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l •·Int.rod1.1ction 

. For a.softwarn developrilent in th~o_retical and experimental physics it is 
important;to have rapid ii.rid reli~ble randoin nu~nbers gc~1erators {RNG). 
The experience of previous efforts in this field [1] shows anobvious ad van

. · tage of ra~do~ ·number generators working in a group generating mode. 
The last ass_ertion leads to an idea of the usage _of cellular automata (CA). 

_ A 'well-known paper of S.,Wolfrani [2] gives a detail example of RNG 
. on the base of one-dimensional CA implementing a pseudorando~ Fi-·
bonacci sequence. Iri this ·way. the authors of given paper decided to use 
more extended possibilities of two-diniensional CA, desribed in section 2. 
Tli~'diffi.culties of a p·ure analyti~alway t6 study RNG properties were 
mentioned yet· in [2] ~ It causes· to apply statistic_al testing for .de terminat
ing both. a generated sequences period and its statistical properties. The 
latters usually includes .investigations of unifom1ity of multi-dimensional 

· distribution, correlation analysis etc. It demands to develop an adequate 
set of software tools for a confidential testing of obtained seq~ences. Be
sides of well-known statistical tests like monotony and gap tests [3] the 
authors propose in section 3 a riovel easy-to-use and pow~rfull method 
for testing the uniformity of multidimentioµal random vectors distribu-

. tion (with dimension up to 20 and more) called the imbedded histogram 
method .. 

Results of. the stu_dy of proposed, methods· for generating of mu}ti
dimel).sional random sequ_ences by twerdiinensional binary CA (TBCA) 

. are given. 

2 . Cellular automata';'ks randoi:n niimher gen-
erators·· I 

. . 

Accord.ing.to the classical T.ToffolCwork [4]:llCellular automata are dis
crete dynamic systems which behaviour is determined -iii tenris of local 
dependeD;cies",. ..·· . . . 

The evolution of CA occurs in discrete spaces consisting of cells. Evo
lution laws are. local i.e. system. dynamics is given by an unchanged set 
of rules1- by which a new state 9f cells. is calculated in depeiidence of 
states of its neighbours. It is essential that this change of state occurs 
simultaneously and time is clocked. . . -
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Despite of the simplicity of their construction, CA can·be capable of 
diverse and complex behaviour [5], which gives a possibility to use CA in 
simulating of nature systems and physical processes (6,7]. In particular 
CA can be used for generating of random numbers. 

In this paper we propose one way of such TBCA applications. In 
the general case two-dimensional CA consists of N * M cells ai; filling 
N * M matrix. The states of cells are integers between O and k-1. These 
values are updated in a parallel mode in.discrete steps according:to the 
following rule: 

ii -a-- -,, </J (ai-:q,j-r, ai-q+_lJ-r, 

ai-q,i-r+l, ai-:q+lJ-,-r+li 

. ai+q,i-ri 
ai+qJ-r+l, ., . 

ai-q,j+r, ai-q+lJ+r, , ai+qJ+r) 

'"(1) 
!•-! ·, 

, ' , : , f 1 >C ,' 1,,,• •jJ 

We consider the ·case of k = 2, r = q = 1, that means that our cellular 
automaton is binary and riebi states of each. cell is . defined by. states' ~f 
both: itsefl and its eight nearest neighbours. . . . . . 

. We investigate the properties of random vectors, generators on. 'the 
basis of two TBCAs, -which are defined acco.rding to the rules: 

and 
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¢1 (i,j) = (.~ :_f ai;)_ ~;]2 
i=i-1 J_""'J-1 . : .. , 

(2) 
'· I' 

( 

i+l j+l )' 

¢2 (i,j) = i~l;~1 ai~ +ai;.* ai~lJ+l _mod 2 (3) 

The method of imbedded histograms .as 
a randomness test . ' . ·. . . ·. ' . . ' l)·' ' 

,1 , _, t,/t 

r I/ ,'I- .; ) r ' 

Thff distribution unuformity of d-dimensional random vectors is a neces-
, \ ;-I " . i,. ' ' .• 

sary and sufficient condition for·.a successful-realization of Monte-Carlo 
algorithms with a dimension, of d [8]. The obtained sequences of integer 
random ·numbers can be normalized by di~ding each of the1e nwnber~. 
by ( 2M - 1 I . The resulting numbers under some conditions supposed to 
be uniform(y distributed in the range from O to 1 and can be considered 
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as d-dimensional vectors: 

X1 == '(xi, ... ' Xd) 
'j{;l = (xd+l, , , , , X2d) 

.:~\' ·x~= (xd(;.:_1), Xnd) ... ' 
(4) 

By splitting a single multidimensional cube to equal volumes· (bins) we. 
cari find a frequency of random vectors hits-in each of these bins. · If 
binning to m is made for each dimension we obtain md equal volumes. 
Such the conventional approach to study statistical characteristics of mul
tidimentional histograms is too time-consuming and requires computer 
IIl~mory growing as md. 

