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Ilpe.ncrnBJieHa nporpaMMa ASYMPT (FORTRAN 77) )lJUI BbitIHCJiemrn acnMn­

TOTHK TepMOB n a,ntta6aTHtieCKlIX noTeHUliaJIOB c TOllHOCTblO O ( p-2) B mnep­
ccpepHtieCKOM a,nna6aTIItiecKoM no.nxo.ne (HSA). IloKaJatto, tITO MaTpHtIHble sneMeH-

-2 Tbl SKBlIBaJieHTHOro onepaTopa, COOTBeTCTBYJOll(ero B03MymeHHIO p , lIMeJOT npo-
CTOH BH,[I. B 6aJHCe KYJIOHOBCKlIX napa60JIHlleCKlIX cpyHKUlIH BO BpamaJOmeiic51 
ClICTeMe KOOp.D.HHaT II JierKO BbllllICJl51IOTC51 ,[I.Jl51 60JibllllIX 3HatieHIIH IIOJIHOro 
op61ITaJibHOro MOMeHTa II HOMepa nopora. IlonpaBKII BToporo nop51.[1.Ka K a,n1Ia6a­
T1IlleCKIIM TepMaM nonyqeHbl KaK peIIIeHII51 COOTBeTCTBYJOll(ero ceKympHoro ypaB­
HeHII5!. AclIMIITOTIIKII IIOTeHUIIaJIOB MO)KHO IICIIOJib30BaTb ,[I.Jl51 BbllllICJieHII5! ypOBHeii 
SHepmlI II PaJJ.IIaJibHblX BOJIHOBbIX cpyHKUIIH .D.BYXSJieKTpOHHbIX CIICTeM B a,n1Ia6a­
T1ItieCKOM np1I6J11I)KeH1III II B MeTO,[l.e CB513aHHbIX KaHaJIOB HSA no.nxo.na. 

Pa6oTa BblIIOJIHeHa B Jla6opaTOp1I1I BbllllICJIIITeJibHOH TeXHIIKII II aBTOMaTII3aUIIII 
II Jla6oparnp1Itt TeopeTIItiecKoii cp1I31IKII 1IM.H.H.Eoron1060Ba OJUIH. 

ITpenpHHT Om,e)lHHeHHOro HHCTHryTa ll)lepHblX HCCJie)lOBaHHH. lly6Ha, 1997 
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A FORTRAN 77 program is presented which calculates asymptotics of potential 

curves and adiabatic potentials with an accuracy of O ( p - 2) in the framework 
of the hyperspherical adiabatic (HSA) approach. It is shown that matrix elements 

of the equivalent operator corresponding to the perturbation p-2 have a simple form 
in the basis of the Coulomb parabolic functions in the body-fixed frame and can be 
easily computed for high values of total orbital momentum and threshold number. 
The second-order corrections to the adiabatic curves are obtained as the solutions 
of the corresponding secular equation. The asymptotic potentials obtained can be 
used for the calculation of the energy levels and radial wave functions of two-electron 
systems in the adiabatic and coupled-channel approximations of the HSA approach. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation and at the Bogoliubov Laboratory of Theoretical 
Physics, JINR. 
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PROGRAM SUMMARY 

Title of program: ASYMPT 
Computer for which the program is designed and others on which it has been tested: 
Computers: SGI lndigo2, IBM RS/6000 Model 320H, Intel Pentium Pro200 PC; lnstalla: 
tion: Department of Chemistry, University of Toronto, Toronto, Canada 
Computers: DECstation 3000 ALPHA AXP Model 800, IBM RS/6000 Model :J2011; In­
stallation: Department of Chemical Physics, The Weizmann Institute of Science, Israel 
Computers: Sun-Elc, HP 715, Sgi-35D; Installation: Computing Center of the Weizmann 
Institute of Science, Israel · 
Operating systems under which the program has been tested: Digital Unix v1.0, AIX :J.2 . .'i, 
SunOs 4.1.3, HP/UX 9.01, lrix 6.1, MS-Windows 95, Linux 1.0.!l 
Programming language used: FORTRAN 77 · · · 
11-femory required to execute with typical data: depends on tlw maximum values of tot.al 
orbital momentum and threshold number considered. Test nm rcquin•s .'i28 KB 
No. of bits in a word: 64 
Peripherals used: line printer, scratch disc st.ore 
No. of lines in distribut,:d program, induding lr:sl data, <le: 1276 
External subprograms used: F02ABF [I], SPLINE and SEYAL [2] 
Keywords: atomic physics, two-electron systems, hypcrsplwrical coordinates, Schriiding,~r 
equation, adiabatic approach, potential curves, adiabatic potentials, perturbation theory, 
dipol<! asymptotics 

Nalnn: of phy.siml pmblcm 
The purpos<) of this pr;>grarn is to calrnlat.e asymptotics or hyp<'rsphcrica.l potential curves 
and adiabatic potentials with an ,11Turacy of O(p- 2

) within t lw hypc•rspherical a.diabatic 
approach [:!]. Tlw program finds also tlw 111atd1i11g points IH't wec!n the numerical and 
a.symptot ic adiabatic curv<'s within tlw givc·n affuracy. Tlw adialmt.ic potential a:symp­
tot ics can lw usPd for 1111' calnilation of till' ,~nergy levels and radial wave functions of 
doubly ,•xcit<-d statc•s of two c•)pctron systems in the adiabatic and coupled channel ap­
pr'oxii11a.t ions . 

