COOБЩЕНИЯ 0БЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ
 Дубна

E11-97-301
M.Pavluš*

A PARTICULAR INVERSE PROBLEM FOR SCHRÖDINGER DISCRETE EQUATION IN TWO AND HIGHER DIMENSIONS UNDER APRIORI INFORMATION OF WAVE FUNCTIONS

[^0]Определяются все значения потенииала и остальные значения волновых функций в области параллелепипеда, если весь спектральный набор задан вместе с априорной информацией о волновых функциях на одной боковой стенке параллелепипеда Дана формулировка частичной обратной задачи дия дискретного уравнения Шредингера в двумерном и многомерном случаях, а также выведены новые формулы для решения задачи. Приведены два примера для двумериой и один пример для трехмерной задачи.

Работа выполнена в Лаборатории вычислительной техники и автоматизации Оияи.

Сообщение Объединенного ияститута ядерных исследований Дубна, 1997

Pavluš M.
E11-97.301
A Particular Inverse Problem for Schrödinger Discrete Equation in Two and Higher Dimensions under Apriori Information of Wave Functions

The entire potential and the rest of wave functions are determined in parallelepiped domain if the entire discrete spectrum and the apriori information about the wave functions on one side of parallelepiped are given. Formulation for solving the Shrödinger discrete equation in two and higher dimensions is proposed and new formulas are derived for their solution. Two examples for a 2 D case and one example for a 3D case are demonstrated.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

1 INTRODUCTION

In general, the inverse problem for Schrödinger equation is to find all potential values and wave functions if spectral parameters are given. The uniqueness of the continuous inverse problem was studied in [1]. Then it was developed in [2] and in number of other works.

The problem was studied, developed and applied especially in its discrete form to 1D case. A good review of the works is done in [3]. We briefly remind the 1D problem given in [3]. Let us consider the Schrödinger discrete equation (SDE)

$$
\begin{gather*}
-\frac{\Psi_{i-1}(\lambda)-2 \Psi_{i}(\lambda)+\Psi_{i+1}(\lambda)}{\Delta^{2}}+V_{i} \Psi_{i}(\lambda)=E_{\lambda} \Psi_{i}(\lambda) \tag{1}\\
\Psi_{0}(\lambda)=0, \quad \Psi_{L+1}(\lambda)=0 \tag{2}
\end{gather*}
$$

where Δ is a positive equidistant step and $\lambda=1,2, \ldots, L$. If eigenvalues E_{λ} and also first components of eigenvectors

$$
\begin{equation*}
\Psi_{1}(\lambda) \tag{3}
\end{equation*}
$$

are given for all $\lambda=1,2, \ldots, L$ then according to [3] the potential values

$$
\begin{equation*}
V_{i}=-\frac{2}{\Delta^{2}}+\Delta \sum_{\lambda=1}^{L} E_{\lambda}\left[\Psi_{i}(\lambda)\right]^{2} \tag{4}
\end{equation*}
$$

and eigenvectors

$$
\begin{equation*}
\Psi_{i+1}(\lambda)=\left[\Delta^{2}\left(V_{i}-E_{\lambda}\right)+2\right] \Psi_{i}(\lambda)-\Psi_{i-1}(\lambda) \tag{5}
\end{equation*}
$$

can be determined sequentially for $i=1,2, \ldots, L$ and $\lambda=1,2, \ldots, L$. We can see the problem (1)-(3) is not a full inverse problem for SDE because apriori information - the potential values (3) must be given. Hence, the existence of the solution of the problem (1) - (3) is tied together with the existence of the solution of the direct problem (1) - (2) because of the apriori information.

At present, perhaps the closest solution to the solution of the inverse problem for 1D SDE is the solution given in [4]. There the 3 -diagonal symmetric matrix \tilde{D} is determined

$$
\tilde{D}=\left[\begin{array}{cccccc}
2+x_{1} & -1+u_{1} & 0 & \ldots & 0 & 0 \\
-1+u_{1} & 2+x_{2} & -1+u_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1+u_{L-1} & 2+x_{L}
\end{array}\right]
$$

that fulfills the equation $\tilde{D} \vec{\Psi}(\lambda)=E_{\lambda} \vec{\Psi}(\lambda)$ for arbitrary $E_{\lambda}: E_{1}<E_{2}<\ldots<$ E_{L}. Two cases are studied. The first case, the first components of eigenvectors (3) are given. The second case, the symmetrical wave functions are supposed. If solutions $u_{1}=u_{2}=\ldots=u_{L-1}=0$, one can get a solution of the inverse problem for SDE in 1D case. However, conditions $u_{1}=u_{2}=\ldots=u_{L-1}=0$ are not guaranteed.
The same method of "perturbation matrix" was used in [5] for the solution of the inverse problem of the discrete Dirac system.