We propose instead a substitution of this cumbersome way of mul
tidimensionaL histogramming by a simple elegant procedure [9] which 
allows to split a,cube-~f ~ny dime!lsion i~t~ m equal bi~s. A k"'.th bin 
(k = 1, 2, ... , m) is located b~tween two d-di~ensional cubes with the 
lengths of siq.es equal corre~pcmdingly to _ak-i :=· fffl- and ak = (f;-.. 
(In other words itjs locat_ed inside a cube with a side ai,, but outside 
a cube with a side a~.:.1 .) For more detailed checking of uniformity of 
multi-dimensional distribution it ou·ghtto make both: binning from each 
corner of ad- ·dimensional single cube and from-its center. In this way we 
obtain (2d + 1) histograms,' each with an unchanged number of historam 
cells m. , · 

Each vector belongs to a k-th volume: 
' , '' , .. 

k = integer{m * [max.(x1 , • • • ,xd)]d} + 1 (5) 

., .... In order to test the uniformity of the distribution of n d-dimensional 
rando~ vectors we can use well-known x2:-~riteri~m. . . . 

For each of k volumes we obtain a frequ~ncy of hit vk and 'then cal-
culate the value of x2: . : 

''m·m·. . . 

x~ = -;;; L ~ _..,, n, · 11 {6) 
" . . , · k=l ·., .. ; . ,. , · · 

It is conve'riient to illustrate the method of imbedded histograms by 
the· c~~ d =~2, m,= 4.,' . . , . . ,,,, 

· Let us:_split'a square hl (Fig.I) to.4 blocks with equal areas (1/m =: 

1/4);. the first one is~ square a1 *a1 {accordingly, a1 = ~), and others 

4. 

c\, 

,! 

I, 

I 
I 

X1 ,t-.............................................. : I 

o ·····················•··•····················: 
3~ - ' 

oel- .x, ............. : ➔ 
O2f························ 

0.6 t-

o,r·········:·········,······: 
0.4~ : 

O.:?t--
➔ .x, 

: .x, 
:-

00 0.2 0.4 01 0.6 020.8 03 IX, 

Figure 1: 2 - D example of the embedded histdgrammi~g. · 

are situated between 4 imbed,de~ squares, in the general case: 

ak = 'dr,;;:;;;,, k = l, · · ·, m, y ,.,,1,, .. 
1 

Accordingly, a hit into a k-th block is defined by the inequality: 

ak < mgx[x1,x2]< ak+l 

or, in the general case: 

r,;;;i < max[x1·, .. ·, xd] < (/(k + 1)/m 

or 

. . ·. .• 'd ·' 
k < m * (max[xi, • • · ,xd]) < k+ l, 

from which the equation (5) follows. 
;•I 

(7) 

"(8) 

(9) 

(10) 

4 Algorithms and <program. :r.ealization of 
· the· generator a~d stati~tical t~sts 

'.· 

Theoretically.CAs are assumed as objects with infinite numbers of cells. 
However in an'.y practical implementation it requires a finite number -of 
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CA cells. This contradiction can be resolved on a way of creating of a 
cyclic structure by defining special boundary• conditions. For the rule 
{1) for r = q = 1 and number of cells N * M we can define boundary 
conditions as: 

I 

tf>(aN,j:._1, 
I 

¢(a;-1,.M, alj = al,j-1, a2,j-l, ail= a;,M, ai+l,M, 
UN,j, a1,i, a2,j, lli-1,1, ai,l, a;+1,1, 

aN,j+l, a1,j+1, a2,j+1) a;-1,2, ai,2, a;+1,2) 

I I 

tf>(aN-lJ-1, q>(ai-1,.M-1, aNj = aNJ-1, .al,j-1, a;M= ai,M-1, ai+l,M-1, 
aN1,j, aN,j, a1,j, ai-1,M, a;,M, ai+l,M, 

aN-:-1,i+i, ·.aNJ+l, ·· a1J+1) a;-1,1, ai,l, a;+1,1), 

{11) 
geo~etricallr t~,8:t _means, ?' .. -~i11;J?le. convo!u~ion ~fa ~ectangle N ~ M to 
a torus. · · · ·· · 

'Computations were made for TBCA with various numbers of N, of 
a matrix columns. with a' fixed number of "rows ivf ·~· 31. The conte~t 
of each column is loading. bit by bit inti::i'a 32-,bit machine word, which 
is then normalized by dividing it by ( 2M '_;_' 1) after that. W~ cho~se 
M = 31-due. to the following reasons: it is close to the word length· of 
the inajority,of computers and it is a simple number that considerably 
increases a CA cycle length [3] ? As the resuit of CA evolution we obtain 
N numbers in the range of ( 0, 1 ). 