. \/, !hod of.solulio11 
In ord,·r Io cor11p11t<' I lw asymptotics of hypersph1:rical pot,~ntial curves and adiabatic 
poll'nt ials with. an iln:uracy of O(p-2 ) it is necessary to solve the: corresponding secular 
c·quat ion <'iµ;;·nvahws of which give tlw sc~cond order correct.ions in the asymptotic ex­
pansions of potc•nt ial curves and effective potentials· in the powers of p- 1

. The matrix 
1·l1·1m·nts oft he c·quivalcnt op<)rator corresponding to t.hc perturbation p-2 are calculated 
in t lw basis of I he ( 'oulomb parabolic functions in the body·· fixed frame. The asyrnptotic:s 
of potential cun·c·s and adiabatic potentials arc calculated within an accuracy of Q(p-2 ) 

using the eigenvalues oft he corresponding secular equation. 

Restrictions on the complexity of the problem 
The computer memory requirements depend on: a)the maximum value of the total orbital 
momentum considered; and b) the number of maximum threshold required. Restrictions 
due to dimension sizes may be easily alleviated by altering PARAMETER statements 
(see Long Write-Up and listing for details). · 



Typical Running time . , . _ .. 
The test run which accompanies this paper took1 0:3 8 ~ri th~ DECstati~n 3000 Model 800. 

References · 

[1] NAGFortmn Libmry Manual, Mark 15 (The Numerical Algorithms Group Limited, 
Oxford, @1991). - ., · · 

[2] G. E. Forsythe, M.A. Malcolm, and C. B. Moler, Computer Methods for Mathematical 
Computations (Englewood Cliffs, Prentice Hall, New Jersey, 1977). 

[3] A. G. Abrashkevich, n: G. Abrashkevich, I. V. ·Puzynin, and S. I. Vinitsky, J. Phys. 
B 24 (1991) 1615. 

LONG WRITE-UP 

1 Introduction 

Theoretical studies of 'doubly excited states of atoms and ions over the past few decades 

have established that the existence and properties of these states owe much to the strong 

electron-electron correlations [1-3]. The properties of strongly correlated doubly excited 

states of two-electron systems are described in a most natural .;....ay within the hyperspher­

ical c.oordinate method [1-3]. The method takes advantage ofthe hyperspherical coor-
. . • ! l • • ; • ., ' 

dinates [1], i.e. a pair of collective variables p and a replacing the independent-electron 

radial coordinates r 1 and r 2 • In these. coordinates, the hyperradius p = Jr;+ r~ repre~ 

sents the overall "size" of the electron pair and the hyperangle a= tan- 1(r2/r
1

) repre~ents 
. •' 

relative distance of two electrons from the nucleus. In the most widely used adiabatic 

approximation, the hyperradius pis treated as an adiabatic parameter, analogous to the 

internuclear distance in the Born-OppenheiII).er approximation for molecules. In this ap­

proximation, the energies and ;ave. functions of doubly ,excited states are obtained as· the 

solutions of uncoupled radial equations for the corresponding adiabatic potentials [1-3]. 

This approach has played a prominent role in understanding the strong electron-electron 

correlations in two-electron systems [1-4], description of spectra of doubly excited state~ 

[l-13], and study of.one- and,multi-photon ionization of He and photodissociation of H-

[14-19]. 
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In papers [20, 21] programs designed tO' calculate potential curves and. matrix elements 

of radial coupling f?r two-electron atoms within the hyperspherical adiabatic approach 

have been presented. These potentials can be used for the calculation of the energy spec­

trum of the doubly excited states and also s~attering and photoionization cross sections 

using the adiabatic or coupled_-channel approximations. In order to reduce the compu­

tational expenses in obtaining accurate potential curves and wave functions· in the large 

p-region it is desirable to match numerical ;olutions at small p to asymptotic expansions 

at large p. Such asymptotic expansions for adiabatic potentials and wave functions for 

two-electron atoms have been proposed in [1,22-24] using basis sets constructed from La­

guerre polynomials and bipolar harmonics in space-fixed frame. Matrix elements of the 

corresponding potential operators expressed in terms of products of 3J- and 6J-symbols 

require summation of oscillating series and take a rather complicated form for large values 

of total momentum and threshold number [22-24] . 

Recently, a new method for the calculation of asymptotics of hyperspherical potential 

curves and adiabatic potentials with an accuracy of O(p--:2
) for a system of three distin­

guishable charged particles has been suggested {25, 26]. It allows to simplify significantly 

the calculation of matrix elements of potential operators using the basis constructed from 

linear combinations of the Coulomb parabolic functions in the rotating coordinate system. 

The extension of this approach onto the case of two-electron systems has been carried 

out in (27]. The adiabatic potentials calculated in the second-order approximation have 

been used [12, 13, 28] for calculation of the energy spectra of the doubly excited states of 
' ., •' 

He and H- in the adiabatic and coupled-channel approximations. 
. • \; 

· In the present paper we present a program to calculate asymptotics of hyperspherical 
\ . . •. '.' . ·i< •• 

potential curves and adiabati_c potentials with an accuracy of O(p-2 ) using the method 
~ ' ', i' ' l ' : • r 

developed in [25-27]. The second-order corl"ections to the potentials are ~btained as 

the solutions of the corresponding secular equation. The. program automatically finds 

matching points between numerical and asymptotic adiabatic cur~es with'the given accu­

racy. These asymptotics can be used for the _calculation of energy levels and radial wave 

functions of the doubly excited states of two-electron atoms. 

