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Introduction 

The problem of the numerical reconstruction of potential by scat
tering data is well known and important from the mathematical point 
of view and for such physical applications as the analysis of a nuclear 
interaction potential by experimental data. The main approaches 
for theoretical investigations of the problem are well-known Gelfand
Levitan, Marchenko and Krein methods ((1], [2], [3], [4], [5]). At the 
same time the development of the corresponding numerical methods 
is sufficiently complicated by the reason of the ill-posedness of the 
mentioned inverse problems. 

In this paper we consider a new statement of the inverse prob
lem of the Quantum Scattering Theory and suggest the numerical 
method for its solving. To this end we describe the Newtonian Iter
ative Scheme with Simultaneous Iterations of the Inverse Derivative 
and formulate the theorem establishing its convergence. Then we use 
the method for the inverse problem of the reconstruction of iterac
tion potential by a phase shift given on a set of closed intervals in 
(l, k)-plane, satisfying certain geometrical "Staircase Condition". 

1. Statement of the Problem 

The following Cauchy problem for the radial Schrodinger equation 
is considered: 

82 
( 2 l( l + 1)) ar2 </>(l,k,r) + k - r 2 </>(l,k,r) = V(r)</>(l,k,r) (1) 

lim(21 + l)!!r-1
-

1 4>(1, k, r) = 1 . 
r-+0 

(2) 

It is well-known that for the potentials satisfying the condition 
00 

j rlV(r)ldr < oo (3) 
0 

the wave function has the following asymptotic behaviour: 

IF(l, k)I . 1rl 
</>(l, k, r) ~ kl+i sm(kr - 2 + 8(1, k)) r-+ oo , (4) 
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where F(l, k) is the Jost Function. 
The Inverse Problem of the Quantum Scattering Theory is the 

problem of the reconstruction of an unknown potential V(r) by some 
given information about phase shift 8(1, k). 

Note.For details and complete bibliography we refer to [5], [6], 
[7], [8], [9]. 

A potential in (1) is a function of one variable r so it is naturally 
to reconstruct a potential by a phase shift given on a certain one
dimensional submanifold of (l, k)-plane. The problem is well known 
and investigated in two important special cases: for the potentials 
given for fixed orbital momentum l (8(k) = 8i(k)) and for the poten
tials given for fixed energy (f.i. 8(1) = 81(1)). Geometrically these 
cases correspond to rays issuing from origin of the (l, /.:)-plane and 
parallel to the axes. At the same time there are very few results con
cerning the potential reconstruction by phase shifts given on another 
one-dimensional manifolds and all of them are obtained in the frame
work of the WKB or generalized WKB approaches ([10], [11], (12], 
[5]). The theoretical analysis of the problem is very difficult because 
there are no generalization of the Gelfand-Levitan-Marchenko-Krein 
Theory for such situations. 

Our approach to the numerical investigation of these problems is 
based on ~he following Variable Phase Equation ([13], [14]): 

08( l, k, r) = -k-1 V(r )[cos( 8( 1, k, r) )j,( kr )-or 

_ - sin(8(1, k, r))n1(kr)]2, 

where 

8(1, k, 0) = 0, lim 8(1, k, r) = 8(1, k), 
r-oo 

and 

j,(z) = ~J1+112(z), n1(z) = ~Y1+112(z) 

are Bessel-Ricatti functions. 
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(5) 

(6) 

(7) 
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Let us denote by 4> the nonlinear operator associating to a poten
tial V(r) corresponding phase shift 8(1, k). Then the inverse problem 
can be considered as a nonlinear equation 

4>(V) = 8 (8) 

with respect to the unknown poten!ial V(r). 

2. Continuous Analogy of Newton Method {CANM) 

First we describe the Continuous Analogy of Newton Method 
([15], [16], [17]). 

Let H be a real or complex Hilbert space, L(H) - the space of 
linear operators in H, <p : H --+ H - a nonlinear operator. The 
following nonlinear equation is considered: 

c,o(x) = 0 . (9) 

Denote by x0 an initial approximation to the solution of the (9), by 
c,o' ( x) - the Frechet derivative of the operator c,o and by c,o" ( x) - the 
Gateaux derivative of the operator c,o'(x), i.e. c,o"(x) for fixed xis a 
linear operator from H to L(H), such that 

c,o'(x + e) - c,o'(x) = c,o"(x)e + T/, and IITJII 11e11-1 E 0, fore--+ 0 

Now let us consider the following Cauchy problems in H: 

x'(t) = -c,o'-\x(t))c,o(x(t)), x(O) = xo . (10) 

For the problem the following convergense theorem holds. 
Theorem 1. {(15]) If there exists a positive number r such that 

the operators c,o'(x), c,o'-1 (x) and c,o"(x) exist in any point of the ball 
B = {x; llx - xoll s; rllc,o(xo)II}, c,o"(x) is bounded in a neighborhood 
of every point of B, and for every x EB 

llc,o'-1<x)II s; r. 

