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Introduction 

Let us consider a nonlinear equation in Hilbert space 

cp(x) = 0. (1) 

A principal point of the realization of Continuous Analogy of Newton 
Method (CANM) ([1], [2], [3]) for solving (1) is the inversion of the 
operator cp'(x). Such inversion is often difficult and could be a reason 
for a decreasing of the accuracy of calculations. In [4], the method of 
parameter variation has been suggested. It reduces the inversion of a 
matrix-function A(,\) to the nonlinear matrix differential equation 

(2) 

A combination of CANM with the method of parameter· variation 
has been realized in [5], where the Newtonian Iterative Scheme with 
simultaneous inversion of cp'( x) has been constructed. The similar 
algorithm, but in a framework of usual Newton Method, has been 
earlier investigated in [6]. 

In this paper we suggest another method realizing CANM with 
a simultaneous solving of the operator differential equation for the 
inverse derivative. Howe~er, in contrast to the papers cited above, for 
the inversion of cp'-1 we use a linear nonhomogeneous equation. Such 
modification has made it possible to prove the convergence theorem 
under almost the same conditions on cp as in CANM ([l]). 

The paper is organized in the following way. In Sect. 1 the cover
gence theorem for CANM is brought. In Sect.2 the proposed method 
is described and the convergence theorem is formulated. The last one 
is proved in Sect.3. And in Sect.4, the numerical example illustrating 
the applications of the method is examined. 
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1. Continuous Analogy of Newton Method 

Let H be a real or a complex Hilbert space and L( H) - the space 
of linear operators in H. Let us consider the equation ( 1) for c.p : 
H --t H. 

Denote by x0 some initial approximation to the solution of (1) and 
by B(xo, r) the ball: llx - xoll < r. We assume that the following 
condition on c.p holds. 

Condition 1. There exist soni.e positive real numbers r, c and 
continuous operator-valued function F(x) from B(:co, rllc.p(;ro)II)' to 
L( H) such that. 

1) there exist Frechet derivative c.p'(x) and Gateaux derivatives 
<p"(x) and F'(x), and they are lo,cally bounded in B(:ro,rll.p(;ro)II); 

2) for every x E B(x0 , rllc.p(xo)II) the spectrum of the operator 
<p'(x)F(x) lies in the half-plane Rez 2:: c; 

3) for any x E B(xo, rllc.p(xo)II) 

IIF(x)II $ re. (3) 

Now let us consider the following Cauchy problem in H: 

x'(t•) = -F(x(t))c.p(x(t)), 0 $ t < oo, x(O) = :ro, (4) 

Theorem 1. If Condition 1 holds then 
1) there exists a solution x = x(t), t E [O, oo) of the problem (4) 

and x(t) E B(xo;rllc.p(xo)II) for all t E [O,+oo); 

lim x(t) = x* 
t-+oo 

2) there exists 
(5) 

and x,* is the solution of the problem (1). 
Remark 1. 
a) If F(x) = [<p'(x)J-1 then we get CANM. In that case c:;:; 1 and 

Theorem 1 turns into the convergence theorem for CANM([l]); 
, b) if F( x) is an identity operator one obtain the method of rapidest 

slope; 
c) F(x) = [c.p'(x)]* corresponds to the gradient method. 
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Proof. ([1]). From the Condition 1 we get the local existence of 
a solution of the problem ( 4 ). Then from ( 4) 

<p'(x(t))x'(t) = -<p'(x(t))F(x(t))c.p(x(t)). (6) 

Let us denote 
,\(t) = ~(x(t)), (7) . 

then from (4) we obtain 

,\'(t) = -c.p'(x(t))F(x(t)),\(t), ,\(0) = c.p(xo). (8) 

Therefore 

~(t) = exp [- / <p'(x(s))F(x(s))ds] <p(x0 ). (9) 

From Condition 1 we come to tµe following estimates 

11,\(t)II s llc.p(xo)lle-ct. (10) 

and 
t t 

llx(t) - xoll $ II j x'(s)dsll $ j IIF(x)ll 11,\(s)llds $ 
0 0 

... 