The main goal of this work is to derive the formulas analogous to (4) - (5) that give solution (potential and eigenvectors) in case of a particular inverse problem of SDE in two and higher dimensions if apriori information, analogous to (3), about the wave functions is given. In Section 2 we formulate and study a 2D particular inverse problem for SDE where we derive analogous to formulas (4) - (5). Here we also give two examples that verify the new formulas derived. Section 3 contains a formulation of a particular inverse problem for SDE in higher dimensions and new formulas of the type (4) - (5) for these higher dimensions. We give an example for 3D case as well.

2 PARTICULAR INVERSE PROBLEM FOR SDE IN TWO DIMENSIONS

Let us formulate a particular inverse problem for SDE in two dimensions in the rectangular domain:

$$
\begin{gather*}
-\frac{\Psi_{i-1, j}(\lambda)-2 \Psi_{i j}(\lambda)+\Psi_{i+1, j}(\lambda)}{\Delta_{x}^{2}}-\frac{\Psi_{i, j-1}(\lambda)-2 \Psi_{i j}(\lambda)+\Psi_{i, j+1}(\lambda)}{\Delta_{y}^{2}}+ \\
\quad+V_{i j} \Psi_{i j}(\lambda)=E_{\lambda} \Psi_{i j}(\lambda) \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\Psi_{0 j}(\lambda)=0, \quad \Psi_{L+1, j}(\lambda)=0, \quad \Psi_{i 0}(\lambda)=0, \quad \Psi_{i, M+1}(\lambda)=0 \tag{7}
\end{equation*}
$$

where Δ_{x}, Δ_{y} are some positive equidistant steps and $\lambda=1,2, \ldots, L M ; i=$ $1,2, \ldots, L ; j=1,2, \ldots, M$. If eigenvalues E_{λ} :

$$
E_{1}<E_{2}<\ldots<E_{L M}
$$

and the following components of eigenvectors

$$
\begin{equation*}
\Psi_{1 j}(\lambda) \tag{8}
\end{equation*}
$$

are given for each $\lambda=1,2, \ldots, L M ; j=1,2, \ldots, M$ then we have the particular inverse problem (6)-(8) for SDE in two dimensions in the rectangular domain. Beside spectral data - different $E_{\lambda} \lambda=1,2, \ldots, L M$, we also use here apriori information - wave functions components (8) as input data of the particular inverse problem. The problem is to find the rest of the wave functions and all the values of the potential. The existence of the problem $(6)-(8)$ is tied together with the existence of the direct problem (6) - (7) because of using of apriori information (8).
4 Lemma 1 For eigenvectors of the particular inverse problem (6) - (8) it holds

$$
\begin{equation*}
\Delta_{x} \Delta_{y} \sum_{i=1}^{L} \sum_{j=1}^{M} \Psi_{i j}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)=\delta_{\lambda \lambda^{\prime}} \tag{9}
\end{equation*}
$$

where $\delta_{\lambda \lambda^{\prime}}$ is Kronecker's symbol and $\lambda, \lambda^{\prime}=1,2, \ldots, L M$.
Proof. Let us multiply the equation (6) by $\Delta_{x} \Delta_{y} \Psi_{i j}\left(\lambda^{\prime}\right)$ and consider the equation (6) with $\lambda=\lambda^{\prime}$. We multiply the equation (6) with $\lambda=\lambda^{\prime}$ by $\Delta_{x} \Delta_{y} \Psi_{i j}(\lambda)$. Subtracting these two equations, we receive

$$
\begin{gather*}
\quad\left[\Psi_{i+1, j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i+1, j}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{y} / \Delta_{x}+ \\
+\left[\Psi_{i-1, j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i-1, j}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{y} / \Delta_{x}+ \\
+\left[\Psi_{i, j+1}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i, j+1}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} / \Delta_{y}+ \\
+\left[\Psi_{i, j-1}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i, j-1}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} / \Delta_{y}= \\
\quad=\left(E_{\lambda}-E_{\lambda^{\prime}}\right) \Psi_{i j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda) \Delta_{x} \Delta_{y} \tag{10}
\end{gather*}
$$