Then fort E [0,+oo) there exists a solution x(t) of the problem {10}, 
x(t) E B for all t E [0, +oo ), 

lim x(t) = x" 
te+oo 

(11) 
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and x* is the solution of the problem (9). 

3. The Frechet Derivative Operator <I>'(V) 

So the principal point for solving (8) by means of CANM is the 
inversion of the operator <I>'(V). The last one can be simply obtained: 

where 

00 

(<I>'(V)e)(l,k) = J I<(l,k,t)e(t)dt ' 
.0 

00 

I<(l,k,t) = -B(l,k,t)exp[j V(s)A(l,~~,s)ds] 
t 

A(l, k, r) = k-1 (sin(28(1, k, r))(j[(kr) - n;(kr))+ 

+ cos(28(1, k, r))j1(kr)n1(kr)] , 

B(l, k, r) = k-1 [cos(b'(l, k, r))j,(kr) - sin(b'(l, k, r))n1(kr)]2 

(12) 

(13) 

(14) 

(15) 

The inversion of the operator (12) is in fact a problem of solving the 
Fredholm integral equation of first kind. The la.st one is an ill-posed 
problem and needs some regularization. In ([18]) the algorithm using 
Tikhonov regularization at every step of the Newtonian iterations was 
constructed in the particular case of the problem, when phase shift 
is given for zero orbital momentum (see also [19]). However such 
algorithm is unstable and has low accuracy. 

Note.For another applications of CANM we refer to [21], (20]. 

4. Continuous Analogy of Newton Method with the 
Simultaneous Inversion of the Frechet Derivative 

Now our aim is to consider a continuous Newton method with the 
simultaneous calculation of reciprocal to the operator cp' ( x). Let us 

4 

,.l,. 

"Je 

4 

consider the following system: 

{ 
c,o(x) = 0 
c,o'(x)Y -E = 0 (16) 

where Y E L(H) and E is the identity operator. Let Yo be some 
approximation to c,o'(xo)-1 and pis a positive number. 

Let us consider the following Cauchy problem: 

{ 

x'(t) = -Y(t)c,o(x(t)) 
Y'(t) = -p2((cp'(x(t))*cp'(x(t))Y(t)+ (17) 
+ Y( t)cp'( x( t) )( cp'( x( t)) )*) + 2p2 ( cp'( x( t)) )* 

x(O) = xo, Y(O) = lo . 
Let us assume that the following condition holds. 
Condition A. There exist r > 0 and f > 0 such that 
1) Frechet derivative cp'(x) and Gateaux derivafitie cp"(;r) e.rist in 

B = B(xo, rllcp(xo)II), moreover 

ll'P"llr = sup sup ll(<p''(x)ellL(H) < 00 , 
xeB f.EH, llf.11=1 

2) for any x EB the operato1· (cp'*(x)) is invertible and 

llcp'*-
1

llr = sup ll(c,o'*(x))-1 11 < 00 
xEB 

3) the following inequality holds 

0 
max{IIYoll, llcp'*-1 llr} < __ ___..:....:.:_'-'-'---'-.:_------'..:.....:....- < r 

1 - max{llcp'(xo)Yo - Ell, f} · ( 18) 

Denote 

llc,ollr = sup llcp(x)II 
xeB 

Po= max{IIYoll, llcp'*-
1
llr} llcp'-1 llr I l'P"I Ir I Iii'! Ir 

2f 
( 19) 

The following theorem establishes the convergense of the method. 
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Theorem 2. ([22]) If the Condition A holds, then for every 

P > Po 
1} the solution (x(t), Y(t)) of the problem (17) exists for t E 

[O, +oo) and 

x(t) E B(xo, rllcp(xo)II) , 

llcp'(x(t))Y(t) - Ell ::; max{llcp'(xo)Yo - Ell, t:} 

2) there exists 

lim x(t) = x* 
tE+oo 

and x* is the solution of the problem (9). 

5. An Inversion of the Operator <I>'(O) 

(20) 

(21) 

So for the numerical solving of the inverse problem by means 
of the described method we must invert <I>'(V) only in the initial 
approximation point Vo( r ). As an initial approximation we use zero 
potential: Vo(r) = 0. So we have to solve the following Fredholm 
equation of first kind: 

00 

(<I>'(0)e)(l, k) = -¼ j j,2(kr)e(r)dr = g(l, k) . (22) 
0 

In the case l = 0, g = g(k), k E [0, oo) the opera.tor <I>'(0) is very 
simple: 

00 

(<I>'(0)e)(k) = -¼ j sin2 (kr)e(r)dr (23) 
0 

and can be easy inversed by means of the Fourier sin-trasformation: 

00 

(<I>'(0)-1g)(r) = 27r j cos(2kr)g(k)kdk . (24) 
0 

6 
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Now our goal is to inverse <I>'(0) for g(l, k) given on more general 
subset. Let us denote 

00 

11(k) = j sin(kr)e(r)rdr 
0 

From the recursion formulas for the Bessel-Ricatty functions 

a 21 + 1 . . -a z1(x) = --z1(x) - Z1-1(x) l = 1, 2, ... 
X X 

l 
z1+1(x) = z1-i(x) - -z1(x) l = 1, 2, ... 