$ IIFII X llc.p(xo)ll(1 _ e-ct) $ rllc.p(:ro)II- (ll) 
C 

So x(t) doesn't abandon the ball B(xo, rllc.p(xo)II) fot t E [O, oo ). 
Thus from (10) we get 

lim <p(x(t)) = lim ,\(t) = 0, (12) 
t-oo t-oo 

so limt-oo x(t) is the solution of the problem ( 1 ). 
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2. CANM with Simultaneous Inversion of i.p'. 

Convergence Theorem 

Now our goal is to develop the Continuous Newton Method with 

Simultaneous Inversion of r.p'. 
We consider the following system: 

{ 
r.p(x) = 0 
r.p'(x)Y - E = 0, 

(13) 

where YE L(H) and Eis an identity operator. Let }'o be an approx

imation to r.p'(xo)-1
• Denote 

( 
,\(t)) _ ( <p(x(t)) ) 

. i\ ( t) - r.p' ( X ( t)) y ( t) - E . 

and consider the Cauchy problem 

,\'(t) = -r.p'(x(t))Y(t),\(t), . 

{ 
A' ( t) = - p2 ( r.p' ( X ( t)) ( r.p' ( X ( t) ) ) * A ( t) + A ( t ) r.p' ( X ( t ) )( <p

1 
( X ( t ) ) ) * ) + 

+( r.p"( x( t) )x'( t) )Y( t ), 
' (14) 

,\(0) = r.p(xo), A(0) = cp'(xo)Yo - E, 

where p is a positive real number, and r.p"(x) for fi~ed ;r E H is 
Gateaux derivative that is a linear operator from H to L(H) such 

that 

<.p1(x + ~) - r.p'(x) = r.p"(x)~ + T/, and IIT/IIL(H)ll~W
1 
-+ 0 for~-+ 0. 

Then instead of the ( 4) we consider the problem 

{ 

x'(t) = -Y(t)r.p(x(t)), · 
Y'( t) = -p2( ( r.p'( x( t) )*<p'( x( t) )Y(t) + Y( t )cp'( x( t) )( r.p'( x( t)) )* )+ 
+2p2 (cp'(x(t)))'", 

- (15) 

x(0) = xo, Y(0) = Yo. 

We consider now the following condition on cp. 

4, 

I 

Condition 2. There exist some positive real numbers r and E 

such that 
1) there exist· Frechet derivative r.p'(x) and Gateaux derivative 

r.p"(x) in B(xo,rllr.p(xo)II) and 

ll'P"llr = sup sup 11('-P"(x)~IIL(H) < oo; 
xEB(xo,rll,p(xo)II) eeH,llell=l 

2) for any x E B(xo,rllr.p(xo)II) the operator (cp''"(x)) is invertible 
and 

ll'-P1
'"-

1
llr = sup ll(<p'*(x)t

1 II < oo; 
xEB(xo,rll,p(xo)II) 

3) the following inequality holds 

O < max{IIYoll, ll'-P',.-
1
llr} < r 

1 - max{llr.p'(xo)Yo - Ell, t} · 

Let us denote 
ll'Pllr = sup llr.p(x)II, 

xEB(xo,rll,p(xo) II) 

Po = max{ I IYol I, I lcp'*-1 1 Ir} llr.p',.-l llr ,/ I l'P"I Ir I l'Pllr 
2E 

(16) 

(17) 

The following theorem establishes the convergence of the method. 
Theorem 2. If Condition 2 holds, then for p > po and for t E 

[0, +oo) 1) there exists the solution (x(t), Y(t)) of the problem (15) 
and 

x(t) E B(xo, rllr.p(xo)II), (18) 

llr.p'(x(t))Y(t) - Ell ~ max{ll'-P'(xo)Yo - Ell, t}; (19) 

2) there exists 
lim x(t) = x* 

t--++oo 

H x* is the solution of the problem (1). 