Making the sum of the equation (10) for all $i=1,2, \ldots, L ; j=1,2, \ldots, M$ we obtain

$$
\begin{gather*}
\left(E_{\lambda}-E_{\lambda^{\prime}}\right) \sum_{i=1}^{L} \sum_{j=1}^{M} \Psi_{i j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda) \Delta_{x} \Delta_{y}= \\
=\sum_{i=1}^{L} \sum_{j=1}^{M}\left[\Psi_{i+1, j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i+1, j}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} \Delta_{y}+ \\
+\sum_{i=1}^{L} \sum_{j=1}^{M}\left[\Psi_{i-1, j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i-1, j}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} \Delta_{y}+ \\
+\sum_{i=1}^{L} \sum_{j=1}^{M}\left[\Psi_{i, j+1}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i, j+1}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} \Delta_{y}+ \\
+\sum_{i=1}^{L} \sum_{j=1}^{M}\left[\Psi_{i, j-1}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda)-\Psi_{i, j-1}(\lambda) \Psi_{i j}\left(\lambda^{\prime}\right)\right] \Delta_{x} \Delta_{y} \tag{11}
\end{gather*}
$$

We shift the index $i+1 \rightarrow i$ in the first double sum and the index $j+1 \rightarrow j$ in the third double sum in the right hand side of the equation (11). Subtracting the terms with opposite signs, we come to the following expression (12) for the right hand side of the equation (11)

$$
\begin{align*}
& \sum_{j=1}^{M}\left[\Psi_{L+1, j}\left(\lambda^{\prime}\right) \Psi_{L j}(\lambda)-\Psi_{L+1, j}(\lambda) \Psi_{L j}\left(\lambda^{\prime}\right)\right] \Delta_{y} / \Delta_{x}+ \\
& \quad+\sum_{j=1}^{M}\left[\Psi_{0, j}\left(\lambda^{\prime}\right) \Psi_{1 j}(\lambda)-\Psi_{0, j}(\lambda) \Psi_{1 j}\left(\lambda^{\prime}\right)\right] \Delta_{y} / \Delta_{x}+ \\
& +\sum_{i=1}^{L}\left[\Psi_{i, M+1}\left(\lambda^{\prime}\right) \Psi_{M j}(\lambda)-\Psi_{i, M+1}(\lambda) \Psi_{M j}\left(\lambda^{\prime}\right)\right] \Delta_{x} / \Delta_{y}+ \\
& \quad+\sum_{i=1}^{L}\left[\Psi_{i, 0}\left(\lambda^{\prime}\right) \Psi_{i 1}(\lambda)-\Psi_{i, 0}(\lambda) \Psi_{i 1}\left(\lambda^{\prime}\right)\right] \Delta_{x} / \Delta_{y} \tag{12}
\end{align*}
$$

Due to the boundary conditions (7) the expression (12) is equal to zero. That means the left hand side of the equation (11) is equal to zero as well. So we have proved

$$
\left(E_{\lambda}-E_{\lambda^{\prime}}\right) \sum_{i=1}^{L} \sum_{j=1}^{M} \Psi_{i j}\left(\lambda^{\prime}\right) \Psi_{i j}(\lambda) \Delta_{x} \Delta_{y}=0
$$

The last equality means the eigenvectors are orthogonal if $\lambda \neq \lambda^{\prime}$. After normalization of the eigenvectors we come to desired equation (9). The proof is complete.

Lemma 2 If the orthonormal eigenvectors of the problem (6) - (8) hold the equation (9), they also hold

$$
\begin{equation*}
\Delta_{x} \Delta_{y} \sum_{\lambda=1}^{L M} \Psi_{i j}(\lambda) \Psi_{i^{\prime} j^{\prime}}(\lambda)=\delta_{i j, i^{\prime} j^{\prime}} \tag{13}
\end{equation*}
$$

