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,lNcwtoman Iteratrve Schcme

A modlﬁcatron of the Contrnuous Analogy of Newton Method for the/numerrcal
solvrng of the nonllncar problems is suggested It permrts one 1o replace the inversion:
of the’ derivative - operator on’ every step_ of iterations’ by its - inversion: only- .
in the rnrtlal approxrmatlon pomt Then the extended system of the’ drfferentral ‘
'equatlons in" Hilbert - space;* _introduced: in “the work,” permlts the - reahzatronr
of the iterative’ process ‘with’ the srmultaneous calculatron of 'the inverse. derrvatrve |
1'opcrator The convergence theorem is; proved for.the method under almost the same"
condrtlons as for CANM. Numerrcal calculations for the model’ problem (Krrchhoff
‘equatron) have shown “the: 'effectrveness ‘and adequately_ fast ”convcrgence

:of the. 1terat1ve'schemes based on the suggested method




Introduction

Let us consider a nonlinear equation in Hilbert space -

o(z) = 0. (1)

A principal point of the realization of Continuous Analogy of Newton

Method (CANM) ([1], [2], [3]) for solving (1) is the inversion of the
operator ¢'(z). Such inversion is often difficult and could be a reason

for a decreasing of the accuracy of calculations. In [4], the method of

parameter variation has been suggested. It reduces the inversion of a

matrix-function A(A) to the nonlinear matrix differential equation
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A combination of CANM with the method of parameter variation
has been realized in [5], where the Newtonian Iterative Scheme with
simultaneous inversion of ¢'(z) has been constructed. The similar
algorithm, but in a framework of usual Newton Method, has been
earlier investigated in [6)].

In this paper we suggest another method realizing CANM with
a simultaneous solving of the operator differential equation for the
inverse derivative. However, in contrast to the papers cited above, for
the inversion of ¢'~! we use a linear nonhomogeneous equation. Such
modification has made it possible to prove the convergence theorem
under almost the same conditions on ¢ as in CANM ([1]).

The paper is organized in the following way. In Sect. 1 the cover-
gence theorem for CANM is brought. In Sect.2 the proposed method
is described and the convergence theorem is formulated. The last one
is proved in Sect.3. And in Sect.4, the numerical example illustrating
the applications of the method is examined.
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1. Continuous Analogy of Newton Method

Let H be a real or a complex Hilbert space and L(H) - the space
of linear operators in H. Let us consider the equation (1) for ¢ :

H — H.

Denote by zo some initial approxifnation to the solution of (1) and -

by B(zo,r) the ball: ||z — zo|| < r. We assume: that the following
condition on ¢ holds. : :

Condition 1. There exist somie positive real numbers r, ¢ and
‘continuous operator-valued function F(zx) from B(zo,7]p(x0)]]) to
L(H) such that. :

" 1) there exist Frechét derivative ¢'(x) and Gateaux derivatives
¢"(z) and F'(z), and they are locally bounded in B(zo,7||¢(20)]]);

2) for every x € B(zo,r|l¢(z0)l|) the spectrum of the operator
¢'(z)F(z) lies in the half-plane Rez 2 ¢
3) for any z € B(zo,r|l¢(zo)ll)

[F(z)l| S re. - " (3)
Now let us consider the following Cauchy problem in H:
2(t) = ~Fa®)e(a(®), 0St<oco, 0=z (1)

- Theorem 1. If Condition 1 holds then
1) there exists a solution z = z(t), t€ [0, 00) of the problem (4)
and z(t) € B(zo;r||¢(z0)l|) for all t € [0, +00);
2) there exists _ _
Jim z(t) =2’ (5)
and z* is the solution of the problem (1).
Remark 1. , i
a) If F(z) = [¢'(z)]™* then we get CANM. In that case ¢ = 1 and
Theorem 1 turns into the convergence theorem for CANM([1]);
_ b)if F(z) is an identity operator one obtain the method of rapidest
slope; ‘
c) F(z) = [¢/(z)]* corresponds to the gradient method.

