
Ell-96-103

V.P.Gerdt, V.V.Km:nyak

A .PROGRAM FOR . CONSTRUCTING A COMPLETE SET
OF RELATIONS, BASIS ELEMENTS
AND THEIR COMMUTATOR TABLE
FOR FINITELY PRESENTED LIE ALGEBRAS
AND SUPERALGEBRAS

Submitted to «Computer Science Journal of Moldova»

<''

_.;

t • ~\~-~t. t',~ F,

.. : '
,..,.l ;, ' ~ ~ ";; . ,f; ~ ~¥ .f!,,... ~.

·. Gercl.;t; V .P., :,-. ,
Kornyak.v.v.

m ~or Construe-

<

1. Introduction

A Lie algebra Lis an algebra over a commutative ring K with a unit. We shall
consider here only zero characteristic rings. By definition, the iwn-commuta

. tive and non-as;ociative multiplication in a Lie algebra called the· Lie product
and denoted by the commutator [;] , ~atisfies the following axioms·

[u, v] = -:-[v, u], skew- symmetry·,

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, Jacobi identity.

for all u,v,w E L. .

(1)

(2)

A Lie superalgebra is a Z2-graded algebra L = L0 EIJLr with product [,],
i.e. if u E La, v E Lf3, a, f3 E Z2 = {0, I}, then [u, v] E La+f3· The elements of
L0 and Lr are called even and odd, respectively. The Lie product now satis.fies
the modified axioms

[u,v] = -(-1)af3[v,u],
[u, [v, w]] = [[u, v], w] + (-1)af3[v, [u, w]],

u E La, v E L/3.

(3)

(4)

If every element of a Lie algebra is formed by the Lie products of a fi
nite number of elements called generators, then such algebra is j::alled finitely
generated. · If generators satisfy a finite number of relations having the form
of polynomials in the algebra, then algebra called finitely defined. A .finitely
generated and finitely defined algebra is called finitely presented.
· Any finite~dimensional algebra is, obviously, a finitely presented one. Be
sides, there is also a wide class of infinite-dimensional algebras which admit a
finite presentation. Among such algebras there are, for example,

1. Kac and Kac-Moody (super)algebras [1] with their generalization known
as Borcherds algebras [2].

2. Lie (super)algebras of string theories: Virasoro, Neveu-Schwarz ~nd Ra
mond algebras [3]. ·

3. Any simple finite-dimensional Lie algebra can be generated by two ele
ments only with the number and structure of relations independent on
the rank of the algebra. This allows one to define such objects as Lie
algebras of matrices of a complex size sl(>.), ~(>.) and sp(>.), where>.
may be any complex number or even oo [4]. In a similar way,· one can
define some Lie superalgebras of supermatrices of a complex size [5].

0' .. ,~·· , .. ·n .,.,._'1'fl'\..·-, l) .-.. n .. tiut-..
1

rt{l.-t..wa 1 •

~t.4 ... ~ r ~ ('- ~ ~""' • • t!.,.~,li··~ ur. auuO
~~ . 6HSflHOTE!"tE\ ·.~··
·-··-·_.. ~---·

2 Basic definitions

The set X= {xl>x2, ... ,xk} of generators is a set of Lie (super)algebra ele
ments such that any other element may be constructed by their Lie product,
addition and multiplication by elements inK (scalars).

A basis B(X) of a Lie (super)algebra is a minimal set of elements such that
any other element is their linear combination over the ring K.

A Lie monomial m(X) is an element of L constructed by Lie products
of the generators x;. A Lie polynomial P(X) is a linear c_ombination of Lie
monomials. ..J

A set of defining relations R is a set of Lie polynomial equalities of the
form
P(X) ~ 0.

_A Lie (super)algebra Lis called finitely presented if both sets X and Rare
finite.

A finitely presented Lie (super)algebra LF with an empty set of defining
relations is called a free Lie (super}algebra.

Any finitely presented Lie (super)algebra can be considered as the quotient
algebra of LF by the two-sided ideal generated by relations R. Thus, it makes
sense to deal only with those Lie monomials which constitute a basis of the
free Lie (super)algebra, i.e., a set of Lie _monomials which are not expressible
in terms of others by means of (1-4).

It is known that 'a suitable basis of a free Lie (super)algebra can be formed
by regular (ordinary Lie algebra) and s-regular (Lie superalgebra) monomi
als [15, 16].

Monomials are called regular if they are either generators or commutators
of the form [u, v] or [w, [u, v]], where u, v, ware regular and u < v, w ~ u with
respect to some linear ordering of Lie monomials. Depending on the ordering
chosen, one obtains a particular basis of a fr~e Lie algebra. Among the whole
variety of bases the most often used ones were introduced by Hall and Shirshov
(see [15]).

Without getting into details we note that Shirshov and Hall orderings are
analogous, in some sense, to the pure lexicographical and graded lexicograph
ical orderings for associative words.