The paper is organized as follows. In section 2 we give a short description of the 
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method. A description of the ASYMPT program is given in Sectioii. 3. Subroutine units 

are briefly described iri Section 4. Test run is considered in Section 5. -

2 Method 

2.1 Hyperspherical adiabatic representation 

The Schriidinger equation for a two-electron atomic system with nuclear ,charge Z and 

total energy E, expressed in the hyperspherical coordinates 

p =Jr~+ r~ , a= tan-1h/rt), 

has the following form (h = c =me= 1): 

[ 
j)2 I • 

- ilp2 - 1~2 + h(p) ~ 2t:] \fl(p, H) "= o, 

where 

· I · 2 I h(p) = 2 A (!1) + -V(n, 012), 
p p 

·2 ;)2 If q 
A (!1) =--+--+--

i.Jn2 cos2 n sin2 n' 

and 

2Z 2Z 2 
V(n 012) = --- - --+ ,c===;==,===c;;== 

' cos n sin n JI - sin 'lo cos 012 

(1) 

(2) 

(3) 

( 1) 

(!i) 

In the abo;e, wave fu~ction W(p, H) is connected with the total two electron wave function 

ijJ by relation \fl(p,!1) = (p5l 2 sinacosa)1/,, n represents the fiv~ angles {n,i-1,i-2 }; l; is 

the ~perator of the ~rbital mmnent~m of the it,h electron, and 012 = cos- 1[(r1 · r 2)/r1r2]. 

The hyperspherical adiabatic (HSA) states { <I>µ(!1; p) }~1 are defined as the eigcnso­

lutions of the following equation 

h(p)<I>µ(!1; p) = Uµ(p)<I>µ(!1; p). (6) 

Eq. (6) must be solved for each value of parameter p to obtain the hyperspherical potential 

Uµ(p). The methods of computation of the five-dimensional channel functions <1>µ(!1;p) 

have been discussed in our previous papers [20, 21]. For large values of p the RSA 

functions take on the form of the hydrogenic wave functions perturbed by a distant charged 
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particle., For p close to the origin the RSA states resemble the hyperspherical harmonics 

(K-harmonics,(2; 3]), defined as the eigenfunctions of A.2(!1), the generalized angular 

momentum operator. 

Treating 'p as a slowly varying adiabatic parameter, w(p, !1) can be expressed in the 

close-coupling expansion by a set of N adiabatic channel functions { <I> "(!1; p )}:=1 at each 

pas 

N. 

w(p, n) = L Fµ(p)<I>"(n; p). (7) 
µ=I 

Substitution of expansion (7) into Eq. (2) and averaging ovc\r the basis functions <I>µ(!1;p) 

lead to a system of N coupled ordinary differential equation~ for cxp~~sion coeffi~ients 

F,,(p), which can be written in t~e explicitly_Hermitian form as 

(- ;
2 

+ V,,µ(p)-2E) 1'~,(p) + t V,w(p)J,~(p) ~ 0, (11 = 1,2, ... ,N), (8) 

v..f.µ 

where 

I d ,l 
V,w(P) = --

1 2
8,w + U,,(p)fi,w + -d Q,w(P) + Q,,v(p)-1 + 11,w(P), 

p p cp . 
(9) 

Q,w(P) = -Qv,,(p) = -( <1>,,(n; p)I ;~ <Pv(H; p)), ( 10) 

. Id I d ) 11,w(P) = flv,,(p) = \ dp <l>,,(n; p) dp <Pv(n; p) · (11) 

2.2 Asymptotics of adiabatic potential curves at p---+ oo 

As show~ in [27], the general classification of-states of a two-electron system in the USA 

representation can he uniquely built in the molecular coordinate system. The transforma:· 

tion of the two -dectron wave function, wLM,r (r 1, r2 ), given in the space-fixed coordinate 

system XYZ with the fixed axis Z, into the molecular system xyz with the axis z directed 

along the vector r2 , has the following form [27]: 

L 

wLM,r(r1,r2) = L w;;."(p,a,B12)D~i.,(<I>,0,</>), (12) 

µ=(l-<7)/2 
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where W~,"" (p, a, 012) is the wave function in the molecular co .. ordinate system ex = ee, ey = 

e4>, e 2 = er2 in the total-momentum representation L, D;;.1t(if>;0,,p) is a symmetrized 

Wigner D-function [29], m and Mare the eigenvalues of the projections L 2 and ,Lz of 

the total orbital momentum operator L = h + l2 onto the molecular z and fixed Z axes, 

1r = (__;1) 11 +12 = u(-l)L and.er= ±1 are the eigenvalues of the operator.of total parity 

Ptot (r1 -+ -r1, r2-+ -r2) and reflection Pyz in the yz plane of the mo!ecular coordinate 

system: </;-+ 1r - </; (for details, see [27]), and l; is the orbital momentum operator of the 

ith electron. 

Consider now .asymptotic solutions for a separated atom with charge Z and electron 

1 in thefield of the distant electron 2, omitting all intermediate computations that can 

be found in papers [25-27] .. The potential curves and, solutions of the hyperspherical 

eigenvalue problem (6) are expanded in a series over inverse powers of p: 

Uµ(p) = uJo) + uJl)p-1 + u2)p-2 + O(p-3), (13) 

if>µ{f!as; p) = g,~O)(f!as) + g,~l)(f!as)P-l + O(p-2), (14) 

where u~0
) = -Z2 /n2, u~1

) = -2(Z - 1) arid i!>).°1(f!as) are, respectively, the zeroth 

and first-order energy corrections and wave function of the zeroth approximation of the 

hydrogen-like atom with a fixed principal quantum number n, and Das is the corresponding 

set of angular variables (see [26, 27]). To construct the correct functions of the zero-order 

approximation it is necessary [25-27] to take account of terms ~ p-2 in the expansion of 

the surface adiabatic Hamiltonian (3) which remove the Coulomb degeneration in a layer 

of parabolic states ln1n2m} with~ fixed priricipalquantum number n = n1 + n2+ m + 1, 

m = 1ml. An equivalent operator corresponding to th.e p-2, perturbation has th,e following 

form [27]: 