3. The proof of Theorel? 2 

First we prove some lemmas. Let us consider the Cauchy problr::n 

Y'(t) + A*(t)A(t)Y(t) + Y(t)A(t)A*(t) - 2pA*(t) = 0, 

5 
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Y(0) = Yo, 

where A(t) is a given continuous operator-valued function on [0, +oo ). 
Lemma 1. Let the operator A*(t) be invertible for every t E 

[0, T], T ~ +oo and the following estimates are valid 

IIYoll ~ C1, 

Pll(A*(t))-111 ~ C1, for t E [0,T]. (21) 

Then there exists the unique solution of the problem (20) on [0, T] 
and 

IIY(t)II ~ C1 for t E [0, T]. (22) 

Proof. As it has done for Riccati matrix equations in [7] , we 
consider the auxiliary system 

{ 
U'(t) - A(t)A*(t)U(t) = 0, U(0) = E, 
V'(t) - 2pA*(t)U(t) + A*(t)A(t)V(t) = 0, . V(0) = Yo. (

23
) 

t 
The operator U(t) = expf A(s)A*(s)ds is invertible and so 

0 

Y(t) = V(t)u- 1(t). 

Now we introduce an operator-valued function 

w(t) = V*(t)V(t) - C;U*(t)U(t) = 

= U*(t)(Y*(t)Y(t) - C; E)U(t). 

Denote by (,) the scalar product in H, then for any e EH 

(24) 

(25) 

! (e, w(t)e) = (e, [2pU*(t)A(t)V(t) - V*(t)A*(t)A(t)V(t)+ 

+2pV*(t)A*(t)U(t)-V*(t)A*(t)A(t) V( t)-2C;U*( t )A(t)A*( t)U( t)]e) = 
= 4pRe(U(t)t, A(t)V(t)t) - 2IIA(t)V.(t)tll2 - 2c; IIA*(t)U(t)tW-

From the inequality 

2p(U(t)e,A(t)V(t)O ~ p211u(t)e11 2 + IIA(t)V(t)eW, 

6 

11u(t)e11 = ll(A*(t))- 1A*(t)U(t)e11 ~ ll(A*(t))-1 II IIA*(t)U(t)ell 

and from (21) we get 
d 
dt ce, w(t)e) ~ o. 

So 
ce, w(t)t) -~ ce, w(o)o 

and 

(e, U*(t)(Y*(t)Y(t)-C;E)U(t)e) ~ (e, U*(0)(}'~*Yo-Cf E)U(0)e) ~ 0. 

Therefore 

IIY(t)U(t)tll2 - C;IIYoll2IIU(t)tll2 ~ lll'otll2 - crnew ~ o. 

The estimate (22) follows from the last inequality and from the in
vertibility of U(t). 

Now we consider the Cauchy problem 

A'(t) + A(t)A*(t)A(t) + A(t)A(t)A*(t)-D(t) = 0, A(0) = Ao, (26) 

where A(t), A(t), D(t) are the given continuous operator-valued func
tions on [0,+oo]. 

Lemma 2. Let an operator A*(t) be invertible for every t E 
(0, T], T ~ +oo .fnd the following estimates are valid 

IIAoll ~ C2, 

IID(t)ll ll(A*(t)r1 112 ~ 2C2, for t E [0, T]. (27) 

Then there exists a unique solution of the problem (26).on [0,T] and 

IIA(t)II ~ C2 for t E (0, T]. (28) 

Proof. The proof is very similar to the previous one. We consider 

{
. U'(t) - A(t)A*(t)U(t) = 0, U(0) = E, •J 

V'(t) - D(t)U(t) + A(t)A*(t)V(t) = 0, V(0) = A0 . (-
9) 

7 



Then 

and 

A(t) = V(t)U- 1 (t). 

\ll(t) = V*(t)V(t) - C?U*(t)U(t) = 
= U*(t)(A *(t)A(t) - CiE)U(t). 