In our program we use Hall [15] monomial ordering.
To get a full set of s-regular monomials, we have only to add Lie'squares

of odd regular monomials.
For shortness the term "regular" will be used below for both regular and ·

s-regular monomials. .
A set R of relations generating an ideal I of a free Lie algebra is called

complete if

2

(i)oall the monomials in Rare rewritten in terms of regular ones;

(ii). for each v E I also expressed in terms of regular monomials there exists
a relation r E R such that the leading monomial of r is a submonomial
of the leading monomial of v.

The complete set of relations R is called minimal if there is no R' C R such
that R' is also complete.

The left-hand sides of the complete set of relations form the canonical or
Grobner basis. For Lie algebras the canonical bases were introduced in [6], and
for Lie superalgebras in [7] (see also [12, 15, 16]).

Hereafter under reduction of a Lie polynomial modulo set of relations R we
assume its rewriting in terms of regular monomials with substitutions of their
submonomials in accordance with the relations.

3 Outline of the algorithm

Fofconstruction of finitely presented Lie algebras several algorithms were elab
orated and implemented in Reduce [8, 9, 10]. In [11] the algorithm of paper [8]
was extended to Lie superalgebras.

These algorithms are based on the sequential· construction of a subset of
Lie monomials of a given leng~h (or weight) together with the relevant conse
quences of the initial relations.- Then all the Jacobi identities are verified to
select those Lie monomials which are linearly independent modulo both Jacobi
identities and the extended set of relations. The selected monomials form the
spanning set of the corresponding homogeneous component of the Lie algebra
under construction. If the relations are homogeneous, then all t.he elements
of the set are basis ones. Otherwise, the set could be contracted hy further
computations with monomials and relations of larger length.

In the present program we use another algorithm [13] which is based on
'.J

separated construction of bafiis elements and derivation of the relation conse- ·
quence which ends up with the complete relation set.

The complete set of relations is constructed step by step performing a Lie
multiplication of every relation by generators a11d then reducing the product
modulo other relations. If· the reduced relation is non-zero, it is added to the
relation set. This computational procedure is much like to the involut.ive one
for computation of G;obner bases in commutative algebra [1·1].

In. general terms, to rewrite a given set pf Lie polynomials to the minimal
Grabner basis one should compute all possible consequences of these polyno
mials and remove all dependencies among them. The problem is to do that in
the most efficient way. There was elaborated a number of optimizing diteria

3

0

to avoid unnecessary reductions in computation or"associative [12] and, e~pe
cially, commutative [17, 18] Grobner bases. Unfortunately, analogous criteria
have not been formulated yet for the non-associative case in such a way as to
be applied in practice.

Nevertheless, we use some optimizing methods to decrease the volume of
computation. The most important of them are the following:

1. To produce new relations, that is, the consequences of a given relation
we multiply it by the generators only. Consider the Jacobi identity (4)
for the relation r

~·

[[u, v], r] = [u, [v, r]]- (-1)'"P[v, [u, r]], (5)

where a and f3 are parities of u and v, respectively. Here there are three
alternatives:

(a) Both left- and right-hand sides of (5) are reduced to zero. In this
case a new relation is not produced.

(b) Both sides of (5) are reduced to nonzero expressions. In thi~· case
the new relation is obtained from r lzy successive multiplications
by u and v. By applying the formula (5) recursively the process of
generating new relations is reduced to successive multiplication by
generators.

(c) The right-hand side of (5) is reduced to zero while the left-hand
side is not. In this case the corresponding consequence cannot be
derived by successive multiplications by generators.

In our algorithm the latter case is treated separately once the subset
of the complete set of relations has been generated in accordance with
alternative (b).

.Q
2. There is no need to multiply a relation by a generator which fm·ms a

regular monomial with the leading monomial of the relation since all
such consequences are automatically reduced to zero. Let the relation
have the form u + a = 0 with leading monomial u, so that a contains
the other terms. Multiplying the relation by a generator x we obtain
[x, u] + [x, a] = 0. If [x, u] is a regular monomial we must replace u by
-a. It leads to the identity -[x, a]+ [x, a] := 0 and, hence, does not ·
produce a new relation.

3. All computations, starting with processing the input relations, are exe- .
cuted modulo identities (1-4) and modulo the relations treated up to that
moment. This allows us to minimize resimplification of the calculated

'
Q 4 ,··o ";-:: '~'

structures and to keep the system of Lie monomials and relations as
compact as possible at all times in the computation.

The input data for the algorithm are:

• The ordered set of generators X = { x1 , x2 , ••• } with prescribed parities
a; E Z2 and positive integer weights w; (= 1 by default).

• The set of scalar parameters P = {pt,p2 , ••• } if they are present in the
relations.

• The set of defining relations R = {rt,r2; ••• }, where ri are Lie polyno
mials with coefficients from the commutative ring Z(p1 ,p2 , •••] of scalar
polynomials.

• The limiting number of relations to be generated.

The output data for the algorithm are:

• The interreduced set of consequences of the input relations R = { f 1 , ••• } •

• The list E = { e1 , e2 , ••• } of •Lie algebra elements linearly independent
modulo R.