A<0
) = :_:_3i-A; + ~(12 - n 2)+ (L-1)2, . ' (15) 

where A 2 is the z projection of the Runge-Lentz vect~r, I= 11 is the operator pf_ e!ectron 

orbital momentum, and (L -1)2 = L2 + 12 -· 21 · L. Here, 21 • L = l+L- +LL+.+ 2L; is 

the operator of Coriolis interaction, and L± and 1± are spherical components (r'.iising and 

lowering operators) of Land I. Eigenvalues and eigenfunctions of the equivalent operator 

.6 
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A (a) represent, respectively, the desired corrections U~2
) in the expansion (13) and correct 

functions of the zeroth approximation (27]: 

min(L,n-1) n-m-1 
if>~0l(f!as) = L L a!;,!,.<pn1n2m(s, l)D~M(if>, 0, </;). (16) 

m=(l-u)/2 n2=0 

Here, 'Pn,n2m(s,t) are Coulomb parabolic functions, s = r1 + z, t = r1 - z, of the form 

[30]: 

'Pn1n2m(s,f) = Cn,n2m'Pn,m(s)<pn2m(l), 

Cn,n2m = 2112{n1!((n1 + lml)!]-1n2![(n2 + lml)!]-1}112, 

(17) 

(18) 

( ·) _ [( . I l)']-1 lml/2 (-~ ·) Llml ( ·) . _ · _ 1 2 ( 9) 'Pn,m u3 - n3 + m . uj exp 
2 

u3 n,+lml u3 , u3 - s, t, J - , , 1 

where L~:tlml(ui) are the Laguerre polynomials. The energy corrections uJ2) and coeffi­

cients a~~ can be found from the secular equation 

min(L,n-1) n-m-1 
L L [ ( n1n2mLM1r IA(o)I n~n;m1LM1r )- u2)8n2n;Dmm'] a~~,= 0. (20) 

m'=(l-u)/2 n;=o · 
In the above, states are characterized by the set of quantum numbers {LM'unq}, where 

q=q(n2, m) enumerates the roots U~2
) as they increase in the secular equation (20) at 

fixed LMun. When L 2:'. n-1, the number of roots of Eq. (20) equals n2, and n(n+l)/2 

of them have the parity 1r = +(-ll, whereas n(n -1)/2, the parity 1r = -(-l)L. The 

latter are degenerated with the states of opposite parity. Thus, there are n(n + 1)/2 

nondegenerate roots of Eq. (20) at fixed LMn (the standard (2L + 1)-fold degeneracy 

still takes place). Solving the secular equation (20), we obtain the following expression 

for potential curves: 

Uµ(p) = _ Z2 _ 2(Z - 1) uJ2J 
n2 p + 7• (21) 

The similar expression can be obtained [27] for the adiabatic effective potentials Vµµ(p): 

V. ( ) = _ Z2 _ 2( Z - 1) VJ;l ( 2) µµ p 2 -'----'- + 2 , 2 
n p p 

where vJ;l are the eigenvalues of the correspondiO:g secular equation for equivalent oper­

ator 

• n 
A= -3ZAz + (L - 1)2, (23) 
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which corresponds to the dipole integral of motion [31]. Matrix elements of equivalent 

operators A<0
l and A are defined on functions (16) by simple relations [26, 32]: 

(n1n2mLM7rlAzln;n;m'LM7r) = (n2 - n1)0n
2
n20mm', 

(n1n2mli\hlL
2 

-2L;Jn;n;m'LM7r) = [L(L + 1)-2m2]5~
2
n,omm', 

(n1n2mLM7rll2ln;n~m' LM7r) Omm•{ ~ [n2 
- 1 + m

2 
- (n1 - n2)2] On

2
n2 

J(n2 + l)n1(n1 + m)(n2 + m + l)on'n2+1 
' 2 

) 
J(n1 + l)n2(n2 + m)(n1 + m + l)on,n,-t f, 

(n1n2mLM7rJl+LJn1n2 + Im- 1LM7r) = ✓(n2 + l)(n; + m)"y~"m-t, 

(n1n2mLAhll+Lln1 + ln2m - ILM1r) = -J(n1 + l)(n2 + m)"y~~m-t, 

(n1n2mLM7rlLL+Jn,n2 - Im+ ILM1r) = Jn2(n, + m + 1)-y~~m+t, 

. (n1n2m/,AhlLL+Jn 1 - ln2m +IL.Ah)= -Jn,(n2 + m + l),~~m+1' 

/~~m-·I =[I+ (h- l)o,,.i]J(l, - rn + l)(L + rn), 

'Y~~m+t =[I+ (\h- l)hmu]J(/, + m + 1)(/, - m), 

L1r L1r L1r O f 'Yo,0_=10,1=11,o= or <l=-1. 

It is evident that these matrix elements have an extremely simple form and can hf' 

computed for very high values of the total momentum L and threshold number n without 

any problem. In Tables 1 and 2 we compare potential curves calculated numerically and 

computed according formula (21) for S and P states of He and H- for three values of p: 

40, 60 and 80 a.u. It is evident that these results agree very well. For instance, the five 

significant digits are obtained for 1 P0 potential curves converging to the n = 2 threshold 

of He+ ion. 
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Table 1: Comparison of the numerical potential curves Uµ(p) with the asymptotic ones, 
U:;_"(p), computed using formula ( 46) for 1se· and 1 P_0 states of He at p = 40, 60 and 80 
a.u. 