Proof. ([1]). From the Condition 1 we get the local existence of
a solution of the problem (4). Then from (4)

¢(2(1)7'(t) = —¢(@(1)) F(a(t))p(z(). (6)

Let us denote \
A(t) = e(2(1)), (7)

then from (4) we obtain

Therefore
A(t) = exp [f/so'(z(s))F(w(s))ds} (o). (0

From Condition 1 we come to the following estimates

MO < Hle(zo)lle™. (10)

and

lo(t) = zoll < Il [ <'()dsll < [ HF(@)IIIAs)llds <

WALl ey <ot )

So z(t) doesn’t abandon the ball B(zo, r||¢(x0)|]) fot t € [0, c0).
Thus from (10) we get

lim p(z(2)) = lim A(t) = 0, | (12)

t—o0 —00

SO limv,_‘00 z(t) is the solution of the problem (1).



© 2. CANM with Slmultaneous Inversxon of ©'. 4 -

Convergence Theorem -

Now our goal is to develop the Continuous Newton Method with

Simultaneous Inversion of ¢'.
We consider the following system:

o2)=0
{w’(x)Y—E=o, W

~ where Y € L(H) and E is an identity operator. Let Y, be an approx-
imation to ¢'(z0)™'. Denote

()= peldivw-z)

and consider the Cauchy problem

(14)
A0) = ¢(zo), A0) = ¢'(zo)Yo — E,

where p is a positive real number, and ¢ "(z) for fixed z € H is
Gateaux derivative that is a linear operator from H to L(H) such

that
¢'(z+8&) —¢'(z)

Then instead of the (4) we consider the problem

'(t) = =Y (t)p(=(1)), '
{ Y'(t) = p2(§¢'($(t) “o(2(t))Y (t) + Y ()¢ (2()) (¢ (2(2))")+
)

+2p* (" (2()))"

= ()¢ + 1, and ||nllnllé]l” — 0 for £ — 0.

z(0) = zo, Y(0)=Yo

We consider now the following condition on .

4l

- Condition 2. There exist some pos1t1ve real numbers r and €
such that
1) there exist Fréchet derivative ¢'(z) and Gateaux derivative

#"(z) in B(o,ll¢(zo)]]) and

ll"ll- = sup sup

I o"(z)€ < 00:
=€B(zor|le(zo)ll) €€ H{IElI=1 (" ()ellzcen ;

d2) for any = € B(zo,7||¢(z0)||) the operator (¢™(z)) is invertible
an

" Hle= sup [l (@) 7] < oo
z€B(zo,r|lw(zo)ll) :
3) the following inequality holds
o« __max{{[%llllg" 1l }

= max{|l¢'(z0)¥o — BlLe} (16)

Let us denote

Hellr = sup e(2)ll;
z€B(zo,rlle(zo)l])

po = max([[%el g1} o~ lly L2 0y

The following theorem establishes the convergence of the method.
Theorem 2. If Condition 2 holds, then for p > po and for t €

[O;;—oo) 1) there exists the solution (z(t),Y(t)) of the problem (15)
z(t) € B(zo,r|l(zo)l]); (18)
ll¢'(z())Y () ~ E|| < max{[l¢'(z0)Yo — Ell, €}; (19)

2) there exists
lim z(t) =<"

t—+00
# z* is the solution of the problem (1).
3. The proof of Theorem 2
First we prove some lemmas. Let us consider the Cauchy problam

Y'(1) + A" ()AR)Y (E) + Y()AR)A"() — 2pA°(1) =0, (20
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Y(O) = YO’

where A(t) is a given continuous operator-valued function on {0, +oc0).
Lemma 1. Let the operator A*(t) be invertible for every t €
[0,T],T € 400 and the following estimates are valid

IYoll < Cu,

pll(A* ()M < G, for t€[0,T]. (21)

Then there exists the unlque solution of the problem (20) on [0,T]
and

Y@< Cy for tefo,T). (22)

Proof. As it has done for Riccati matrix equations in [7} , we
consider the auxiliary system

{ U'(t) — A(t)A*)U(t) =0, U(0) =E, (23)
VI(t) — 20A*()U(t) + A" () A()V(t) =0, V(0) =Y.