• The commutator table [ei, eiJ = c~ek.

o The table of scalar polynomials in Pi which have been treated as nonzero
during computation. Particular values of Pi providing vanishing of these
polynomials may cause branching of computation and, hence, changes of
the algebra structure.

o The dimensions of homogeneous components.

There are three steps in the algorithm:

1. Generation of the relation set R = { f 1 , f 2 , ••• } of the consequences of the
initial set R. This step executes the subsequent multiplying of relations
by generators adding nonzero results to the set of relations and substi
tuting these new relitions into the other ones; The process terminates
if either all newly arising relations are reduced to zero or the number of
relations goes up to the limit fixed at input. The second case means that
either the algebra is infinitecdimensional or the input limiting number of
the relations is too small.

5

/
2. C~mpletion of the set E = { et, e2 , ••• }. Some elements e;_ are obtained

at 'Step 1 as Lie (sub)monomials of r;. However, generally, the set E
produced must be completed by those regular commutators of already
existing elements which do not occur in E: In doing so one must verify if
new elements are indeed independent. It may happen that there exists a
Jacobi i~entity containing the new element as a term and such that this
identity is reduced to a new relation missing in the output of Step 1. If so
one should add the new relation to R and go back to Step 1. Besides, in
the case of a Lie superalgebra the Lie squares of the odd elements are also
to be added. This step guarantees tn~ termination of the algorithm in the
case of finite-dimensional algebra because all possible regular monomials
~d all relations involving them are constructed.

3. Construction of the commutator table. At this· step the commutators of
the elements obtained at Step 2 are computed directly. The commutators
produced are reduced modulo the relation set R.

If the above algorithm terminates due to the input· limiting number of
relations we can not distinguish two alternatives: either the algebra is finite
dimensional but the limiting number is too· small or the algebra is infinite
dimensional. In the last case the truncated output makes sense only if all
r; E R are homogeneous. In this case we obtain an initial part of the whole
Grabner basis, and t~e set E forms a subbasis of the Lie (super)algebra under
construction.

Otherwise, the algorithm termination means we have a reduced and, hence,
minimal finite Grabner basis. Generally, it does not mean that the algebra is
necessarily finite-dimensional. However, if at the last iteration of Step 2 no
new elements e; were obtained, then we are done with a finitely-dimensional
algebra. In the case of a finite-Grobner basis generating an infinite-dimensional
algebra only those additional elements are to be included in set E which are
regular Lie pairs of elements e; obtained at Step 2.

4 Description of the program

The algorithm has been implemented in the C language. We used Borland
C++ version 4.5 and GCC version 2.6.3 compilers under MS-DOS 6.22. We
hope, however, that the C text can be compiled by other compilers because it
contains only the standard C statements. -

The source code has a total length of almost 8000 lines and contains about
150 C functions realizing: top level algorithms, Lie (super)algebra operations,
manipulation with scalar polynomials, multiprecision integer arithmetic, sub
stitutions, list processing, input and output handling, etc.

6

The code is contained in the file FPLSA.C. Executable file, message file
FPLSA.MSG and input files must live in one directory. The program produces
result both on the screen and into the file FPLSA.SES in the same directory.

Our C code can be easily modified for working over finite fields and gener
alized to handle color Lie superalgebras with finite grading groups [15]. l'v1ore
important development could be adding of additional means for analysis of
the structure of obtained algebras, because it is not clear what to do with
thousands of output relations.

4.1 Run of the program

The program starts with the request

Enter name of existing or new input file ->

The user must enter the name of the file containing input data or the name of
the file to be created. The default extension for the input file name is .IN and
such an extension can be omitted. If there is no file in the current directory
with the typed name, then the program asks

File doesn't exist. C~eate new file? (y/n) ->

If the user enters n (or N) the program is cancelled. Otherwise the program
asks

Enter generator symbols ->

The user should type the names of generators separated by blanks (or commas)
and then push "Enter". The odd generators of Lie super algebra must be
prefixed by the sign "-". The user may enter the names with subscripts
printed at output, e.g., X_1, Z_a. Then the program asks

Enter scalar parameters ->
.

If the task includes parameters the user must enter their names just in t.he
same way as it done above for generators. Otherwise he or she must press the
key "Enter". After the request ·

Enter defining relations ->

the user must enter the left hand sides of relations separated by pressing of
"Enter" if there are relations in the task and push "Enter" twice, otherwise. All
the Lie monomials of input relations must be in the standard form with square
brackets. The syntax of the input expressions assumes blank (not asterisk) for
multiplication and the sign "-" for raising to power. Note that the program

7

is working over a coefficient ring, rather then over a field. Thus, the division
sign should be excluded from the input relations.

At this moment the program reproduces the input data and reads the input
system of relations. Note that after reading an input relation the program au
tomatically reduces every its Lie monomial into the regular form and performs
interreductions of the relations have been input.

If the set of input relations is not empty and has not been reduced to the
empty set in the process of interreductions the progra~ asks

~'
.Enter limiting number for relations ->

The user must enter integer number exceeding the initial number of relations.
This limiting number is needed to prevent infinite generation of the conse
quences of initial relations in the case of infinite Grobner basis.