Proof. Let us multiply the equation (9) by $\Psi_{i^{\prime} j^{\prime}}(\lambda)$ and make the sum for all $\lambda=1,2, \ldots, L M$. Then we obtain

$$
\begin{equation*}
\sum_{i=1}^{L} \sum_{j=1}^{M} \Psi_{i j}\left(\lambda^{\prime}\right)\left[\Delta_{x} \Delta_{y} \sum_{\lambda=1}^{L M} \Psi_{i j}(\lambda) \Psi_{i^{\prime} j^{\prime}}(\lambda)\right]=\sum_{\lambda=1}^{L M} \delta_{\lambda, \lambda^{\prime}} \Psi_{i^{\prime} j^{\prime}}(\lambda) \tag{14}
\end{equation*}
$$

We have $\Psi_{i^{\prime} j^{\prime}}\left(\lambda^{\prime}\right)$ on the right hand side of the equation (14). Changing indices $i^{\prime}, j^{\prime} i^{\prime}=1,2, \ldots, L ; j^{\prime}=1,2, \ldots, M$ the equation (14) represents a system of linear algebraic equations $T \vec{\Psi}\left(\lambda^{\prime}\right)=I \vec{\Psi}\left(\lambda^{\prime}\right)$ where the elements of the matrix T are given by expression in the parenthesis [] of the equation (14) and I is a
identity matrix. Since the vectors $\vec{\Psi}\left(\lambda^{\prime}\right)$ for $\lambda^{\prime}=1,2, \ldots, L M$ represent the system of linearly independent vectors, this means the equation $(T-I) \vec{\Psi}\left(\lambda^{\prime}\right)=0$ results the equation $T=I$. However, $T=I$ is the equation (14). This brings the proof to an end.

Theorem 1 The parlicular inverse problem (6)-(8) for SDE has the following solution

$$
\begin{gather*}
\Psi_{i+1, j}(\lambda)=\left[-E_{\lambda}+\Delta_{x} \Delta_{y} \sum_{\lambda=1}^{L M} E_{\lambda}\left[\Psi_{i j}(\lambda)\right]^{2}\right] \Psi_{i j}(\lambda) \Delta_{r}^{2}-\Psi_{i-1, j}(\lambda)- \\
-\frac{\Delta_{x}^{2}}{\Delta_{y}^{2}}\left[\Psi_{i, j+1}(\lambda)+\Psi_{i, j-1}(\lambda)\right] \tag{15}\\
V_{i j}=-\frac{\cdot 2}{\Delta_{r}^{2}}-\frac{2}{\Delta_{y}^{2}}+\Delta_{x} \Delta_{y} \sum_{\lambda=1}^{L M} E_{\lambda}\left[\Psi_{i j}(\lambda)\right]^{2} \tag{16}
\end{gather*}
$$

Proof. Let us substitute from the equations (15) - (16) to the left hand side of the equation (6). We can find out the equation (6) is fulfilled. This ends the proof.

Now we explain how the equations (15) and (16) can be derived. Let us multiply the equation (6) by $\Psi_{i j}(\lambda)$ and make the sum for all $\lambda=1,2, \ldots, L M$. Due to the Lemma 2 we receive the expression (16) for potential. Substituting from the equation (16) to the equation (6) and expressing the value $\Psi_{i+1, j}(\lambda)$, we obtain the equation (15).

Now we explain how to make the computations according to the formulas (15) - (16). Having boundary values (8) i.e. $\Psi_{1 j}(\lambda)$, we can compute the values $\Psi_{2 j}(\lambda)$ for all $j=1,2, \ldots, M$ and for all $\lambda=1,2, \ldots, L M$ according to the formula (15). Then we can do the same consequently for $\Psi_{3 j}(\lambda), \ldots, \Psi_{L j}(\lambda)$ Having all values of wave function $\Psi_{i j}(\lambda)$, we can calculate all values of potential $V_{i j}$ according to the formula (15).

The uniqueness of the problem (6)-(8) follows from the formulas (15)-(16).
At the end of this section we give two examples.

Example 1.