For any e EH 

! (e, \ll(t)e) = (e, [U*(t)D*(t)V(t) - 2V*(t)A(t)A*(t)V(t)+ 

+ V*(t)D(t)U(t) - 2C?U*(t)A(t)A"(t)U(t)]0 = 

(30) 

(31) 

= 2Re(D(t)U(t)e, V(t)O - 2IIA"(t)V(t)ell2 - 2C?IIA"(t)U(t)ell2. 

Because of A"(t) is invertible we have 

2(D(t)U(t)e, V(t)e) < 

::; o.s11(A'"(t)t1112IID(t)ll211U(t)ell2 + 211(A*(t))-
11i-2

11v(t)ell2::; 

::; o.s11(A'"(t)t111
4 IID(t)ll211A"(t)U(t)ell2 + 211A'"(t)V(t)e11

2
::; 

$ 2IIA*(t)V(t)ell2 + 2C?IIAoll2IIA"(t)U(t)ell2 

Thus the inequality (28) is proved. 
Then we consider the problem 

,\'(t) + ,\(t) + A{t),\(t) = 0, ,\(0) = ,\0 , (32) 

where ,\(t) is H-valued function on [0, +oo), and A(t) is a given con

tinuous operator-valued function on [0, +oo ). 
Lemma 3. Let 

IIA{t)II $ t:1, for t E [0,T], t:1 E (0, 1). {33) 

Then there exists a unique solution of the problem (32) on [0, T] and 

11,\(t)II $ ,\oe-(t-ei)t for t E [0, T]. (34) 

8 
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Proof. (34) immediatly follows from (32) and from 

! (,\(t), ,\(t)) = -2(,\(t), ,\(t)) - 2Re(A(t),\(t), ,\(t)) < 

$ -2{1 - t:1)(,\(t), ,\(t)). 

Now we can prove the .Theorem 2. From Condition 2 we get the 
existense of a local continuous solution of (15) near every t such that 
x(t) E B{xo, rllcp(xo)II), Let us show that x(t) E B(xo, rllcp(xo)II) for 
all [0, +oo). In fact let x(t1 ) be the first intersection point with the 
boundary of the ball B(xo,rllcp(xo)II) for the curve x(t). So 

llx(t) - xoll < rllcp(xo)II, for t E [0, t1), 

and 
llx{t1) - xoll = rllcp(xo)II-

Denote A(t) = pcp'(x(t)), C1 = max{IIYoll, llcp'"-
1 

llr }. From Lemma 

1 we get the estimate 

IIY(t)II $ C1 for t E [0, t1], 

for the solution of the problem (15), where 

C1 = max{IIYoll, llcp'..-
1

llr}. 

The last term in ( 14) satisfies the estimate 

ll(cp"(x(t))x'(t))Y(t)II $ llcp"(x(t))x'(t)II IIY(t)II < 

< llcp"llrllx'{t)II IIY(t)II $ C;llcp"llrll'Pllr• 

It follows from {17) that if p > p0 then the conditions of Lemma 2 
are valid for C2 = max{llcp'{x0)Yo - Ell, t:}. At the same time from 
{16) we obtain C2 < 1. Further from Lemmas 2,3 and from (16) 
we get that for p > p0 the solution of the problem (14) satisfies the 

inequalities 
IIA(t)II $ C2 ,.!\JIJI t E [0, t1], 

11,\(t)II $ ,\oe-(t-Cl)t .I\JIJI t E [0, t1], 

9 



So we have the estimate for the solution of the problem (15) 

t1 

llx(t1) - xoll::; II J x'(s)dsll::; 
0 

t1 

::; C1 llcp(xo)II j e-(l-C2 )sds = (l ~
1C

2
) llcp(xo)ll(l-e-(l-C2 )ti) < rllcp(xo)ll-

o 

The last one is in a contradiction with the assumption that x( t1 ) be
longs to the bou!)-dary of B(x0 , rll<t?(xo)II). Thus x(t) E B(xo, rllcp(:ro)II) 
for all t E [0, +oo ). 

. Consequently, 

lim cp(x(t)) = lim ,\(t) = 0 
t-+oo t-+oo 

and limt-+oo x(t) is the solution of the problem (1). 

