0,9). (16)

m=(1-¢)/2 n2=0
Here, @ninpm(s,t) are Coulomb parabolic functions, s = ry +z, { = r — z, of the form

(301 A
‘r’mmm(syt) = Cmngm‘r’nlvn(s)‘ronzm(t), . (17)
Cormam = 2/ {n}{(n1 + Im) 7 2t (na + Iml)) 112, (18)

m 1 m .
<,onjm(uj) ={(n; + |m[)!]_1ul- 172 exp (—Euj) LL,»-I|-|m|(u")’ u; = s,t, j=1,2,(19)

fm|

nyt] m|(“1') are the Laguerre polynomials. The energy corrections U and coeffi-
; : ,

where L

cients as.‘;)m can be found from the secular equation

min(Lyn~1) n—m—-1

Z Z Knl"szMﬂ' ‘[\‘0)

m'=(1-0)/2 ny=0

n'11z'2m'LM7r> - U£2)6,,zn; mm:] a,(:;)m, = 0. (20)

In the above, states are characterized by the set of quantum numbers {LMong}, where
q=q(nq, m) enumerates the roots U,£2) as they increase in the secular equation (20) at
fixed LMon. When L > n—1, the number of roots of Eq. (20) equals n?, and n(n+1)/2
of them have the parity 7 = +(—1)P, whereas n(n — 1)/2, the parity 7 = —(—1)F. The
latter are degenerated with the states of opposite parity. Thus, there are n(n + 1)/2
nondegenerate roots of Eq. (20) at fixed LMn (the standard (2L + 1)-fold degeneracy
still takes place). Solving the secular equation (20), we obtain the following expression

for potential curves: T o
7t 2z-1) UP e : ,
;oM e (21)
n I3 P A . ) L
The similar expression can be obtained [27] for the adiabatic effective potentials Viu(p):
7 2qz-1) VP
Viu(p) = T ‘_““—p + PN

whe}e V;,(Z) are the eigenvalues of the correspondiﬂg secular equation for equivalent oper-

(22)

ator

A= —BPZ-AZ + (L -1y, (23)



which corresponds to the dipole integral of motion {31]. Matrlx elements of equ1valent

operators A and A are defined on functions (16) by simple relations [26, 32]:

(ninam LM 7| A,|ninym/ LM7) = (ny — ny)é,

ny n; 6mm' ) ';'

(ningmLMn|L? — 2L |ninlm 'LMr) = [L(L + 1) -~ 2m2]6,,2,,, 5.

mm’y

1
(ningmLM=|P|nn}m 'LMz) = 6’"""{5 [R*—14+m?— (m = na)?] Snyny

~ = V(n + Dng(ng + m)(ny + m + l)én;nz_lf,
(ningm LMzl L_jniny + lm— 1LM7r.) = \m L
(n|n27nlrM7r[[+L [ny + Ingm — 1LMr) \/m“/mm s |
(n,nszM7r|l L+|nln2 — lm+ |LM7) \/—mm T bl
(nlnr_,mI,M7r.|l_ Lylny = Ingm + 1 LM7) = m“/m Tl |

v =+ (V2=1) ,,l,]\/(L —m+ 1)(1, +mn),

L .
FYrmomar =1 + ( 2= D& V(L+m+ 1)L —m),
—,. A B :
700 = To1 = Vi = 0 for o0 =—1.

It is evident that these matrix elements have an extremely simple form and can be
computed for very high values of the total momentum I, and threshold number n without
any problem In Tables 1 and 2 we compare potential curves calculated numerlcally and
computed accordlng formula (21) for S and P states of He and H- for three values of p:
40, 60 and 80 a.u. It is evident that these results agree very well. For instance, the five

significant digits are obtained for !P° potential curves convergmg to the n = 2 threshold

Table 1: Comparison of the numerical potential curves U,(p) with the asymptotic ones,
U2*(p), computed using formula (46) for 'S¢ and 'P° states of He at p = 40, 60 and 80

Vs + Dra(nr + m) (2 + m + Déngy i |

T
7m m—17 ' 1.

a.u.
State Channel p =40 a.u. p =60 a.u. p =80 a.u.