: t A
The operator U(t) = exp [ A(s)A*(s)ds is invertible and so
0
Y(t) = VR)U(1). (24)
Now we introduce an operator-valued function
U(t) =V (O)V(t) - CIUT (U () =

=U*()(Y ()Y (t) - C:EYU(t). (25)
Denote by (,) the scalar product in H, then for any { € H

%(é, W(t)E) = (&, [20U7()A@)V (1) = V' () A () AR)V (1) +

L2V AU () -V (DA (ARV(O—-2C20" (AD AU )E) =

= 4pRe(U(1)¢, A()V (1)) - 2 AQ)V.QEN® — 26T A" (U ()¢
From the inequality

20(U (€, A(t)V(2)€) < PP IIU)EI + AV (I,

6

U@ = 1I(A* @) AU )N < NI(AT @) AU )N
and from (21) we get '

d .

So

and
(&U (Y)Y (t)-CIE)U(t)€) < (€, U(0)(Yo Yo~ CIE)U(0)¢) < 0.
Therefore

Y (U - CRIYolPU €H2 < |I%é€|* - CHIIEN? < 0.

The estimate (22) follows from the last inequality and from the in-
vertibility of U(t).
Now we consider the Cauchy problem

A'()+ A A AL + A AR)A* () = D(t) = 0, A(0) = Ao, (26)

where A(t), A(t), D(t) are the given continuous operator-valued func-
tions on [0, +o0].

Lemma 2. Let an operator A*(t) be invertible for every t €
[0,T),T < 400 4nd the following estimates are valid

[lAol] < Gy,
IDONI(A™(2)) P < 2C;, for te[0,T). (27)
Then there exists a unique solution of the pr(_ﬁblem (26).on {0,7T] and
HAMN < Cy for te[0,T). (28)
Proof. The proof is very similar to the previous one. We consider

{ U'(t) — A(QA*(HU(R) =0, U(0)=E (29)

V/(t) = DOU() + AR A*(R)V() =0, V(0) = Ao.



Then
A(t) = V(@)U (). (30)
and
U(t) = V()V () - C3U()U(t) =
= U™(t)(A*(t)A(t) — CZE)U(t). (31)
For any £ € H

26, 1(06) = (€U0 D OV () - 2V (O ADA OV

+V()DOU(t) = 263U (DA A" (U B))E) = ]
_ 2Re(DIU(L)E, V()E) — 2|4V (I — 2CHIA" U™ 1
Because of A*(t) is invertible we have
2DMUEV()E) =
< 0.5[1(A"() M IPIDOIPNU eI + 2AI(AT @) IV el <
< 0.5((A° () M IHIDOIPIA U @EIP + 20 ATV () <
< 2| A"V I + 26311l PllAT (U ()€

Thus the inequality (28) is proved.
Then we consider the problem

N(t) + A1) + A@)A(E) =0,  A(0) = Ao, (32)
where A(t) is H-valued function on [0, +00), and A(t) is a given con- ;
tinuous operator-valued function on [0, +00).

Lemma 3. Let ‘

HAM®)|| £ &, Vfor te[0,T), & €(0,1). (33)

Then there exists a unique solution of the problem (32) on [0,T] and

A € Ao~ for ¢ €[0,T]. (34)

Proof. (34) immediatly follows from (32) and from

(31, M(0) = ~200, (1) — Re(ADAD, MD) <
< —2(1 - &) (A0, AO).

Now we can prove the Theorem 2. From Condition 2 we get the
existense of a local continuous solution of (15) near every ¢ such that
z(t) € B(zo,r||¢(x0)||). Let us show that z(t) € B(zo, r|le(z0)|]) for
all [0,+00). In fact let z(t1) be the first intersection point with the
boundary of the ball B(zo, 7|l¢(xo)||) for the curve z(t). So

llz(t) — zo|| < rlle(zo)ll, for te€0,t),

and _
llz(t1) — zl| = rlle(zo)ll. |
Denote A(t) = p¢'(z(t)), C1 = max{||Yol|, lle™*||-}. From Lemma
1 we get the éstimate :
Iyl <G for €0t
for the solution of the problem (15), where
C1 = max{||%ll, lle" 11 }-

The last term in (14) satisfies the estimate
" @)Y Ol < lle"@O)ONIYOI <

< Ny ol < Celle'll-llell-

It follows from (17) that if p > po then the conditions of Lemma 2
are valid for C; = max{||¢'(zo)Yo — El|,€}. At the same time from
(16) we obtain C, < 1. Further from Lemmas 2,3 and from (16)
we get that for p > po the solution of the problem (14) satisfies the
inequalities ‘