Let us put $L=2, M=2$ and

$$
\begin{equation*}
V_{11}=V_{12}=V_{21}=V_{22}=1 / \Delta_{r}^{2}+\dot{1} / \Delta_{y}^{2} \tag{17}
\end{equation*}
$$

$\left(\Delta_{x}<\Delta_{y}\right)$. Then the solution of the direct problem (6)-(7) is given in the following table

λ	1	2	3	4
E_{λ}	$\frac{2}{\Delta_{x}^{2}}+\frac{2}{\Delta_{y}^{2}}$	$\frac{2}{\Delta_{x}^{2}}+\frac{4}{\Delta_{y}^{2}}$	$\frac{4}{\Delta_{x}^{2}}+\frac{2}{\Delta_{y}^{2}}$	$\frac{4}{\Delta_{x}^{2}}+\frac{4}{\Delta_{y}^{2}}$
$\Psi_{11}(\lambda)$	a	-a	-a	a
$\Psi_{12}(\lambda)$	a	a	-a	-a
$\Psi_{21}(\lambda)$	a	-a	a	-a
$\Psi_{22}(\lambda)$	a	a	a	a

where $a=1 /\left(2 \sqrt{\Delta_{x} \Delta_{y}}\right)$.
Let us put $L=2, M=2$ and $E_{\lambda}, \Psi_{11}(\lambda), \Psi_{12}(\lambda)$ according to the above table $(\lambda=1,2,3,4)$. Then the solution of the problem (6) - (7) calculated by the formulas (15) - (16) gives us the same potential values like those given in (17) and

$$
\begin{gathered}
\Psi_{21}(1)=\Psi_{21}(3)=a, \quad \Psi_{21}(2)=\Psi_{21}(4)=-a \\
\Psi_{22}(1)=\Psi_{22}(2)=\Psi_{22}(3)=\Psi_{22}(4)=a
\end{gathered}
$$

Example 2.

Let us put $L=2, M=2$ and

$$
\begin{equation*}
V_{11}=V_{22}=3\left(1 / \Delta_{x}^{2}+1 / \Delta_{y}^{2}\right), \quad V_{12}=V_{21}=1 / \Delta_{x}^{2}+1 / \Delta_{y}^{2} . \tag{18}
\end{equation*}
$$

Then the solution of the direct problem (6)-(7) is shown in the following table:

λ	1	2	3	4
E_{λ}	$(4-\sqrt{2}) b$	$4 b-c$	$4 b+c$	$(4+\sqrt{2}) b$
$\Psi_{11}(\lambda)$	$\frac{a}{\sqrt{2+\sqrt{2}}}$	$-a \sqrt{1-\frac{b}{c}}$	$-a \sqrt{1+\frac{b}{c}}$	$\frac{a}{\sqrt{2-\sqrt{2}}}$
$\Psi_{12}(\lambda)$	$a \frac{1+\sqrt{2}}{\sqrt{2+\sqrt{2}}}$	$\frac{d a}{-b+c} \sqrt{1-\frac{b}{c}}$	$\frac{-d a}{b+c} \sqrt{1+\frac{b}{c}}$	$a \frac{1-\sqrt{2}}{\sqrt{2-\sqrt{2}}}$
$\Psi_{21}(\lambda)$	$a \frac{1+\sqrt{2}}{\sqrt{2+\sqrt{2}}}$	$\frac{-d a}{-b+c} \sqrt{1-\frac{b}{c}}$	$\frac{d a}{b+c} \sqrt{1+\frac{b}{c}}$	$a \frac{1-\sqrt{2}}{\sqrt{2-\sqrt{2}}}$
$\Psi_{22}(\lambda)$	$\frac{a}{\sqrt{2+\sqrt{2}}}$	$a \sqrt{1-\frac{b}{c}}$	$a \sqrt{1+\frac{b}{c}}$	$\frac{a}{\sqrt{2-\sqrt{2}}}$

where $b=1 / \Delta_{x}^{2}+1 / \Delta_{y}^{2} ; c=\sqrt{2\left(1 / \Delta_{x}^{4}+1 / \Delta_{y}^{4}\right)}, d=1 / \Delta_{x}^{2}-1 / \Delta_{y}^{2}$.
If we put $L=2, M=2$ and $E_{\lambda}, \Psi_{11}(\lambda), \Psi_{12}(\lambda)$, according to the last table
($\lambda=1,2,3,4$) then the solution to the problem (6) - (8) calculated by the formulas (15)-(16) give us the potential values $V_{11}=V_{22}=3 b, V_{12}=V_{21}=b$ and $\Psi_{21}(1), \Psi_{21}(2), \Psi_{21}(3), \Psi_{21}(4) \Psi_{22}(1), \Psi_{22}(2), \Psi_{22}(3), \Psi_{22}(4)$ just the same to those given in the last table.