State Channel p = 40 a.u. p = 60 a.u. p = 80 a.u. 
28+11" number,µ -U,,,(p) -U:;_"(p) -Uµ(p) -U;-'(p) -IU ni "J'-\rJ 

-Uas(p) 

1 2.02510 2.02516 .2.01664 2.01671 2.012-11 2.0125.-J 
2 0.52627 0.52620 0.51721 0.51720 0.51280 0.51280 

t5e 3 0.52413 0.52411 0.51627 0.51627 0.!il228 0.!il228 
4 0.25103 0.25073 0.24052 0.21015 0.2:l!iG2 0.2:l!iG0 
5 0.24735 0.24693 0.23888 0.2:1876 0.2:1110 o.2:116!i 

6 0.24436 0.24447 0.2376·1 0.2:l76G 0.23103 0.2:110:1 

2.02447 2.02453 2.016:1.G 2.0IM6 2.01225 2.012:rn 
lpo 2 0.52588 0.52582 0.!il70.-J 0.!il70:I 0 . .'il271 0 .. 11211 

3 0.52-190 0.52-182 0.!il6GI 0.!il6!i!J 0.!il216 0.!il216 
.-J 0..'i2:II:I 0.52:II l 0 . .'il.'i8:I 0 .. 'il.'i82 0.,'il20:I 0.,5120:1 

Table 2: Comparison of the 1111111<·ric-al pot.<'nt ial <·11n·es U,,(p) wit.h the asymptotic ones, 
1 r;~'(p ), rnmp111<-d 11si11g forr1111la (-Hi) for I S' and I I'" ·st atc•s of 11- at. p = 10, 60 and 80 
a.11. 

Stat<' (lha1111C'I fl= -IO a.11. fl= fi() ii.II. p = 80 a.u. 
l.'i+IJ,< IIIIIJllH'r. /I -l',,(p) -{:~'(p) -l',,(fl) -11',c'(fl) -U,,(p) -U,';"(p) 

0.:i00l:i 0.:i0016 ll.:i0006 0.:i0007 0..'i0002 0.50004 

2 0.1270!) 0.12709 0.12:i92 0.12,59:1 0.12552 0.12552 

'S' :1 0.12:IO!J 0.12:122 0.12•117 0.12121 0.12154 0.12456 

I 0.06201 0.06178 0.0:i823 0.0.5832 0.05705 0.05711 
:) 0.0:i6l-1 0.0,'i,511 0.0.'j.'j.59 0.0.'i-537 0.05553 0.05545 
(i 0.01882 0.0,5022 0.0.5273 0.05318 0.05403 0.05422 

0.19%2 0.1995:1 0.19978 0.19979 0.49987 0.49988 
'P" 2 0.12662 0.12663 0.12,572 0.12572 0.12540 0.12541 

:1 0.12·181 0.12471 0.12491 0.12489 0.12495 0.12494 
1 0.1222,'i 0.12238 0.12380 0.12384 0.12433 0.12435 
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3 Description of the program 

Fig. 1 presents a flow diagram for the ASYMPT program. The function of each subrou­

tine is described in Section 4. The ASYMPT program is called from the main routine 

(supplied by a user) which sets dimensions of the arrays and is responsible for the input 

data. In the present code each array declarator is written in terms of the symbolic names 

of constants. These constants are defined ii! the following PARAMETER statement in 

the main routine: 

PARAMETER (MTOT=l000,MITOT=500) 

where MTOT and MITOT are the dimensions of the working DOUBLE PRECISION 

array TOT and INTEGER array ITOT, respectively. In order to change the dimensions 

of the code all one has to do is to modify the single PARAMETER statement defined 

above in the main program unit. 

The calling sequence for the subroutine ASYMPT is: 

CALL ASYMPT (TITLE, CHARGE, LMIN, LMAX, LSTEP, NTHRMN, NTHRMX, 
RMIN, RMAX, RSTEP, EPS, IASPOT, !CURVE, !UNITS, ID­
FLAG, NPCMAX, NPTMAX, !PRINT, FNOUT, IOUT, FNPOT, 
!POT, FNASP, IASP, F-NPLT, IPLT, !CFS, TOT, MTOT, ITOT, 
MITOT) 

where the arguments have the following type and meaning: 

Input data 

TITLE ·CHARACTER 

CHARGE REAL *8 
LMIN ,: . 'INTEGER 
LMAX INTEGER 
LSTEP '· INTEGER 

title of the run to be printed on the output listing. The 
,title should be no longer than 70 characters. 
nuclear charge. · 
minimum value of the total orbital momentum. 
maximum value of the total orbital momentum. 
step in total orbital momentum with which the compu­
tation is carried out. 
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NTHRMN 
NTHRMX 
RMIN 
RMAX 
RSTEP 

EPS 

IASPOT 

ICURVE 

!UNITS 

INTEGER 
INTEGER 
REAL*S 
REAL*S 
REAL*S 

REAL*S 

INTEGER 

minimum threshold number. 
maximum threshold number. 
minimum value of the hyperradius p. 
maximum value of the hyperradius p. 
step with which asymptotics of potential curves or adia­
batic potentials are calculated and printed out. 
desired accuracy with which matching points between nu­
merical and asymptotic (given by Eqs. (21) and (22)) 
curves are determined. It is used only if IASPOT = 2. 
'flag specifying the mode of operation: 
= 0 - potential curves are read from the file FNPOT and 
the message about the number of records in the file and the 
last hyperradial point calculated is printed out. This mode 
is usually used dur;ng the computation of potential curves 
and radial matrix elements by the HSATOM and HSTERM _ 
programs (20, 21] to control the number of records written 
and to display the last hyperradial point calculated. If 
IPLT>0, numerical curves read from file FNPOT are writ­
ten irito file FNPLT; 
= I - asymptotics of potential curves and adiabatic po­
tentials are computed using expressions (21) and (22), re­
spectively, for a given set of hyperraiiial points from the 
interval [RMIN, RMAX] with step RSTEP. If IPLT > 0, 
the results of the calculation are written into file FNPLT 
(note that this option should be; used here only if LMIN = 
LMAX and NTIIRMN = NTIIRMX, otherwise put IPI:r 
= O); , , , 
= 2 sccoll(l ,order (dipole), 