PHLT number, p ~ —U,(p)  —U(p)  =Udp) -Up) -Udp)  —Uz(p)

1 2.02510 2.02516  .2.01664 2.01674 2.01241 2.01254

2 0.52627 0.52620 0.51721 0.51720 0.51280  0.51280

1Ge 3 0.52413 0.52411 0.51627 0.51627 0.51228 0.51228

4 0.25103 0.25073 0.24052 0.24045 0.23562 0.23560

5 0.24735 0.24693 0.23888 0.23876 0.23470  0.23465

6 0.24436 0.24447 0.23764 0.23766 0.23403 0.23403

1 2.02447 2.02453 2.01636 2.01646 2.01225 2.01238

1pe 2 0.52588 . 0.52582 0.51701 0.51703 0.51271 - 0.51271

3 0.52490 0.52182 0.51661 0.51659 0.51246 0.51246

1 0.52313 0.52311 0.51583 0.51582 (.51203 (0.51203

of Het jon.

Table 2: Comparison of the numerical potential curves {7,(p) with the asymptotic ones,

17%(p), computed nsing formula (16) for 1S and 'P¢ states of H™

a.ul.

al. p-= 10, 60 and 80

p =10 a.n.

State Channel p =60 aa. p =80 a.u.
LT wamber. g U (p)  =URp)  —Up)  ~U¥(p) —Uup)  =Up(p)
1 0.50015 0.50016 0.50006 0.50007 0.50002  0.50004
2 0.12709 0.12709 0.12592 0.12593 0.12552  0.12552
'S 3 0.12309 0.12322 0.12417 0.12121 0.12454  0.12456
1 - 0.06201  :0.06178 0.05823 0.05832 0.05705  0.05711
5 0.056141 0.05514 0.05559 0.05537 0.05553  0.05545
6 0.01882 0.05022 0.05273 0.05318 0.05403  0.05422
1- 0.19952 0.49953 0.49978 0.49979 0.49987  0.49988
tpo 2 0.12662 0.12663 0.12572 0.12572 0.12540  0.12541
3 0.12484 0.12474 ~ 0.12491 0.12489 0.12495  0.12494
1 0.12225 0.12238 0.12380 0.12384 0.12433  0.12435




ASYMPT |:

| seume
S |
ASPOT
»| SEVAL
» SLMATR GAMIM
ASCFS ASMATR FO2ABF DELTAF
» JACOBD
Fig. 1

10

o gy i apTE

3 Description of the program

Fig. 1 presents a flow diagram for the ASYMPT program. The function of each subrou-
tine is described in Section 4. The ASYMPT program is called from the main routine
(supplied by a user) which sets dimensions of the arrays and is responsible for the input
data. In the present code each array declarator is written in terms of the symbolic names
of constants. These constants are defined in the following PARAMETER statement in

the main routine:
PARAMETER (MTQT=1000,MITOT=500)

where MTOT and MITOT are the dimensions of the working DOUBLE PRECISION
array TOT and INTEGER arrz.ty ITOT, respectively. In order to change the dimensions
of the code all one has to do is to modify the single PARAMETER statement defined
above in the main program unit.

The calling sequence for the subroutine ASYMPT is:

CALL ASYMPT (TITLE, CHARGE, LMIN, LMAX, LSTEP, NTHRMN, NTHRMX,
RMIN, RMAX, RSTEP, EPS, IASPOT, ICURVE, IUNITS, ID-
FLAG, NPCMAX, NPTMAX, IPRINT, FNOUT, IOUT, FNPOT,
IPOT, FNASP, IASP, FNPLT, IPLT, ICFS, TOT, MTOT, ITOT,
MITOT)

whefe the arguments have the following type and meaning:
Input data -
TITLE ~CHARACTER ' title of the run to be printed on the output listing. The

: “stitle should be no longer than 70 characters.
CHARGE REAL*8 nuclear charge.

SLMING o INTEGER minimum value of the total orbital momentum.
LMAX INTEGER maximum value of the total orbital momentum.
LSTEP ¢ “INTEGER step in total orbital momentum with which the compu-

tation is carried out.

11



NTHRMN
NTHRMX
RMIN
RMAX
RSTEP

EPS

" IASPOT

ICURVE

JUNITS

INTEGER
INTEGER
REAL*8
REAL*8
REAL*8

REAL*8

INTEGER

INTEGER -

INTEGER

minimum threshold number.

maximum threshold number.

minimum value of the hyperradius p.

maximum value of the hyperradius p.

step with which asymptotics of potential curves or adia-
batic potentials are calculated and printed out.

desired accuracy with which matching points between nu-
merical and asymptotic (given by Eqs. (21) and (22))
curves are determined. It is used only if IASPOT = 2.

flag specifying the mode of operation:

= 0 - potential curves are read from the file FNPOT and
the message about the number of records in the file and the
last hyperradial point calculated is printed out. This mode
is usually used during thie computation of potential curves
and radial matrix elements by the HSATOM and HSTERM
programs {20, 21] to control the number of records written
and to display the last hyperradial point calculated. If
IPLT>0, numerical curves read frorn file FNPOT are writ-
ten into-file FNPLT; ‘

=:1 - asymptotics of potential curves and.adiabatic po-
t.cntia]s are computed using expressions (21) and (22), re-
spectively, for a given set of hyperradial points from the
interval [RMIN, RMAX] with step RSTEP.. If IPLT > 0,
the results of the calculation are written into file FNPLT
(note that this option should be used here only if LMIN =

"LMAX and NT IIRMN = N'l'lll{MX otherwise put IPL T

= 0) :

=2 sccond order ((lxp()l() (nrr(ctlons U,(L) or V,m arc
calenlated and stored into l(mporarv file ICI"S. Numerical
potential curves U,(p) or V,.(p) are read {rom file FNPOT
and interpolated using the cubic spline interpolation on

the given interval [RMIN,RMAX] with step RSTEP. The |
corresponding asymptotic curves are calculated using 1.
(21) or Eq. (22) on the same grid and compared with the-

numerical ones to determine with the given accuracy KIS
matching points betwecen these curves. The values of LMIN,
and LMAX should be the same for the given value of ﬂag
IASPOT.

flag specifying either potentlal curves or adiabatic potcn—‘

tials required:

. =0 - asymptotics of adxabatlc potentials V,,,(p) are calcu-

lated; ‘

= 1 - asymptotics of potentxal curves U,(p) are calculated.
flag for specifying the units of measure:

= 0 - the results will be given in atomic units;

= 1 - the results will be given in Rydbergs.
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< gt

IDFLAG
NPCMAX
NPTMAX

IPRINT

FNOUT
I0UT

IFNPOT

nror

FNASP

IASP. =
W EYLL

FNPLT -

IPLT

ICFS -
TOT

.. INTEGER

INTEGER

INTEGER

flag indicating the order in which roots of a secular equation
are arranged:

= 0 - roots are stored without ordering;

= | - roots are stored in the ascending order.

maximum number of potential curves written into file FN-
POT. It is used (if IASPOT .= 0 or 2) for setting dimensions
of arrays to be used for storing numerical potential curves
and corresponding matrix elements of radial coupling.
maximum number of hyperradial points to be read from
file FNPOT. It is used (if IASPOT = 0 or 2) to set dimen-
sions of arrays to be used for performing the cubic spline

- interpolation of potential curves and effective potentials.

INTEGER

grid are printed out.

CHARACTER

= INTEGER

CHIARACTER

“ INTEGER

‘ (?liz\l{.A(J'l‘l;]lI

INTEGER

~ CHARACTER

[

INTEGER

. INTEGER.
" INTEGER

level of print:

= 0 - minimal level of print. th second-order Lorrcdmns
and the values of asymptotic curves on a given hyperradial
If IASPOT=2, the matching points
between the numerical and asymptotic curves are printed
out;

= 1 - extended level of print.
mask matrices are printed out additionally.

name of the output file (up to 55 characters) for printing
out the results of the calculation. It is system specific and
may include a comploto pat b to the file location.

number of the output logical device for printing out the
results of the calculation (usnally set to 7).

naric of the input file (up'to 55 characters) containing po-
tential curves and matrix clements of radial coupling calcu-
lated and stored by the ISATOM and IISTERM programs
(20, 21]. Tt is used ounly if [ASPOT=0 or 2.

number of the logical device for reading data from file
IFNPOT.

name of the output file (up-to 55 characters) for storing
the second-order corrections {the eigenvalues of the cor-

Interaction potential and

- responding equivalent operator) and matching points be-

tween the relevant numerical and asymptotic curves. It is
uscd only if IASP >0 and IASPOT=2."
number of the loglcal dev1ce for storlng data into ﬁle

" FNASP. R e

name of the output file (up to 55 characters) for stor-
ing potential curves and adiabatic potentials (maximum
50.curves) in order to plot them lately using an available
graphlcal package It is used only if IPLT > 0.

number of the logical: device for storing data-into file
FNPLT. '

- scratch working file.,

working vector of the DOUBLE PRECISION type.

13



MTOT INTEGER dimension of the DOUBLE PRECISION: array ITOT. The
last address ILAST of array TOT is calculated and then com-
pared with the given value of MTOT. If ILAST > MTOT the
message about an error is printed and the execution of the
program is aborted. In the last case, in order to carry out the
required calculation it is necessary to increase the dimension
MTOT of array TOT to the quantity ILAST taken from the
message. :

ITOT INTEGER working vector of the INTEGER type.