3 PARTICULAR INVERSE PROBLEM FOR SDE IN HIGHER DIMENSIONS

Completing this work, we formulate the particular inverse problem for SDE in the general n dimensional Euclidian space in the parallelepiped domain:

$$
\begin{gather*}
-\sum_{j=1}^{n} \frac{\Psi_{i_{1} i_{2} \ldots, i_{j}-1, \ldots i_{n}}(\lambda)-2 \Psi_{i_{1} i_{2} \ldots, i_{j}, \ldots i_{n}}(\lambda)+\Psi_{i_{1} i_{2} \ldots, i_{j}+1, \ldots i_{n}}(\lambda)}{\Delta_{i_{j}}^{2}}+ \\
+V_{i_{1} i_{2} \ldots i_{n}} \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda)=E_{\lambda} \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda) \tag{19}\\
\Psi_{0 i_{2} \ldots i_{n}}(\lambda)=0, \quad \Psi_{i_{1} 0 \ldots i_{n}}(\lambda)=0, \ldots, \Psi_{i_{1} i_{2} \ldots 0}(\lambda)=0 \\
\Psi_{L_{1}+1, i_{2} \ldots, i_{n}}(\lambda)=0, \Psi_{i_{1}, L_{2}+1, \ldots, i_{n}}(\lambda)=0, \ldots \Psi_{i_{1} i_{2} \ldots, L_{n}+1}(\lambda)=0 \tag{20}
\end{gather*}
$$

where $\Delta_{i_{j}} i_{j}=1,2, \ldots, L_{j} ; j=1,2, \ldots, n$ are positive equidistant steps and $\lambda=1,2, \ldots, L_{1} L_{2} \ldots L_{n}$. If eigenvalues E_{λ}

$$
E_{1}<E_{2}<\ldots<E_{L_{1} L_{2} \ldots L_{n}}
$$

and the following components of eigenvectors

$$
\begin{equation*}
\Psi_{1 i_{2} \ldots i_{n}}(\lambda) \tag{21}
\end{equation*}
$$

are given for each $\lambda \doteq 1,2, \ldots, L_{1} L_{2} \ldots L_{n} ; i_{j}=1,2, \ldots, L_{j} ; j=2,3, \ldots, n$ then we have the particular inverse problem (19)-(21) for SDE in n dimensions in the parallelepiped domain. In 2D case the existence of the problem (19)-(21) is tied together with the existence of the direct problem (19) - (20) as well.

In the same way the following statements can be proved
Lemma 3 For eigenvectors of the problem (19) - (21) it holds

$$
\begin{equation*}
\Delta_{i_{1}} \Delta_{i_{2}} \ldots \Delta_{i_{n}} \sum_{i_{1}=1}^{L_{1}} \sum_{i_{2}=1}^{L_{2}} \cdots \sum_{i_{n}=1}^{L_{n}} \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda) \Psi_{i_{1} i_{2} \ldots i_{n}}\left(\lambda^{\prime}\right)=\delta_{\lambda \lambda^{\prime}} \tag{22}
\end{equation*}
$$

where $\lambda, \lambda^{\prime}=1,2, \ldots, L_{1} L_{2} \ldots L_{n}$.

Lemma 4 If the orthonormal eigenvectors of the problem (19) - (21) hold the equation (22), they also hold

$$
\begin{equation*}
\Delta_{i_{1}} \Delta_{i_{2}} \ldots \Delta_{i_{n}} \sum_{\lambda=1}^{L_{1} L_{2} \ldots L_{n}} \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda) \Psi_{i_{1}^{\prime} i_{2}^{\prime} \ldots i_{n}^{\prime}}(\lambda)=\delta_{i_{1} i_{2} \ldots i_{n}, i_{1}^{\prime} i_{2}^{\prime} \ldots i_{n}^{\prime}} \tag{23}
\end{equation*}
$$