0

corrcctions U
1
\
1 l or V,)~l are 

calc11laicd and stored into trmporary file [CFS. Numerical 
potrntial rnrws U,,(p) or V,,,,(p) arc read from file FNPOT 
and interpolatc·d using the cubic spline interpolation on 
the given interval, [RMIN ,RMAX] ,with step RSTEI'. The 
corresponding asymptotic curves are c~lculat.ed using Eq. 
(21) or Eq. (22) on the same grid and compared with the 
numerical ones to determine with the given accuracy EPS 
matching points between these curves. The values of LMIN 
and LMAX should be, the same for the given value of flag 
IASPOT. 

INTEGER flag ,specifying either potential curves or adiabatic pot en-. 
tials required: 
= 0 - asymptotics of adiabatic potentials Vµµ(p) are calcu­
lated; 
= 1 - asymptotics of potential curves Uµ(p) are calculated. 

INTEGER flag for specifying the units of measure: 
= 0 - the results will be given in atomic units; 
= 1 - the results will be given in Rydbergs. 
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ij 

:1 

l 
l 
'I l 

' I
' 
' 

IDFLAG 

NPCMAX 

NPTMAX 

IPRINT 

FNOUT 

!OUT 

FNl'OT 

Il'OT' 

FNASI' 

!ASP 
,'f/~:" . 

FNPLT 

)!,·_y 

INTEGER 

INTEGER 

INTEGER 

INTEGER 

CHARACTER 

INTEGER 

CIIARACTEH 

INTEGER 

CIIARACTEH 

INTEGER 

CHARACTER 

IPLT 

ICFS 
TOT 

INTEGER 

" . < .INTEGER 
, , INTEGER 

flag indicating the order in which roots of a secular equation 
are arranged: 
= 0 - roots a~e stored without ordering; 
= 1 - roots are stored in the ascending order. 
maximum number of potential curves written into file FN­
POT. It is used (if IASPOT = 0 or 2) for setting dimensions 
of arrays to be used for storing numerical potential curves 
and· corresponding matrix elements of radial coupling. 
maximum_ number of hyperradial points to be read from 
file FNP_OT. It is used (if IASPOT = 0 or 2) to set dimen­
sions of arrays to be used for performing the cubic spline 
interpolation of potential curves and effective potentials. 
level of print: 
= 0 - minimal level of print. The second order corrections 
and the values of asymptotic curves on a given hyperradial 
grid are printed out. If IASl'OT=2, the matching points 
between the numerical and asymptotic curves are printed 
out; 
= 1 - extended level oi print. Interaction potential and 
mask matrices are printed out additionally. 
name of the output file (up to 55 characters) for printing 
out the results of the calculation. It. is system specific and 
may include a complete path to the file location. 
number of the output logical device for printing out the 
results of the) calculation ( usually set to 7). 
narrie of the input. file ( up· to 55 characters) containing po­
tential curves and matrix elements of radial coupling calcu­
late<!'and stored by the IISATOM and IISTERM programs 
[20, 21]. It is used only if IASl'OT=0 or 2. 
uumber of the logical device for reading data from file 
FNl'OT. 
uame of thei output file (up-to 55 characters) for storing 
the second-order corrections (the eigenvalues of the cor­
responding equivalent operator) and matching points be­
tween the relevant numerical and asymptotic curves. It is 
used only if JASI>'::, 0 and IASPOT=2. ' 
number of the logical device for storing data into file 
FNASP. 
name of the output file (up to 55 characters) for stor­
ing potential curves and adiabatic potentials (maximum 
50 curves)_ in :order -to plot them 1<!-tely .using an available 
graphical package. It is used only if IPLT > 0. 
number of the logical -device for storing data into file 
FNPLT. 
scratch working file. 
working vector of the DOUBLE PRECISION type. 
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MTOT 

ITOT 
MITOT 

INTEGER dimension of the DOUBLE PRECISION array ITOT. The 
last address !LAST of array TOT is calculated and then com­
pared with the given value of MTOT. If !LAST> MTOT the 
message about an error is printed and the execution of the 
program is aborted. In the last case, in order to carry out the 
required calculation it is necessary to increase the dimension 
MTOT of array TOT t~ the quantity !LAST taken from the 
message. 

INTEGER working vector of the INTEGER type. 
INTEGER dimension of the INTEGER working array ITOT. The last 

address !LAST of array ITOT is calculated and then com­
pared with the given value of MITOT. If ILAST > MITOT 
the message about an error is printed and the execution of the 
program is aborted. In the last case, in order to carry <>tt the 
required calculation it is necessary to increase the dimension 
MITOT of array ITOT to the quantity ILAST taken from the 
message. 

Output data 

The results of the calculation of the second-order corrections ut2
> and vJ;> ( eigenvalues 

of the equivalent operators (15) and (23), respectively) and matching points between the 

numerical and asymptotic curves with the accuracy EPS are written using unformatted 

segmented records into file FNASP according to the following operator: 

WRITE (!ASP) CHARGE,NROOT,(NTHRESH(I),RHOAS(I),CFAS(I),I=1,NROOT) 

In the above, parameters presented in the WRITE statement have the following meaning: 

• CHARGE is the nuclear charge of a system. 