4. Numerical example 

Let us consider the Cauchy problem for the following Kirchhoff 
Equation: 

• 211' 

Utt(t,x)- (a+ b j u;(t,x)dx)uxx(t,x) = 0, t > 0, x E [0,27r], 
0 

u(0,x) = u0 (x), Ut(0,x) = u1(x), 

with a periodic initial data 

(35) 
(36) 

uo(x),u1(x) E C00[0,27r],uo(0) = uo(27r),u1(0) = u1(27r). (37) 

One can easily prove that the solution of the problem is periodic by 
x too. Denote 

211' 

µ(t) =a+ b J u;(t,x)dx, u1(t,x) = Ut(t,x), 
0 

u2(t,x) = ux(t,x), u2(x) = u~(x), 

10 

(38) 

and write down the problem in form of the following system: 

{ 
W- - µ(t)~ = 0, u1(0,x) = u1(x), 

£.!!J.. £.!!J.. - 0 (0 ) - ( ) ot - ox - ' U2 ' X - U2 X • 

(39) 

After the integrating of this equa~ions from t0 to t we get the system 
of integrodifferential equations 

t 
u1(t,x)- u1(to,x)- J µ(r)~(r,x)dr = 0 

{ to 

t 
u2(t,x)- u2(to,x)- f ~(r,x)dr = 0. 

· to 

( 40) 

Now we make the dicretization of these equations by t assuming h = 
t - t0 be enough small and the functions u1 ( t0 , x), u2 ( t0 , x) be known 
. For u1(t,x) and u2(t,x) we get the following nonlinear system 

{ '1'1(1, x) = u,(t, x) - ½µ(t)~(t, x) - u, (to, x) - ½µ(to)~(to, x) = 0, 

cp2(t,x) = u2(t,x)- t~(t,x)- u2(to,x)- t~(to,:i:) = 0. 
( 41) 

Denote by cp a nonlinear operator acting from C 00 [0, 271"] xC 00 [0, 271"] 
to itself in accor~ing to ( 41 ). The Frechet derivative of the opera.tor 
cp can be represented as the matrix operator 

I ( I cp~) cp = cp; I , 

where cp~ and cp; are linear operators: fore E C 00 [0, 27r] 

where 

cp~e(x) = -0.5h(µ(t)((x)+µ(u 2,e)~:2(t,:r)), 

cp;e = -0.5h(, 

211' 

µ(u,e) = 2b j u(x)e(x)dx. 
0 

11 
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Let us consider the Hilbert space L~[0, 27r] of pairs of real-valued func
tions (6, 6), which are L2-integrable on [0, 271"], with the scalar prod
uct 

2,r 

< (6,6), (771,772) >= j(6(x)771(x) + 6(x)772(x))dx. 
0 

The operator 

I* ( c.p = I 
I* c.p 2 

I*) c.p 1 

I 

is adjoint to c.p', where 

c.p';e(x) = 0.5h(µ(t)((x) - µ(~:
2

' Ou2), 

c.p~t(x) = 0.5he'(x). 

(46) 

(47) 

(48) 

(49) 

For the numerical solving of the equation (15) using the scheme de
scribed in Sect.2 we calculate operators 

I+ c.p~ cp'; I+ I*) I I* ( '-Pi cp 1 c.p cp = cp~ + cp'; I+ I I* ' 'P2'P 1 

I* I ( I+ cp';cp; cp~ + cp'; ) cp cp = 
cp~ + c.p'; I+ I* I ' cp 2'P1 

where 

(c.p~ + c.p';)e(x) = 0.5h[(l - µ(t))((x) - µ(u2,e)U2xl, 

(c.p~ + c.p';)e(x) = -0.5h[(l - µ(t))e'(x) + µ(u2,!)u2xl, 

cp~c.p';e(x) = -0.25h2[µ(t)2('(x)- µ(t)p(u2x,Ou2x+ 

+p(t)p(u2,()u2x -p(u2x,e)µ(u2,u2)u2x] = 

(50) 

(51) 

(52) 