AR S C2 mun te€[0,t],

A € Aoe™ = nan t € [0,1].
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So we have the estimate for the solution of the problem (15)

ll2(t) — o]l < u/ ()ds]| <

t
C
< —-(1-C2)s = 1
< |]ga(:r0)||0/e ds 1=y

The last one is in a contradiction with the assumption that z(¢;) be-
longs to the boundary of B(xo, r|li(zo)||). Thus z(t) € B(xe,r||¢(x0)l])
for all ¢ € [0, +00).
_ Consequently,
lim ¢(z(t)) = Jim At) =0

t—+00

and lim;_,., z(t) is the solution of the problem (1).
4. Numerical example

Let us consider the Cauchy problem for the following Kirchhoff
Equation:

. 27 ’
un(t,z) — (a + b/ui(t,x)da:)uu(t,x) =0, t>0, ze€]l0,2n],
0

u(O,a:) = uO(x)7 ut(o’x) = ul(x)’ (36)
with a periodic initial data
ug(x), u1(z) € C[0,27],uo(0) = uo(27),u1(0) = w; (27).  (37)

One can easily prove that the solution of the problem is periodic by
z too. Denote

p(t) =a+ bzfrug(t,x)dx, u(t, ) = w(t, 2), :
° (38)

u2(t,x) = u-‘ﬂ(tvx)” u2(x) = ué)(x)’

llp(zo)ll(1—e~1=%%) < rlje(zo)ll-

and write down the problem in form of the following system:

B rB52 =0 w(0,2) =u(),
{ A (39)

du _%u () 4y(0,7) = us(z).

After the integrating of this equations from to to t we get the system
of integrodifferential equations

ul(t,x)_ul(tva)_!ﬂ(r)%(Tam)de 0 '
{ (40)
uy(t, ) - uy(to, z) — [ §2(r,z)dr = 0.

Now we make the dicretization of these equations by ¢ assuming h =
t—1o be enough small and the functions u;(tg,z), wuq(to,x) be known
. For uy(t,z) and uz(t,z) we get the following nonlinear system

{ e1(tyz) = wi(t, 2) — Su(t)B2(t, 7) — wi(to, z) — 2p(to) 52 (t0, 2) = 0,

pa(t, ©) = ua(t, ) — 352(t,2) — us(to, @) — 552 (to, ) = 0.
(41)
Denote by ¢ a nonlinear operator acting from C'*°[0, 27]x [0, 27|
to itself in according to (41). The Fréchet derivative of the operator
@ can be represented as the matrix operator

(1 @ N
where ¢} and 5 are linear operators: for £ € C'°°[0, 27]
’ ! . 6
P16(z) = ~05h(H(E (D) + uluz, ) G2 (a)),  (43)
¢he = —0.5h¢’, (44)
where \
w(u,€) = 2 [ u(2)¢(e)da. (45)
0
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Let us consider the Hilbert space L2[0, 27] of pairs of real-valued func-
tions (£1,€;), which are L?-integrable on [0, 27], with the scalar prod-
uct

< (é1,€2), (m,m2) >= /(fl(l')fh(l') + &o(z)n2(x) )dz. (46)
The operator .
o = ( (pII; <P11) (47)
is adjoint to ¢', where
#re(z) = OSA(U(DE (@) — W2 Eua), (48)
@2€(z) = 0.5h¢'(z). (49)

For the numerical solving of the equation (15) using the scheme de-
scribed in Sect.2 we calculate operators

- I+ P+ )
= . 50
e ( ¢yt s T+e9 (50)
. I+¢70; @1+ )
= . : 51
v ( Wh+ ¢ T+ (51

where
(¢ + @1)E(z) = 0.5R[(1 — p(t))€'(z) — pluz, Euzs],  (52)
(0% + ¢3)E(z) = —0.5h[(1 — p(t))€'(z) + p(uz, §)uaz], (53)
@36 (x) = —0.25R%(u(t)*€" () — p(t)p(uaz, §)uaa+

.+l‘(t)p(u2, gy — p(uag, €)p(us, uz)uz,] =
= —0.25k[u()%€" (z) — p(t)(u2g, )2z — p(U2zs E)pr(ua, wa)uaal,