X 

we get the following relations: 

a 
Bk[kg(0,k)] = -11(2k) , (25) 

a 2 . i-2 

8k[kg(l, k)] + yg(l, k) = 2 L (-1r(2l - 2m - l)g(l - m - 1, k)+ 
. m:::0 

+2(-1)1+1g(0,k) + (-1)1+177(2k) l = 1,2, .... 

Therefore 

a 
Bk[k(g(l, k)+g(l+l, k)]-a1[k(g(l, k)+g(l+l, k)] = (/11-a1)g(l+l, k) , 

:k[k(g(l, k) + g(l + 1, k)]-,81[k(g(l, k) + g(l + 1, k)] = (a1 .:_ Jj1)g(t, k) 

where 

(l + 1)(21- 1) 
ao = 2, a1 = 2 . 1 , /10 = -2, /11 = 2 

(l + 1) 

So we obtain the following recursions: 

g(l, k) = a1
-

01 [g(l, a)+ g(l + 1, a)]k01
-

1+ 

k 

+(,81-a1)k01
-

1 j s-01g(l+l,s)ds-g(l+l,k), (26) 
a 
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g(l + 1, k) = a1-P1[g(l, a)+ g(l + 1, a)]k/31-
1+ 

k 

+(a, - f31)k/J1
-

1 j s-/319(1, s )ds - g(l, k) (27) 
a 

Now let the two finite sequences of nonnegative numbers be given: 
the first one { /1, /2, ... , IN} consists of integers, and the second one 
{ ao, a1, a2, ... , aN-d of real numbers, where a0 = 0. Denote by IN a 
finite set of closed intervals on the (l, k)-plane: 

N-1 

IN= LJ {(/,k);/ = li,ai-1::; k::; ai}LJ 
i=l 

LJ{(IN,k);aN-1::; k < oo} . (28) 

Definition 1. We say that the system IN satisfies a "Staircase 
Condition" if there exist integers O = n 1 < n 2 < ... < nm < N such 
that for every i from 1 to m the following conditions hold 

a) lli+t - lil = 1 for j = ni + 1, ni + 2, ... , ni+I - l , 
b) no less than one from the numbers ln;, ln;+I, ... , ln;_

1
-1 equal 

to zero. 

From (26) and (27) the following lemma immediatly follows. 
Lemma 1. Let a continuous function g(l, I.:) = <I>'( O)l be given 

on a set of intervals IN satisfying the "Staircase Condition''. Then 
the corresponding function g(0, k) is univalent/y determined on [O, oo) 
by recursion formulas {26) and (27). 

From Lemma 1 the recursion formula for th~ inversion of the op
erator <I>'(0) can be easy obtained for every set of intervals satisfying 
the "Staircase Condition". 

6. Statement of the Problem and Numerical Example 

Thus, now we can formulate the statement of the problem to 
which suggested Numerical Method could be applied. 

8 
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Statement of the Problem. To reconstruct the potential by 
means of the phase shift given on the set of the intervals satisfying 
the "Staircase Condition". 

For this problem there are no theorems establishing its well
posedness, so we are able only to examine it numerically. Let a 
phase shift 8(1, k) be given on the set 

I2 = {(1, k); 0::; k::; at} LJ{(0, k); a1 ::; k::; oo} (29) 

Then from the formulas of Sect.5 we obtain the following relation: 

1 
(<I>'- 1

(0)g) = 1r(g(0, a)+ g(l, a))f(m·- 1 
- tt-1r-3

) sin(2ar)+ 

oo a 

+r-2 cos(2ar )] + 21r j g(0, k) cos(2rk )kdl.: - 21r jg( 1, k) x 
a O 

x[(k - 2k-1r-2
) cos(2rk) - (2r-1 + k-2r-3

) sin(2rl.:)]dl.: . (30) 

Then using this inversion formula for initial approximation we apply 
the algorithm described in Sect.4. 

Below we bring some pictures illustrating the results of the nu
merical calculations based on this method. We start from the known 
potential K(r) on [0,10], then solve the direct problem and obtain 
phase shifts 80 ( k) on [5,10] and 81 ( k) on [0,5), and finally reconstruct 
the potential V,.(r) on [0,10]. 

The results of numerical investigation show that the considered 
problem can be numerically solved with high accuracy and so such 
statement of a problem is reasonable. As seems to us, the interesting 
problem now is to prove the corresponding well-posedness theorem. 

Acknowledgments. This work was supported by RFFI. grants 
94-01-01119 and 95-01-01467a. 
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Figure 1: In upper row the first figure displays V,. and secon~ one - 60 , in lower 
row the first figure displays 61 and second one - V,.. 
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