• NROOT is the number of roots of the corresponding secular equation for a fixed 

value of principal quantum number _n. 

• array NTHRESH contains threshold numbers to.which the corresponding curves are 

converged. 

• array RHOAS contains the values of matching points at which the numerical curves 

are joined with the asymptotic ones. 

• array CFAS contains the values of the second order corrections ut2
l or vJ;> acco~ding 

to the given value of flag !CURVE. 
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Using the data stored in the file FNASP one can easily construct required asymptotic 

· curves using expressions (21) and (22) for large values of p. The output data saved in the 

file FNASP is used as the input data in the HSATOM and HSTERM programs [20, 21] 

designed for the calculation of the energy levels and radial wave functions in the adiabatic 

and coupled-channel approximations. 

If IPLT > 0, potential curves are written into the file FNPLT for each hyperradial 

point p according to the operator: 

WRITE (IPLT,1000) RHO,(CURVES(I),I=1,NCURVES) 

where 1000 is the label of the Fortran FORMAT operator: FORMAT(50(E14.6)). In the 

above, parameters presented in the WRITE statement have the following meaning: 

4 

• RHO is the value of hyperradius p. 

• NCURVES is the number of curves to pl_ot (maximum 50_ curves). 

• array CURVES contains potential curves (if !CURVE = 1) or adiabatic potentials 
' ··~- ! ' • I, • 

(if !CURVE= 0). If IASPOT = 1, array CURVES will contain asymptotic curves 

computed using Eqs. (21) or (22) for a set of hyperradial points from the given inter­

val [RMIN·,RMAX] with step RSTEP. If IASPOT = 0, it will contain the numerical 

potentials taken from file FNPOT as they were originally stored there. 

D~~cription of subprogram ·units 

A flow diagram for the ASYMPT program i~ presented in Fig. 1. The function of each 

subroutine is briefly described below. Additional details may be found in COMMENT 

cards within the program. 

• Subroutine ASCFS controls the calculation of asymptotics of potential curves and 
' ''' . ' ' : ' ' ' . / 

adiabatic potentials for a fixed _value of principal quantum number n. It sets the 

. :values of. some flags and keys, determines sizes ?f working arrays, and prepares_ initial 

datafor the ASMATR program. 

• Subroutine ASMATR calculates matrix elements of equivalent operator correspond­

ing to p-2 perturbation in the basis of Coulomb parabolic functions, finds the roots 
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of the corresponding secular equation for this operator, and calculates asymptotics 

of potential curves and adiabatic potentials for the given set of hyperradial points. 

• Subroutine ASPOT reads potential curves and radial matrix elements stored in the 

file FNPOT by the programs HSATOM and HSTERM [20, 21), calculates asymp­

totics of potential curves and adiabatic potentials using expressions (21) and (22), 

respectively, compares them with the numerical ones, and finds matching points 

between these curves with the given accuracy EPS. 

• DOUBLE PRECISION function DELTAF calculates Kroneker's delta-symbol li;i-

• DOUBLE PRECISION funcJ,ion GAMJM calculates the ,~~m±t factor for the given 

values of total orbit.al momentum L and its projection m on the z axis. 

• Subrout.in<' .JACOBI) finds the eigenvalues and eigenvectors of a symmetric NxN 

matrix ston·d in a compact. form without arranging the roots. 

• DOUBLE PHECISION fnuct.ici'n SEYAL [:!:I] c·valuat.,~s the cubic spline function for 

a giv,:11 valm· of x. 

• Subrout.in,, SL!\1ATR calculates matrix c:l<'nwuts of equivalent. opera.tor correspond­

ing t.o p-2 pert.urbatio11 for a giv<'ll sPt of parabolic q11a11t.11m 11urnb<'rs. 

• Subrout.irw SPLINE [:1:1] calndat,·s rn,:tfici,·111 s for t lw rnbic iut,•rpolat i11g spliue. 

• Subroutine F01ABF from tlw :\TA(; Fortra11 program library is cksnilH'd in [:ii]. 

5 Test deck 

The ASYMPT program has been extensively used for the cairn lat io11 of erwrgy values of 

the doubly excited states [12, 13, 28, 35] and also one-photon ionization [18, ·l!J] of Ile 

and H-. 

The test run which accompanies the ASYMPT program is designed to compute the 

roots of the secular equation (20). These eigenvalues are used for the calculation of the 

asymptotic curves for Sand P states of He up to then = 5 threshold for two values of hy­

perradius p = 50 and 80 a.u. Below we list the values of the numerical parameters and flags 
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used in the test run: CHARGE=2.D0, LMIN=0, LMAX=l, LSTEP=l, NTHRMN=l, 

NTHRMX=4, RMIN=50.D0, RMAX=80.D0, RSTEP=30.D0, EPS=0.D0, NPCMAX=l, 

NPTMAX=l, IASPOT=l, ICURVE=l, IUNITS=0, IDFLAG=l, IPRINT=0; IPOT=0, 

IASP=0, IPLT=0, ICFS=15. The results of the calculation-with these parameters are 

presented below in the TEST RUN OUTPUT section. This test run requires 0.3 s on the 

DECstation 3000 Model 800. 

The ASYMPT program has been tested on different models of computers and operat-
. : . . 

ing systems (see Program Summary) and each time the same results have been obtained. 