(54)
LPIILPI; (:L‘) = —0.25h?[#(t)2611($) + 2(a - 2.“(t))l‘(u2:m 5)”2:0]’ (55)
P’ 1E(z) = 1phé(x) = —0.251%¢" (2), (56)

12

(PI;(pllﬁ(x) —0. 25h2[ﬂ' ) + :u(u2’ £)u2zz+
+ #(t)#(tl’?ru 5)“’2 - ll'(u2:c’ u2z)l"(u2’ )U'?]' (57)
For the calculation of ¢'5¢{¢ one can use the relation ‘
ll'(u2:c:m 6) = ’—#(u%:’ 51)

One can obtain the initial approximation Y, from the following oper-
ator equations \

I ‘P’l)( Y Yn)_( I 0)
(o 70w w)=Co 1) (58)
Yu=(I-vied)” Ya=-¢Yu,

Yo = (I —ppp))™s Yo =—¢1Ym,

SO

where o : :
hph(a) = 0.25k*[u(t)e" (=) — p(uze, Euz,

yphé(z) = 0. 252 [(£)€" () + (2, €z
For the testmg of the algorithm the problern (35-36) was numerically
solved for (z,t) € [0,27] x [0,27],a =1, b= 2, ul(a:) =0 and

uo(z) =0 for =z €0, —2—]U[—,27r ,
L 11 3
uo(z) = 10exp|+ + =] for z€ (7r 7r)
f-z ¢-7F
To this end the problem (15) was solved for every t = 0.1kl, [ =
1,...,N. As an initial iteration step 70 = 0.1 was choised and then.
for every next iteration the value of the step was determined by the
recursion formula ([8]) 7 = 8k_17k-1/8k, where the discrepancy &
after the iteration number k was calculated by the following formula

8y = sup \th)+<p2tx)

z€[0,27]

For every t the iterations were done until the discrepancy becames
less than 10-2. Usually it was enough soon, after 8-10 iterations.

The results of the numerical calculations for ¢ € [0, / 2] are illus-
trated by the following picture.
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5. Conclusion

In the present paper a modification of the Continuous Analogy of
Newton Method for the numerical solving of the nonlinear problems

is suggested. It permits one to replace the inversion of the derivative
operator ¢'(x) on every step of iterations to its inversion only in the
initial approximation point zo. Iterative process "keeps” determined
: T initial Yo = ¢'~'(x0), since Y () remains nearby '} (x) during the
e I ; all iterations. At the same time the convergence theorem is proved
T under almost the same conditions as for CANM. P
Niimerical calculations for.the model problems have shown the ef-
fectiveness and adequately fast convergence of the iterative schemes

RS NNy

N
s AR \ S O based on the suggested method. The example of the Kirchhoff equa-
1 \ ie‘\u\\\\ i\\ <N "‘ \\\ - tion has shown how one can considerably diminish the quantity of the
S i A

. N Y \\\\\\% “\\ ) . Sl : . e

3 A Ve ) g ‘ .
; f\\:\\\\\\ \v \\ \\\\ é‘//////% "Q b\\\\\\\ , ) calculations, avoiding the laborious procedure of the multiplication Qf
1 \\ \\ \\ \ \ ’g‘,f/ ////'é\(\\\\\\\\\\\\ large size matrices by means of some preliminary analytical calcula-
\\“\\ \ \\\\\\\\\\ \\ \\0}//////////// ///,NR\\\\X\\‘\\ tions. On the other hand, we would like to mention that the method

A /4/ \\ii\\\\\\\&x\\\llg\{\\\\\‘&&\‘\\\f/ /////A"“‘\\\\\\k\\\\\\ _ makes it possible to construct the parallelzing algorithms. '

N \\\\ ‘«‘\\\\\\\\\\\\\\\\\\\%[l///// ///// /\\\\\\ \\\ It is clear from the Theorem 2 that the convergence of iterations
i \\\ \\\\&\\ depends on the choice of p in- (15). However po is a priori unknown
‘ / \ i in numerical realizations. So we started from p = 1 and. in the case
\ \ RS of divergence of the process, repeated it with a larger value of p and
\ probably with a farger number of iterations. However for considered

x nunerical examples, the convergence had usualy already occured for
a p=1 Coe :
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