The next question of the program is

Right-normed output for Lie monomials? (y/n)- ->

If the user chooses y the Lie monomials take the right-normed form in the out
put. It means, for instance, that Lie monomials [x, [x, [y, x]], [[x, y], [x, [x, y]]]
are to be presented in the output as x 2yx and (xy)x 2y, respectively. This form
is often used for the purpose of compactness in representing of non-associative
monomials, especially for those of high degrees. Otherwise the standard form
with explicit square brackets is used in the output expressions.

· Reply y to the following question of the program

Standard grading assumes unit weight for every generator.
Do you want to use a different grading? (y/n) ->

causes, e. g., the dialogue

Enter non-zero positive integer weights for generators:
Weight for X -> 2
Weight for Y -> 1

·weight for z -> 3

It should be noted that prescribing non-trivial weights to generators in such
a way to gain homogeneity of the input relations may allow one to handle
infinite-dimensional finitely presented algebras.

If the user types n the program prescribes unit weights to all generators.
In the case of interreduction of all the input relations to zero the program

gives the message '

The algebra is free.
/

8

•
and asks

Enter limiting weight for basis ->

The user must enter the maximum weight of basis elements of free algebra
which should be printed out. These basis elements and their commutator table
are printed and the program ends up its work as soon as the basis elements ·of
the limiting weight are constructed.

If the algebra is not free the program generates the consequences of the rela
tions performing their interreduction. If in this process a newly arising relation
has parametric coefficients at the leading Lie monomial, then the computation
can be branched depending on whether tliat coefficient is equal to zero or not. ;
If the program has been compiled with defined constant PUT _BRANCHING then
the produced relation is printed with foregoing message

*** Possible parameter branching in relation:

provided also with additional clarifications

*** Parametric factor of relation:

in the presence of common parametric factor for all the terms in the relation,
and . · ·

*** Parametric coefficient at leading term of relation:

in the case without such common parametric factors. In the latter case van
ishing the leading coefficient leads to change of the leading monomial while in
the former case the whole relation is cancelled.

' This feature allows to choose most interesting cases of branching. The
program memorizes all such parametric coefficients in the table which is printed
out after the end of the generation and reduction process. This table is useful
for the systematic classification of the str:ucture of. algebra for different values
of parameters.

Finally the program prints out

o the reduced system. of relations expressed in terms of the initial genera
tors;

• basis elements in the form E;. = ... , 0; = ·"· for even and odd elements,
respectively;

• non-zero commutators of basis elements and dimensions of the homage·
neous, with respect to the input grading, components of the algebra.

9

Note that in the case of infinite-dimensional algebra the end of list of basis
elements may contain some wrong elements. These "boundary" violations are
caused by incompleteness of reduction of higher degree relations.

In the case of infinite-dimensional algebra with a finite Gro.bner basis the
program prints separately "free" basis elements.generating infinite-dimensional
ideal. These elements have the forme;= ... ,o; = ... inthe output.

The program prints also the time and space statistics.

4.2 Control of compiling ·'
We present here the list of constants and macros defined by preprocessor

commar;tds with explanation of their meaning.

#define SUPERALGEBRA switches on the special instructions for handling su
peralgebra. Of course, as ordinary Lie algebra is a particular case of superalge
bra, and it can~lso be processed with the statement being on. Nevertheless the
computation of ordinary algebra is slightly faster wit!} the statement switched
off.

. #define SPACE_STATISTICS collects information on the space consumed by
the generated data structures.

#define LIMITS controls the sizes of different working arrays and stacks. If
the index variable of one of them exceeds the size, then the program is termi
nated with the corresponding message. Besides, the actual maximum values
of indices for a number of arrays and stacks are printed out.

#define PUT _BRANCHING prints out the intermediate relations with parametric
coefficients at the leading monomials showing at which ones the branching of
computation is possible.

#define GENERATION_STATISTICS prints out the total number of generated
relations, the number of those reduced to zero and their relative percentage.

#define TEST_FUNCTION allows to run separately any C function of the pro
gram. for purpose of detailed debugging.

·#define DEBUG serves for tracing input and output of a C function during the
computation. Alm'ost any function can be included in or excluded from this
tracing by defining the correspondent constants.

#define. CHECK_NODE_BALANCE shows the loss of memory in the result of gar
bage accumulation.

#define D_CHECK_EXACTNESS_OF _DIVISION controls the divisions of multi
precision integers in the program which must not have remainders. The state-

10

ment allows to detect possible violations in the process of debugging.

#define D_CHECK_COMPLETENESS controls expressibility of all commutators of
basis elements in terms of existing basis elements.

#define D_PUT_ORDINAL_STACK, #define D_PUT_ORDINAL_TABLE,
#define D_PUT_RELATIONS,#define D_PUT_SUB_SUM_STACK.
These statements allow to switch on or off the printing of large tables in the ·
debugging process.

#define D_BEGIN() provides conditions to avoid unnecessary outputs over
debugging.

#define D_EXIT sets the conditions to terminate computation in the process
of debugging.