(53) 

= -0.25h2[µ(t)2('(x)- µ(t)µ(u2x,e)u2x - µ(u2x,!)µ(u2,u2)u2x], 
(54) 

c.p~c.p';e(x) = -0.25h2[µ(t) 2C(x) + 2(a - 21t(t))p(u2x,Ou2xl, (55) 

c.p~c.p'; e( x) = c.p'; c.p;e( x) = -o.2sh2 e' ( x ), ( 56) 
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cp';c.p~e(x) = -0.25h2[µ(t)2('(x) + µ(u2,Ou2xx+ 

+ µ(t)µ( U2xx, t)u2 - µ( U2x, U2x)µ( u2, e)u2]. 

For the calculation of cp';c.p~ e one can use the relation 

µ(u2xx,e) = -µ(u2x,f). 

(57) 

One can obtain the initial approximation Yo from the following oper-
ator equations · • 

so 

where 

( I c.p~) ( 
c.p; I 

½1 Yi2) = ( 
½1 Y22 

I 0) 
0 I ' 

( 
I I )-1 

. Yi1 = _J - 'P1'P2 ' 

(
. I 1)-1 

½2 = J - 'P2'P1 ' 

½1 = -c.p~Yi1, 

Yi2 = -c.p~½2, 

c.p~c.p~e(x) = 0.25h2[µ(t)C(x) ~ µ(u2x,Ou2x], 

c.p;c.p~t(x) = 0.25h2[µ(t)('(x) + ft(u2,e)u2xxl• 

(58) 

For the testing of the algorithm the problem (35-36) was numerically 
solved for (x,t) E [0,27r] x [0,271"], a= 1, b= 2, u1(x) ~ 0 and 

71" 371" 
u0(x) = 0 for x E [0, 2] LJ[2 , 21r], 

. 1 1 . 7r 371" 
u0 ( x) = 1 0exp [ ~ _ x + x _ :k] for x E ( 2, 2 ) • 

2 2 

To this end the problem (15) was solved for every t = 0.lhl, l = 
1, ... , N. As an initial iteration step r0 = 0.1 was choised and then 
for every next iteration the value of the step was determined by the 
recursion formula ([8]) rk = 8k-t rk-t/ Dk, where the discrepancy Dk 
after the iteration number k was calculated by the following formula 

Dk= sup /cpr(t,x)+c.pHt,x). 
xE[0,21r) 

For every t the iterations were done until the discrepancy becames 
less than 10-3 • Usually it was enough soon, after 8-10 iterations. 

The results of the ~umerical calculations for t E [0, 1r /2] are illus-
trated by the following picture. · 
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Figure 1: u(t,x) 
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5. Conclusion 

In the present paper a modification of the Continuous Analogy of 
Newton Method for the numerical solving of the nonlineM problems 
is suggested. It permits one to replace the inversion of the derirntive 
operator <p1(~) on every step of iterations to its inversion· only in the 
initial approximation point x0 • Iterative process "keeps" determined 
initial Yo= <p1- 1 (x0 ), since Y(x) remains nearby <p'-

1 (;r) during the 
all iterations. At the same time the convergence theorem is proved 
under almost the same conditions as for CAN.M. 

Numerical calculations for. the model problems have shown the ef
fectiveness and adequately fast convergence of the iteratin' schemes 
based on the suggested method. The example of the Eiffhhoff equa
tion has shown how one can considerably diminish the quantity of the 
calculations, avoiding the laborious procedure of the multiplication of 
large size matrices by means of some preliminary analytical calcula
tions. On the other hand, we \vould like to mention that the method 
makes it possible to construct the 'parallelzing a.lgorithms. 

It is clear from the Theorem 2 that the convergence of iterations 
depends on the choice of p in (15). However p0 is a priori unknown 
in numerical realizations. So we started from p = 1 and. in the case 
of divergence of the process, repeated it with a larger ,·alue of p and 
probably with a farger number of iterations. However for considered 
nunerical examples, the convergence had usualy already occured for 

p = 1. 
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