MITOT INTEGER dimension of the INTEGER working array ITOT. The last

‘ address ILAST of array ITOT is calculated and then com-
pared with the given value of MITOT. If ILAST > MITOT
the message about an error is printed and the executlon of the
program is aborted. In the last case; in order to carry ‘out the
required calculation it is necessary to increase the dimension
MITOT of array ITOT to the quantity ILAST taken from the
message.

Output data

The results of the calculation of the second-order corrections U,(f) and'V,‘(Z) (eigenvalues
of the equivalent operators (15) and (23), respectively) and matching points between the
numerical and asymptotic curves with the accuracy EPS are written using unformatted

segmented records into file FNASP according to the following operator: .
WRITE (IASP) CHARGE,NRUUT,(NTHRESH(I),RHUAS(I),CFAS(I),I=1,NRUUT)
In the above, parameters presented in the WRITE statement have the following meaning:
- o CHARGE is the nuclear charge of a system.

"o NROOT is the number of roots of the corresponding secular equation for a fixed

value of principal quanturn number n.

. array NTHRESH contains threshold numbers to.which the corresponding curves are

converged.

o array RHOAS contains the values of matching points at which the numerical curves

are joined with the asymptotic ones.

o array CFAS contains the values of the second order corrections U ,(‘2) or V,‘(ﬁ) according

to the given value of flag ICURVE.
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Using the data stored in the file FNASP one can easily construct required asymi)totic

" curves using expressions (21) and (22) for large values of p. The output data saved in the

file FNASP is used as the input data in the HSATOM and HSTERM programs [20; 21]
vdesigned for the calculation of the energy levels and radial wave functions in the adiabatic
and coupied«channel approximations.

If IPLT > 0, potential curves are written into the file FNPLT for each hyperradial

point p according to the operator:
WRITE (IPLT, 1000) RHO, (CURVES(I) I=1 NCURVES)

where 1000 is the label of the Fortran FORMAT operator: FORMAT(SO(EM 6)). In the

above, parameters presented in the WRITE statement have the following meaning: l
e RHO is the value of hyperradius p.
¢ NCURVES is the number of curves to plot (maximum 50 curves).

e array CURVES contains potential curves (if ICURVE = 1) or adiabatic potentials
(if ICURVE = 0). It:ﬂIASPOT =1, array CURVES will contain asymptotic curves
computed using Eqs. (21) or (22) for a set of hyperradial points from the grr/en inter-
val [RMIN;RMAX] with step RSTEP. If IASPOT = 0, it will contain the numerical
potentials taken from file FNPOT as they were originally stored'there. = .

4 Dé‘sc'ripti‘on of subprogram units
A ﬂow dlagram for the ASYMPT program is presented in Flg 1. The function of each

subroutlne is briefly described below. Additional details may be found in. COMMENT

cards within the program.

. Subroutlne ASCFS controls the calculatlon of asymptotlcs of potentlal curves and
ad1abat1c potentlals for a ﬁxed ~value of principal quantum number n. It sets the

values of some flags and keys deterrnlnes sizes of Worklng arrays, and prepares initial

data for t‘re ASMATR program.

e Subroutine ASMATR calculates matrix eléments of equivalent operator correspond-

ing to p~? perturbation in the basis of Coulomb parabolic functions, finds the roots
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of the corresponding secular equation for this operator, and calculates asymptotics

of potential curves and adiabatic potentials for the given set of hyperradial points.

e Subroutine ASPOT reads potential curve,s and radial matrix elements stored in the
file FNPOT by the programs HSATOM and HSTERM [20, 21], calculates asymp-
{otics of potential curves and adiabatic potentials using expressions (21) and (22),
respectively, compares them with the numerical ones, and finds matching points

between these curves with the given accuracy EPS.
o DOUBLE PRECISION l'unchon DELTAF calculates Kroneker’s deltagsymbol 8ij.

o DOUBLL PRECISION l'un(txon GAMJM calcula.tes the L™ ., factor for the given

values of total orbital momentum L and its projection m on the z axis.

» Subroutine JACOBD finds the eigenvalues and cigenvectors of a symmetric NxN

matrix stored in a compact lorm without arranging the roots.

l)()UBl I PRECISION l'uu(tl()n Sl"VAl {33} (‘Va‘llii.l.(!sti,ll(t cubic spline function for

a glw n valm of x.