4.3 Sizes, limitations and constants for input and 9ut
put

The defined constants below determine sizes of different arrays. Their values
must be set depending on the memory available on the user's computer .

SIZE_NODES defines size of the pool of free nodes for the list structures.

SIZE_ORDINAL_TABLE gives size of the table for Lie monomials.

SIZE_SUB_SUM_STACK defines size of the stack for working subexpressions.

SIZE_ORDINAL_STACK gives size of the stack for working ordinals of Lie mono
mials.

SIZE_MIN_OF _WEIGHT controls size of the arrays keeping watch on the ends of
homogeneous components of the sets of relations and Lie monomials.

MAX_N_NAMES gives maximum summary number of the input geherat.or and
parameter names.

SIZE_BIG_N_W determines size of the working arrays in two-byte limbs for ·
operations with multiprecision numbers.

SIZE_PARA_MON_W fixes size of the working arrays for operations with param
eter monomials.

MAX_PARAMETER_DEGREE gives the maximum admissible degree of a parameter
in the whole set of monomials.

I_SIZE_COEFF _SUM_ TABLE, D_SIZE_COEFF _SUM_ TABLE define the initial size
and increment of thetable for non-zero parametric coefficie'_lts.

11

MAX_SIZE_NAME gives the maximum length of the input name for generators

and parameters.

SIZE_INPUT_STRING defines size of the working string for reading the input

expressions.

MAX_FULL_OUTPUT_SIZE, SIZE_OUTPUT_PART control the output for the rela
tions. The resulting number of reduced relations may be very large, e. g., Serre
relations for exceptional Lie algebra £ 8 produces more than 23000 relations.
The program prints out the full set of reduced relations only if its number does
not exceed the constant MAX_FULL_OUTPUT~SIZE. Otherwise only the first and
last SIZE_OUTPUT_PART relations are printed.

LINE_LENGTH gives the width of the output page.

I.:_SIZE_OUT _LINE, D_SIZE_OUT _LINE define the initial size and increment of
the working string for preparing the current portion of output.

The current implementation has the following limitati_ons due to the internal

data structure used.

The maximum number of input generators is 256.
The maximu:r:n·number of input parameters is 256.
The maximum degree of a single parameter is 255.
The maximum number of Lie monomials is 1073 741824.
The maximum weight of Lie monomials is 255.
The maximum number of relations is 4194 394 if the program is
compiled for superalgebras and 8 388 608, otherwise.
The maximum summary number of two-byte limbs for representing,
a monomial together with multiprecision number is 2147 483 647.

The following symbolic constants are used for input and output.

DOWN_INPUT_SIGN is used for subscripts in the input names, currenpy "-".

BASIS_NAME_EVEN_MAIN, BASIS_NAME_ODD_MAIN,
BASIS_NAME_EVEN_FREE, BASIS_NAME_ODD_FREE are used for output of basis
elements which occur in a Grabner basis and for those generating a free ideal
in the infinite-dimensional case with a finite Grabner basis. Currently they are
'E', '0', 'e', 'o', respectively.

5 Examples of output

The following session files have been produced on a 66 Mhz MS-DOS based
AT/486 computer. We use here the 32bit GCC compiler and~1 G032 DOS
extender.

12
·.

j
'

J
i

. \'
:' r

5.1 Finite-dimensional Lie superalgebra with parame
ters

The first illustrative example, arising in investigating integrability [20] of N=l
supersymmetric fermionic extension of the Korteveg-de Vries (KdV) equa
tion [19]. The supersymmetric version of the conventional KdV equation

Ut = -Uxxx + 6uux

is given by

{
Ut: -Uxxx + 6uux- 3</></>xx~
<f>t- -</>xxx +.3ux</> + 3u<f>x·

(6)

Here u(x, t) and </>(x, t) are even (bosonic) and· odd (fermionic) components of
the extended fermionic field <I> = </> + () u, respectively, and () is a Grassmann
variable.

The prolongation algebra [20] of (6) is generated by the system of seventeen
relations in three even generators XI, x 2 and x2 and one odd generator y.
We deform the original system introducing two parameters p and q to get a
parametric coefficient ring in order to illustrate the classification aspects of the

problem. .
The standard form of Lie monomials is used here in the output.

Enter name of existing or new input file -> skdv-m-r.in

Input data:
Generators, Manin-Radul SKDV: x_1 x_2 x_3 -y;
Parameters, genuine p = -2, q = 6: p q;
Relations:

3 [[[y,x_1] ,x_2] ,x_1] + [[x_2, [y,x_2]] ,x_3] - 3 [y,x_1];

[[y,x_2] ,x_1];
[[x_2, [y,x_2]], [x_2, [y,x_2]]];
[[x_2, [y,x_2]] ,x_1];
[[x_2, [y ,x_2]] ,x_2];
[y,x_3] + [[[y,x_1] ,x_1] ,x_1]; •
[x_1, [[x_2, [y ,x_2]] , y]];
[x_1, [y,y]] + p [x_1,x_2];
[x_2,x_3]- [x_1,[x_1,[x_1,x_2]]];
[[[x_2,[y,x_2]],y],x_3]- 3•[x_1,[x_2,[x_1,x_2]]] + q [x_1,x_2];