Theorem 2 The problem (19) - (21) for SDE has the following solution

$$
\begin{gather*}
\Psi_{i_{1}+1, i_{2} \ldots i_{n}}(\lambda)= \\
=\left[-E_{\lambda}+\Delta_{i_{1}} \Delta_{i_{2}} \ldots \Delta_{i_{n}} \sum_{\lambda=1}^{L_{1} L_{2} \ldots L_{n}} E_{\lambda}\left[\Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda)\right]^{2}\right] \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda) \Delta_{i_{2}}^{2}- \\
-\Psi_{i_{1}-1, i_{2} \ldots i_{n}}(\lambda)- \\
-\sum_{j=2}^{n}\left[\Psi_{i_{1} i_{2} \ldots, i_{j}+1, \ldots i_{n}}(\lambda)+\Psi_{i_{1} i_{2} \ldots, i_{j}-1, \ldots i_{n}}(\lambda)\right] \Delta_{i_{1}}^{2} / \Delta_{i_{j}}^{2} \tag{24}\\
V_{i_{1} i_{2} \ldots i_{n}}=-\frac{2}{\Delta_{i_{1}}^{2}}-\frac{2}{\Delta_{i_{2}}^{2}} \cdots-\frac{2}{\Delta_{i_{n}}^{2}}+ \\
+\Delta_{i_{1}} \Delta_{i_{2}} \ldots \Delta_{i_{n}}^{L_{1} L_{2} \ldots L_{n}} \sum_{\lambda=1}\left[\Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda)\right]^{2} \tag{25}
\end{gather*}
$$

Specially for $n=3$ we give the following example:
Example 3. Let us put $L_{1}=L_{2}=L_{3}=2$, and

$$
\begin{equation*}
V_{l_{1} l_{2} l_{3}}=\frac{1}{\Delta_{i_{1}}^{2}}+\frac{1}{\Delta_{i_{2}}^{2}}+\frac{1}{\Delta_{i_{3}}^{2}}, \quad l_{1}, l_{2}, l_{3}=1,2 \tag{26}
\end{equation*}
$$

$\left(\Delta_{i_{1}}<\Delta_{i_{2}}<\Delta_{i_{3}}\right.$). Then the solution of the direct problem (19)-(20) is given in the following table

λ	1	2	3	4	5	6	7	8
E_{λ}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}
$\Psi_{111}(\lambda)$	a	a	a	a	-a	a	a	a
$\Psi_{112}(\lambda)$	a	a	a	-a	-a	$\mathrm{-a}$	a	-a
$\Psi_{121}(\lambda)$	a	$\mathrm{-a}$	-a	-a	-a	a	-a	-a
$\Psi_{122}(\lambda)$	a	a	-a	a	-a	-a	-a	a
$\Psi_{211}(\lambda)$	a	$\mathrm{-a}$	a	a	a	-a	-a	-a
$\Psi_{212}(\lambda)$	a	a	a	-a	a	a	-a	a
$\Psi_{221}(\lambda)$	a	a	-a	a	a	-a	a	a
$\Psi_{222}(\lambda)$	a	a	a	a	a	a	a	-a

$$
\begin{array}{ll}
E_{1}=2\left(\frac{1}{\Delta_{i_{1}}^{2}}+\frac{1}{\Delta_{i_{2}}^{2}}+\frac{1}{\Delta_{i_{3}}^{2}}\right), & E_{2}=2\left(\frac{1}{\Delta_{i_{1}}^{2}}+\frac{1}{\Delta_{i_{2}}^{2}}+\frac{2}{\Delta_{i_{3}}^{2}}\right), \\
E_{3}=2\left(\frac{1}{\Delta_{i_{1}}^{2}}+\frac{2}{\Delta_{i_{2}}^{2}}+\frac{1}{\Delta_{i_{3}}^{2}}\right), & E_{4}=2\left(\frac{1}{\Delta_{i_{1}}^{2}}+\frac{2}{\Delta_{i_{2}}^{2}}+\frac{2}{\Delta_{i_{3}}^{2}}\right), \\
E_{5}=2\left(\frac{2}{\Delta_{i_{1}}^{2}}+\frac{1}{\Delta_{i_{2}}^{2}}+\frac{1}{\Delta_{i_{3}}^{2}}\right), & E_{6}=2\left(\frac{2}{\Delta_{i_{1}}^{2}}+\frac{1}{\Delta_{i_{2}}^{2}}+\frac{2}{\Delta_{i_{3}}^{2}}\right), \\
E_{7}=2\left(\frac{2}{\Delta_{i_{1}}^{2}}+\frac{2}{\Delta_{i_{2}}^{2}}+\frac{1}{\Delta_{i_{3}}^{2}}\right), & E_{8}=2\left(\frac{2}{\Delta_{i_{1}}^{2}}+\frac{2}{\Delta_{i_{2}}^{2}}+\frac{2}{\Delta_{i_{3}}^{2}}\right) .
\end{array}
$$

Let us put $L_{1}=L_{2}=L_{3}=2$, and $E_{\lambda}, \Psi_{111}(\lambda), \Psi_{112}(\lambda), \Psi_{121}(\lambda), \Psi_{122}(\lambda)$ aecording to the above table $(\lambda=1,2,3,4,5,6,7,8)$. Then the solution of the problem (19) - (21) calculated by the formulas (24) - (25) give us the same potential values like (26) and $\Psi_{2 i_{2} i_{3}}(\lambda) i_{2}, i_{3}=1,2$ the same like those given in the table.