The program c~~ 'also run on small computers like PC DX-386/186/Pentium under MS­

DOS, MS-Windows or Linux (free UNIX-like ~peration sys~ern for PC).''· 
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Test run output 

PROBLEM: Asymptotic potential curves for Sand P states of He 

******** 

ASYMPTOTICS OF POTENTIAL CURVES AT LARGE RH□" 

CNUCLEAR CHARGE z (CHARGE): 
FLAG FOR SORTING (1) OR NOT (0) THE ROOTS. (IDFLAG): 

2.0 

1 

******************************************************************************* 

NUMBER OF THRESHOLD 
TOTAL MOMENTUM. 

No CFS 
1 -0.2500000E+00 

No 

(N): 

(L): 

CFS 

1 

0 

No CFS No 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

19 

CFS 



!i 

50.000 

80.000 

-2.02010 

-2.01254 

******************************************************************************** 

llUMBER OF THRESHOLD 
TOTAL MOMENTUM ... 

No CFS No 
1 0.7500000E+OO 

(N): 

(L): 

CFS 

1 

1 

No CFS No 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

50.000 

80.000 

-2.01970 

-2.01238 

CFS 

******************************************************************************** 

NUMBER OF THRESHOLD 
TOTAL MOMENTUM ... 

(N): 

(L): 

2 

0 

No CFS No CFS No 
1 -0.1927051E+01 2 0,1427051E+01 

CFS No 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

50.000 

80.000 

-0.52077 

-0.51280 

-0.51943 

-0.51228 

CFS 

i 

******************************************************************************** 

NUMBER OF THRESHOLD 
TOTAL MOMENTUM ... 

(N): 

(I:): 

2 

1 

20 

No CFS No CFS - No CFS " No · •, CFS 
1 -0.1314297E+01 2 0.2823139E+OO 3 0.3031983E+01 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in aiu.): 

----------------------------------------------
50.000 

80.000 

-0.52053 -0.51989 -0.51879 

-0.51271 -0.51246 .· -0.51203 · 

**************************************************************************** 

NUMBER OF THRESHOLD 
TOTAL MOMElffUM. 

(N): 

(L): 

3, 

Q;-

No CFS · ~lo <::FS No · , -,CFS·· - , .. No .. · .• CFS ... 
1 -0.5617225E+01 2 0.4601214E+OO 3 0.4407104E+01 

RHO VALUES OF THE ASYMPTOTIC .POTENTIAL CURVES (in_ a.u:): 

50.000 

· 80 .000 

-0.24447 -0.24204 -0.24046 

-0. 23560 -0. 23465. - -0. 23403 · 

**************************************************************************** 

NUMBER OF THRESHOLD 
TOTAL MOMENTUM> 

. (N): 

. : (L), 

3 

1 

No CFS No CFS No 
3 

CFS No CFS 
. 1 --0. 5029787E+O 1 

5 0.6702668E+01 

·.2 -0.2041039E+01 0 .1173774E+01 4-- 0.2944384E+01 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u,): 

50.000 

80.000 

----------------------------------------------
-0.24423 -0.24304 -0.24175 -0:24104 ~0.23954 

-0.23551 ' -0.23504 -0.23454 -0.23426 -0.23367 
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******************************************************************************** 

NUMBER OF THRESHOLD 

TOTAL MOMENTUM. 

No CFS No 

(N): 

(L): 

CFS 

4 

0 

No CFS Uo CFS 

1 -0.1131404E+02 2 -0.2561380E+01 3 0.4196759E+01 4 0.8678658E+01 

RHO 

50.000 

80.000 

VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

---------------------------------------------------
-0.14953 -0.14602 -0.14332 -0.14153 

-0.13927 -0.13790 -0.13684 -0.13614 

******************************************************************************** 

NUMBER OF THRESHOLD (N): 4 

TOTAL MOMENTUM. (L): 1 

No CFS Uo CFS No CFS No CFS 

1 -0.1073614E+02 2 -0.6415713E+01 3 -0.1917310E+01 4 0.1387322E+01 

5 0.5027490E+01 6 0.6907979E+01 7 0.1174637E+02 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

-------------------------------------------
50.000 

80.000 

-0.14929 -0.14757 -0.14577 -0.14445 -0.14299 _-0.14224::;-0.14030 

-0.13918 -0.13850 -0.13780 -0.13728 -0.13671 -0.13642 -0.13566 

************************************~******************************************* 

NUMBER OF THRESHOLD 

TOTAL MOMENTUM. 

No CFS No 

(N): 

(L): 

CFS 

5 

0 

22 

No CFS No CFS 

1 -0.1901274E+02 

5 0.1426097E+02 
2 -0.7626983E+01 3 0.1934106E+01 4 0.9194641E+01 

RHO VALUES OF THE ASYMPTOTIC POTENTIAL CURVES (in a.u.): 

50.000 

80.000 
-0.10761 -0.10305 -0.099~3 -0.09632 -0.09430 

-0.09547 -0.09369 -0.09220 -0.09106 -0.09027 

******************************************************************************** 

NUMBER OF THRESHOLD 

TOTAL MOMENTUM. 

No CFS· 

1 ~0.1843995E+02 

5 '0.2635611E+01 

9 0.1816104E+02 

No 

. (N): 

.• (L): 

CFS 

5 

1 

2 -0.1280380E+02 

6 0.6169365E+01 

No CFS 

3·-0.7008617E+01 

7 0.1017605E+02 

Uo CFS 

4 -0.2306121E+01 

· 8 0. 1216642E+02 

RHO VALUES OF THE ASYMPTOTlC POTENTIAL CURVES (in a.~.): 

50.000 -0.10738 -0.10512 -0.10280 -0.10092 -0.09895 -0.09753 -0.09593 
-0.09513 -0.09274 

80,000 -0.09538 -0.09450 -0.09360 -0.09286 c..o.09209 -0.09154 -0.09091 
-0.09060 -0.08966 

***.**.***********************************************************.**************** 
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