[[y,x_2] ,y]; .
[[x_2, [y ,x_2]], [[x_~, [y ,x_2]] ,y]];
[y, [[x_2, [y,x_2]] ,y]];
[y, [x_2, [x_1,x_2]]];
[x_1,x_3];
[x_2, [[x_2, [y ,x_2]] ,y]];
[x_2, [x_2, [x_1,x_2]]];

13

Right-normed output for Lie monomials? (y/n) -> n
Standard grading assumes unit ~eight for every generator.
Do you ~ant to use a different grading? (y/n).-> n
Enter limiting number for relations -> 300

Initial relations:

(1) [x ,x] = 0
1 3

(2) [y,[x ,x]] - [x ,[x ,y]] = 0
1 2 2 1

(3) '2'[y,[x ,y]] + p [x ,x] = 0
1 1 2

(4) [y,[x ,y]] = 0
2

(5) [x , [x , [x ,x]]] - [x ,x] = 0
1 1 1 2 2 3

(6) [x , [x , [x , y]]] + [x , y] = 0

1 1 1 3

(7) [x , [x , [x ,x ']]] = 0

2 2 1 2

(8) [x ,[x ,[x ,y]]] = 0

2 2 2

(9) [y, [x , [x , x]]] = 0

2 1 2

~'

J'

(10) 3 [[x ,x], [x ,y]] - [x , [x , [x ,y]]] + 3 [x , [x , [x ,y]]] - 3 [x ,y
12 1 3 2 2 211 1

] = 0

(11) [[x ,x], [x ,y]] = 0
1 2 2

(12) [y, [y, [x , [x ,y]]]] = 0
2 2

(13) [[x ,y], [x , [x ,y]]] = 0
1 . 2 2

14

(14) [[x ,y], [x , [x ,y]]] = 0

2 2 2

(15) [[x ,y], [x , [x ,y]]] + [y, [x , [x , [x ,y]]]] - 3 [x , [x , [x ,x]]] +
3 2 2 3 2 2 2112

q [x ,x] = 0
1 2

(16) [[x , [x ,y]], [x , [x ,y]]] = 0
2 2 2 2

(17) [[x ,[x ,y]],[y,[x ,[x ,y]]]] = 0

2 2 2 2

Non-zero parametric coefficients:

(1) p

(2) q

(3) p - 1

2
(4) q - 9 q + 18

(5) q - 3

Reduced relations:

(1) [x ,x] = 0

1 2

(2) [x ,x] = 0
1 3

(3) [x , y] = 0

1

(4) [x ,x] = 0

2 3

(5) [x ,y]_ = o
3

(6) [x , [x ,y]] = 0

3 2

15

(7) [y, [x ,y]] = 0

2

(8) [x , [x , [x ,y]]] = 0
2 2 2

(9) [x , [x , [x ,y]]] = 0
3 2 2

(10) [[x ,y],[x ,y]] + [y,[x ,[x ,y]]).:;: 0
2 2 2 2

(11) [y, [y, [x , [x , y]]]] = 0
2 2

(12) [[x ,y], [x , [x ,y]]] = 0
2 2 2

(13) [[x , y] , [y , [x , [x , y]]]] = 0
2 2 2

(14) [[x , [x ,y]], [x , [x ,y]]] = 0

2 2 2 2

(15) [[x , [x ,y]], [y, [x , [x ,y]]]] = 0

2 2 2 2

Basis elements:

(1) E = X
1 1

(2) E : X

2 2

(3) E : X

3 3

(4) 0 = y
4

(5) 0 = [x ,y]
5 2

(6) E = [y,y]
6

16

(7) 0 = [x ,[x ,y]]
7 2 2

(8) E = [y, [x , [x ,y]]]
8 2 2

Non-zero commutators of basis elements:

(1) [E ,0] = 0
2 4 5

(2) [0 ,0] = E
4 4 6

(3) [E ,0] = 0
2 5 7

(4) [0 ,0] = - E
5 5 8

(5) [0 ,0] = E
4 7 8

Dimensions of homogeneous components:

dim G = 4
1

dim G = 2
2

dim G = 1
3

dim G = 1
4

Time: 0.16 sec
Number of relations:
Number of ordinals:
Number of nodes:
Total space: 11656 bytes

128 Relation space:
'257 Ordinai space:
629 Node space:

1024 bytes
3084 bytes
7548 bytes

Here E; and 0; are even and odd basis elements, respectively. Note that
much like to the commutative Grabner basis method (17], the final structure·
of the reduced relations and even their number depends essentially on the
ordering of the generators chosen.