We used MAPLE V Release 4 for verification of calculated values in Examles 1., 2. and 3.

4 CONCLUSION REMARKS

Apriori information (8) resp. (21) is important in the formulation of the problems (6) - (8) resp. (19) - (21). Having this information the rest of wave functions and all potential values can be determined according to the relativelly easy formulas (15) - (16) resp. (24) - (25). The question how to reduce or eliminate this apriori information is not studied here.

There are other possibilities in formulation of boundary conditions (8) resp. (21). We can consider, for example, eigenvectors components $\Psi_{i 1}(\lambda)$ resp. $\Psi_{i_{1} 1 \ldots i_{n}}(\lambda)$ or other boundary formulation. However, this requires a new formula (15) resp. (24). In the case when $\Psi_{i 1}(\lambda)$ resp. $\Psi_{i_{1} 1 \ldots i_{n}}(\lambda)$ is given instead of (8) resp. (21), we should use the following formula

$$
\begin{gather*}
\Psi_{i, j+1}(\lambda)=\left[-E_{\lambda}+\Delta_{x} \Delta_{y}, \sum_{\lambda=1}^{L M} E_{\lambda}\left[\Psi_{i j}(\lambda)\right]^{2}\right] \Psi_{i j}(\lambda) \Delta_{y}^{2}-\Psi_{i, j-1}(\lambda)- \\
-\frac{\Delta_{y}^{2}}{\Delta_{x}^{2}}\left[\Psi_{i+1, j}(\lambda)+\Psi_{i-1, j}(\lambda)\right] \tag{27}
\end{gather*}
$$

resp.

$$
\begin{gather*}
\Psi_{i_{1}, i_{2}+1, \ldots i_{n}}(\lambda)= \\
=\left[-E_{\lambda}+\Delta_{i_{1}} \Delta_{i_{2}} \ldots \Delta_{i_{n}} \sum_{\lambda=1}^{L_{1} L_{2} \ldots L_{n}} E_{\lambda}\left[\Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda)\right]^{2}\right] \Psi_{i_{1} i_{2} \ldots i_{n}}(\lambda) \Delta_{i_{2}}^{2}- \\
-\Psi_{i_{1}, i_{2}-1, \ldots i_{n}}(\lambda)- \\
-\sum_{j \neq 2}\left[\Psi_{i_{1} i_{2} \ldots, i_{j}+1, \ldots i_{n}}(\lambda)+\Psi_{i_{1} i_{2} \ldots, i_{j}-1, \ldots i_{n}}(\lambda)\right] \Delta_{i_{2}}^{2} / \Delta_{i_{j}}^{2} . \tag{28}
\end{gather*}
$$

The formula for potential values (16) resp. (25) is still the same.

5 ACKNOWLEDGMENT

The author is grateful to Prof. E. P. Zhidkov and Dr. R. G. Airapetyan for suggestion of the interesting problem. The author also thanks Dr. J. Buša for his helpful remarks and Dr. Cs. Török for his help with software MAPLE V.

References

[1] Marchenko V. A. DAN SSSR, vol.72, 1950, pp.457-460.
[2] Gelfand I. M., Levitan B. M. Izv. AN SSSR (ser. mat.), vol. 15, 1951, pp.309-360.
[3] Zakhariev B. N. Lessons of Quantum Intuition, JINR, Dubna, 1996.
[4] Serdyukova S. I. Inverse Problem for Symmetric Tridiagonal Matrices. Calculation of Discrete Orthogonal Polynomial System with Arbitrary Weight, Russ.J.Numer.Anal.Math.Modelling, vol.8, No.3, 1993, pp.245-263.
[5] Serdyukova S. I. Inverse Problem for Discrete Dirac System; preprint P5-96-89, JINR, 1996.

[^0]: *Department of Mathematics, Technical University, Košice, Slovakia; E-mail: pavlus@ccsun.tuke.sk