Subroutine SLMATR calculates matrix clements of equivalent operator correspond-

ing to p~? perturbation for a given set of parabolic quantum numbers.

o Subroutine SPLINE [33] calculates coefficients for the cubic interpolating spline.

Subroutine FO2ABE from the NAG Lortran program library is deseribed in [34].

‘5 Test deck"

The ASYMPT program has been extensively used for the calculation of ('n(‘rgy values of
the doubly excited states [12 13, 28, 35] an(l also one-photon ionization [18, 1‘)] of lle
and H-. ,

The test run which accompanies the ASYMPT program is designed to compute the
roots of the secular equation (20). These eigenvalues are used for the calculation of the
asymptotic curves for S and P states of He up to the n = 5 threshold for two values ol hy-

perradius p = 50 and 80 a.u. Below we list the values of the numerical parameters and flags
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used in the test run: CHARGE=2.D0, LMIN=0, LMAX=1, LSTEP=1, NTHRMN:I,
NTHRMX=4, RMIN=50.D0, RMAX=80.D0, RSTEP=30.D0, EPS=0.D0, NPCMAX=1,
NPTMAX=1, IASPOT=1, ICURVE=1, IUNITS=0, IDFLAG=1, IPRINT=0; IPOT=0,
IASP=0, IPLT=0, ICFS=15. The results of the calculation’with these parameters are
presented below in the TEST RUN OUTPUT section. This test run requires 0.3 s on the
DECstation 3000 Model 800.

The ASYMPT program has been tested on d]fferent models of computers and operat-
ing systems (see Program ‘Summary) and each time the same results have been obtamed
The program can also run on small computers like PC DX-386/486/Pentium under M'S—

DOS, MS-Windows or Linux (free UNIX-like oper;i.thn system for PC)."™
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Test run output

PROBLEM: Asymptotic potenmtial curves for S and P states of He

Tk Ok %k K kKK -

ASYMPTOTICS OF POTENTIAL CURVES AT LARGE RHO'

o e e e e e -

CUNUCLEAR'CHARGE Z . . . . . . . . . . . .. (CHARGE):- © 2.0
FLAG FOR SORTING (1) OR NOT (0) THE ROOTS. (IDFLAG): : 1

stk ok o ok AR R R K oK ook ok e o sk ok ook ks oo ok A ko e ol ko e o ko ok s ok 6 ke o o s ok ok ok Ak ok sk sk ok ok ok ok Sk ok o ok K ok o ok

NUMBER 'OF THRESHOLD . . . (I): 1 -
TOTAL MOMENTUM. . . . . . (L): O

No CFS No CFS No CFS No CFS
1 -0.2500000E+00 '

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.):
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50.000 -2.02010
80.000 -2.01254

s 3k o 3K K ke 3 3K ok K ok ok 3K 3 ok ok ok ok ok i 3 e ok ke 3k ek o o e ok ok ok ok ke sk ok sl oK ok K oK ok kK 3K ok ok ok K ok ok 3K ok koK K o ok ok ok ok ok ke o oK ok kKK

NUMBER OF THRESHOLD . . . (N): i
TOTAL MOMENTUM. . . . . . (L): 1
No CFS No CFs No CFs No CFs
1 0.7500000E+00 . -
RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in(a.u.):

50.000 -2.01970
80.000 ~-2.01238

3 ke ok ke ke 3 ok o o ok ke s ke e o ok A ok ke ke ke o o e o o ok ok ok ok ok ok sk ok ok ok oK sk oK A ok sk sk Kok ok sk ok ok ok sk sk ok ok KoK 3K ok ok ok ok ok oK ok ok ok kR ok kK ok

1

NUMBER OF THRESHOLD . . . (N): .2
TOTAL MOMENTUM. . . . . . (L): 0 o ‘ , ;
No CFS No CFS No CFS - No.:.. - CFS '

1 -0.1927051E+01 2 0.1427051E+01

RHO VALUES OF THE ASYMPTOTIC.POTENTIAL CURVES (in a.u.):

50.000 -0.52077 -0.51943
80.000 -0.51280 -0.51228 . BAD

S .
*******************************************************************************f

!