17

It can easily be seen that for the generic values of parameters p and q we
have an eight-dimensional nilpotent Lie superalgebra. The branching of the
algebra structure is possible at the values of parameters p = 0, p = 1, q = 0,
q = 3 and q = 6. The computations with particular values p = 0 or q = 3 or
q = 6 allow to suggest that the algebra becomes an infinite-dimensional one
whereas other singular values of parameters do not change the structure of the
algebra. In (20] the algebra for q = 6 is proved to be infinite-dimensional and
identified with the product of the eight-dimensional nilpotent algebra and the
positive subalgebra of the twisted Kac-Moody superalgebra C<2>(2).

··'

5.2 Infinite-dimensional Lie algebra
The defining relations for this example were proposed in [12]. These relations
define infinite-dimensional subalgebra of Lie algebra of vector fields on a line
(or on a circle). It is also a subalgebra of the Virasoro algebra. We use here
"the right-normed output for Lie monomials just for a change.

Enter name of existing or nev input file-> ufnarovs.in.
Input data:
Generators, Ufnarovsky's example of Virasoro-like algebra,
natural veights - v(X) = 1, v(Y) = 2: X Y;
Relations:
[X, [X, [X, Y]]] - 6 [Y, [X, Y]];
2 [Y, [Y, [X, Y]]] - 3 [[X, Y], [X, [X, Y]]];

Right-normed output for Lie monomials? (y/n) -> y
Standard grading assumes unit veight for every generator.
Do you vant to use a different grading? (y/n) -> y
Enter non-zero positive integer veights for generators:

Weight for X -> 1
Weight for Y -> 2

Enter limiting number for relations -> 9

Initial relations:

3
. (1) 6 YXY - X Y = 0

2 3
(2) 3 (XY)X Y - 2 YX Y = 0

Reduced relations:

3
(1) 6 YXY - X Y = 0

18

2 4
(2) 6 YX Y - X Y = 0

3 5
(3) 10 YX Y - X Y = 0

2 5·
(4) 15 (XY)X Y - X Y = 0

4 6
(5) 30 YX Y - X Y = 0

3 6
(6) 15 (XY)X Y - X Y = 0

5
(7) YX Y = 0

4 7
(8) 30 (XY)X Y - X Y = 0

2 3 7

(9) 30 (X Y)X Y - X Y = 0

Basis elements:

(1) E = X
1

(2) E = y
2

(3) E = XY
3

2
(4) E = X y

4

3
(5) E = x·v

5

19

(10) [E ,E] = 1/30 E
4 I 4 5 9

(6) E = X y
6 I (11) [E ,E] = E

1 6 7
5

(7) E = X y (12) [E ,E] = 1/30 E
7 2 6 8

6 (13) [E ,E] = 1/30 E
(B) E = X y 3 6 9

8 :'
(14) [E ,E] = E

7 1 7 8
(9) E = X y

9 I (15) [E ,E] = E
1 8 9

21
20

,~·~

dim G = 1
9

Time: 0.05 sec
Humber of relations:
Humber of ordinals:
Humber of nodes:
Total space: 756 bytes

9 Relation space:
21 Ordinal space:
36 Jlode space:

~'

72 bytes
252 bytes
432 bytes

In the case of an infinite-dimensional algebra the program prints out only
those commutators which are expressible in terms of the basis elements com
puted.

Note that the chosen input limiting number for relations gives the true
initial part of the algebra under consideration. Such a well formed output
takes place at the limiting numbers 4, 6, 9, 12, 16, 21, 26, ... , whereae other
values lead to appearing of some wrong higher basis elements.

6 Acknowledgments

We are grateful to p. Leites, A.A.Mikhalev and V. Ufnarovsky for fruitful
discussions and useful examples. This work was supported in part by the
RFBR project No. 96-01-01860.

References

[1] Kac, V.G. (1990). Infinite dimensional Lie algebras. Cambridge University
Press, Cambridge, third edition. ·

[2] Gebert, R. W. (1994). Beyond Affine I<ac-Moody Algebras in String The
ory, DESY 94-209, Hamburg.

[3] Leites, D. (1984). Lie superalgebras. VINITI. Itogi Nauki i Tekhniki. Mod
ern Problems in Mathematics. Recent Progress, 25, Moscow, pp.3-50 (in.
Russian). .

[4] Grozman, P., Leites, D. (1995a). Defining Relations Associated with the
Principal sl(2)-subalgebras. To appear.

[5] Grozrp.a,r;., P., Leites, D. (1995b). Lie Superalgebras of Supermatrices of
Complex Size. To appear.

22

(6] Shirshov, A.I. (1962). Some Algorithmic Problems about Lie Algebras.
Sibirsk. Mat. Zh. 3, pp.292-296.

[7] Mikhalev, A.A. (1989). The Junction Lemma and the Equality Problem
for Color Lie Superalgebras. Vest~ik. Moskov. Univ. Ser. I. Mat. Afekh:
5, pp.88-91.

[8] Gragert, P.K.H. (1989). Lie Algebra Computations. Acta Applicandae
Mathematicae 16, 231-242.

[9] Akselrod, I.R., Gerdt, V.P., Kovtun, V.E., Robuk, V.N. (1991). Con
struction of a Lie Algebra by a Subset of Generators and Commutation
Relations, in Computer Algebra in Physical Research, eds. D.V.Shirkov;
V.A.Rostovtsev and V.P.Gerdt, World Scientific Publ.Co., Singapore,
pp.306-312.

[10] Gerdt, V.P., Robuk, V.N., Severyan~v V.M. (1994). On Construction of.
Finitely Presented Lie Algebras. Preprint JINR E5-94-302, Dubna. Sub
mitted to Comput. Maths. & Math. Phys ..

[11] Roelofs, G.H.M. (1991). The LIESUPER Package for REDUCE, Memo-
randum 943, Univ. of Twente, Netherlands. ·

[12] Ufnarovsky, V.A. (1990). Co.mbinatorial and asymptotic methods in alge
bra. VINITI. Itogi Nauki i Tekhniki. Modern Problems in Mathematics.
Fundamental Branches, 57, Moscow, pp.5-177 (in Russian), to appear in
EMS-57 (1995) (in English).

[13] Gerdt, V.P., Kornyak,V.V. (1996). Construct~on of Finitely Presented Lie
Algebras and Superalgebras, to appear in J. Symb. Comp ..

[14] Gerdt, V.P., Blinkov, Yu.A. (1996). Involutive Bases of Polynomial Ide
als. Preprint-Nr.01/1996, Naturwissenschaftlich-Theoretisches Zentrum,
Universitat Leipzig, 1996. Submitted to ·J. Symb. Comp ..

[15] Bahturin, Yu.A., Mikhalev, A.A., Petrogradsky, V.M., Zaicev, M.V.
(1992). Infirrite dimensional Lie superalgebms. Walter de Gruyter. Berlin-
New York. •

[16] Mikhalev, A.A., Zolotykh A.A. (1995). Combinatorial Aspects of Lie Su
pertilgebras. CRC Press, Boca Raton, New York.

[17] Buchberger, B. (1985). Grobner bases: an algorithmic method in polyno
mial ideal theory, in Recent Trends in Multidimensional System Theory; . .
ed. N.K.Bose, (D.Reidel), pp.184-232.

23

()

0

[18} Becker, T., Weispfenning, V., Kredel, H. (1993). Grobne1· Bases. A Com
putational Approach to Commutative Algebra. Graduate Texts in 1\'Iathe
matics 141, Springer-Verlag, New York.

[19} Manin, Yu.l., Radul, A.O. (1985). A supersymmetric extension of the
Kadomtsev-Petviashvili hierarchy, Commun. Math. Phys. 98, 65-77.

[20} Roelofs, G.H.M. (1993). Prolongation structures of supersymmetric sys
tems. Ph.D. Thesis, Univ. of Twente, Ensthede, Netherlands.

_ ..

Received by Publishing Department
on March 26, 1996.

24

•)

fep.IH B.n .•. KopH~K B.B.
DporpaMMa)JJI~ noc;TpoeHH~ nmmoii cHcTel
6a3HCHbix 3JieMeHTOB 11 Ta6JIHUbi KOMMYTaTc
. KOHC'IHO npe.IJ.CTalmeHHbiX anre6p H cynepa:

Uenbl0.3TOH ny6JIHKaUHH ~BII~eTc~ onH
)JJI~ HCCJie.IJ.OBaJiH~ KOHelJHO npe.IJ.CTaBJieHHbl
JJ.aHHbiMH)JJI~ nporpaMMbl ~BII~J?TC~ _nope
JJJI~ 3THX 3JieMeHTOB .. CooTHOUleHH~ . 3M2
cpHUHeHTbl KOTOpbiX MOryr 6biTh UeJihiMH 'II
KOHe'I.HOro ua6opa napaMeTpos. -B · nporpaMJ
llOJIHOi-i CHCTeMbl . COOTHOilleHHH, Ha3hiBae~

6<DHCOM fpe6iiepa HJJ.eana c8o6o.IJ.HOH (cyner
CHCTeMOH COOTHOUleHHH. BhiXOJJ.Hhi~1H JJ.aim

'·uepa, ~B-HbiHBHJJ. 6a3HCHbl~ 3JieMeHTOB cpaKT
JIH no 3aUaHHOMY HJJ.ea.riy, a .faK)I(e Ta6nHU2

Pa6oTa BhmonHeHa s Jla6opaTopm-i Bbi'IJ
OH51H:- 1

npenpHHT Qfu,e)lHHeHHOfO HHCTHTyra Sl)

Gerdt V.P., K~rnyakV.V.
A Progr<,lm.for' Constructing a Complete S·
Basis Elements and Their Commutator Tab
for··Finitely Present~d Lie Algebr~s and Sur

The purpose of this paper is to describe
finitely presented Lie algebras and superal,g
a finite set of generators and relations for the
of Lie polynomials with coefficients bein
integers in. a given finite set of parameters.
of constructing complete set of rehitions cal
on ideal of free Lie (super)algebra generated
data· of the program are Grabner basis,
for the quotient algebra of the free (super)al~

. the table of their commutators.
~ The investigation has been perform

Techniques and_:'.utomation, 1INR.

Preprint of the Joint Institute for N