NUMBER OF THRESHOLD . . . (N): 2
TOTAL MOMENTUM. . . . . . (D):

20

No - .- CFS .- “No. - CFS- © -No -'© .- CF8= :--s No -.::- CFS
1 ~-0.1314297E+01 2 0.2823139E+00 3 0.3031983E+01

RHO VALUES OF THE ASYMPTOTIC :POTENTIAL CURVES (in a:ui):

- 50.000 -0:520563 -0.51989 -0.51879 ..
80.000  -0.51271 '-0.51246 - -0.51203 -

****************************************************************************

e

NUMBER OF THRESHOLD . . .. (N): 3. BRI e .

© TOTAL MOMENTUM. . . . . . (L) Q. =% o 0 v,
“No- +- “CFS- -+ No- .+ CFS ~=.~:-No: -.~“«CFS~.~. .No-..».-CFS .-

1 -0.5617225E+01 2 0.4601214E+00 3 0.4407104E+01

[N e

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in-a.u:):

50.000 -0.24447 -0.24204 -0.24046
~80.000 --0.23560 -/-0.23465" -0.23403 -

Aok sk o ke ok o ok ok ok ok o K o ko K o ok ok oK s koK ok ok ok sk o sk ok ok ok sk ok ok ko ok ok 3k ok oK ok o o sk sk K ok o ok ok ok sk ok o ok ok K ok K ok ok oK ok ok ok ok 3K ok

NUMBER OF THRESHOLD . . . (N): 3

TOTAL- MOMENTUM: - . . . .:(L):
No CFS No CFS No CFS No CFS

" 1°-0.5029787E+01 ' .2--0.2041039E+01 - 3 " 0.1173774E+01 .4 ..0.2944384E+01
5 0.6702668E+01 )

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u:):

50.000 -0.24423 =0.24304 -0.24175 -0:24104 -0.23954
80.000 -0.23551 -0.23504 -0.23454 -0.55426 -0.23367
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————— e g R PR PR PP PR R PR L LS S L L LR b L P Lk

NUMBER- OF THRESHOLD .
TOTAL MOMENTUM. . . .~

No CFS
1 -0.1131404E+02

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.):

50.000 ~-0.14953 -0.14602 -0.14332 -0.14153
80.000 -0.13927 -0.13790 -0.13684 -0.13614

********************************************************************************i

NUMBER OF THRESHOLD . . . (N): 4

TOTAL MOMENTUM.

No CFS
1 -0.1073614E+02
5 0.5027490E+01

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): ?
50.000 -0.14929 =-0.14757 =-0.14577 -0.14445 -0.14299.,-0.14224;,-0.14030
80.000 -0.13918 -0.13850 -0.13780 -0.13728 -0.13671 -0.13642 -0.13566

*****************f*****}f**************************f*********

LT ek ok ke ok ok e ke o e o e ok ok e o ok ok

NUMBER OF THRESHOLD . . . (N): 5

TOTAL MOMENTUM. . = . . . (L): 0 - - - g care f

No CFS No CFS - No . CFS ;. ¥o- - CFS ;
22

n:
(L): 0

No CFS No - CFS- © No CFS
2 -0.2561380E+01 3 0.4196759E+01 4 - 0.8678658E+01

i

L) 1

No CFS . No . CFS -~ =No ~ . -CFS.
2 -0.6415713E+01 - 3 -0.1917310E+01 -4 0.1387322E+01
6 0.6907979E+01 7 0.1174637E+02.

1 ~0.1901274E+02
5 0.1426097E+02

2 -0.7626983E+01 3 0.1934106E+01 4 0.9194641E+01

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.):

50.000 -0.10761 -0.10305 -0.09923 -0.09632 -0.09430
80.000 -0.09547 -0.09369 ;0.09220 -0.09106 --0.09027

****fff*************************************************************************

Cla e . St

NUMBER OF THRESHOLD . . . m: . s i
TOTAL MOMENTUM. ey oo e RTI !
No -  CFS Yo " CFs No  CFS ° No  CFS

2 -0.1280380E+02 3°-0.7008617E+01 " 4 -0.2306121E+01
6 0.6169365E+01 7 *0.1017605E+02 8 0.1216642E+02

1 =0.1843995E+02
5 '0.2635611E+01
9 "0.1816104E+02

,

. P S v

RHO ~ VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): :
50.000  -0.10738 -0.10512 =-0.10280 ~-0.10092 -0.09895 -0.09753 =0.09593
 -0.09513 -0.09274 T
80.000  -0.09538 =-0.09450 -0.09360 '-0.09286 =-0.09209 =-0.09154 -0.09091
.-0.08966 .. i -

H -0.09060
T ) ST
sk e ok o KK SRR KRR K A R R AR ko e sk ok e e s sk ook s ok s e

b
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