While software it~plementing of formulae {2), (3) (11) it is important 
to use such properties"of Fortran-90 as array assignment, masked array 
asignment and array sections. It gives an advantage for the program 
compilation with the vector optimization. · 

Qne of the main characteristics. of RNG !S its period, i.e. a coincidence 
of ¢A state 'B' with resp~ct tb iriy its.rfr~vious state 'A'. It means an 
existence of a period because from state to state CA changes 'according a 
fixed rule. It ought to keep in a view that an initial conditions set-up can 
affect not only on a duration of a possible period but also on a moment 
of evolution:of CA Zfrom whi~h:this periodicity begins. Due to thaf we 
develope a prClc~qure of, checkin'g for a periodicity which takes· in· the 
account an influence of initial conditions and allows to set many control 
points (states of a.matrix of CAwhich- are cheked for a coincidence) with 
a varying ~tep. · .ir · · · · 

One of neccessary requirements to RNG is the absence of a correla-
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tion between obtained random numbers. In this way calculations of a 
coefficient of correlation were made according a formula: 

(12) 
1 .._.n-k -2 1 n 

n-k L-i=l Xi * Xi+k - X - ~ 
Pk=, 1 Ln 2 -2 , where X = -L.,Xi 

;;: i=l xi - X ' n i=l 

for k = 1, 2, ... , 16, 'where k is the distance between two numbers of 
a sequence which ar.e tested. • 

5 Statistical Tests 

Firstly we have investigated the properties of the generator built in accor
dance with the rule (2). As it was found this generator has comparatively 
short period. 'only for lengths of a matrix column N = 125, 150, 250, 500 
we determined that a period length is > 108 • For other various column 
lengths we determined that a period length does not exceed 106 • It:ought 
to mention that a length of a period essentially depends on an initail.state, :· 
ofa'CA,~atrix. '' · ··· . . . ,, · . · . ',, r:•, ,, , 

Attempts to find a generator with a larger period led us to the gener
ator based on the rule(3), which amplifies the rule (2) (calledbeHow,as 
generator CARNG): The period of this generator is equal;to i, 5: ~07. only.·: 
for:a CA niatrix'size 3 ,t31'/starting from the specialinitialstate of CA, 
matrix with orie non~zero row in a·ceriter of a matrix. For oth~r cases'be~;,l, 
ing tested (N = 2, 4, 5, ... , 10, 25, 50,100) a period lerigth is' ~uffi~ie~tly 
longer (at least'> 108). ·· ' · ' < ·'<,i,· • . · -' ·· · _ ·· . 

For both generators. we haye also satisfactory results, on correlatio'n 
checking;· , •·· • ' , . ·. · · ,, ,.. , · ; · . '·. , , · ' , · '· ., t. · · 

Diagrams presented' on Fig.2 demonstrate a good convergence of the, 
coefficient correlation to zero with increasing of statistics. ' 

The embedded histogram method shows the uniformity of distribution 
of obtained random vect'ors in spaces with dimension _f~om 1._to 20.~ 

Distributions of random vectors via splitting a singled- dimensional 
single cube int,o 50. equal.bins. are pre~ented on Fig.3 (the .quantity, of 
obtain~d,rand,om,r:i,;umb<:!rs is_ equal 2 • 106). , , . ,o,; 1: · 1. !F' 

It)s,known that if the degree of freedom is greater then 30 • X:- should· 
be normally distributed. Therefore 99% o£,x2 's are located,wjthin,3a · 
limits, i.e. 1 in our CB:5e,in the interval (~O, 80); ,,The calculations carried, 
out up to 2 • 106 random numbers show that the value of x2 keeps~withiil 
this interval. · · · 
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Figure 2: The· values of correlation ~efficient Pk for CARNG )Vith a 
number of columns N = 16 of CA matrix for quantities of obtained 
numbers 106 and 107 accordingly. 

. As it'was menti~ned in [3], monotony test,is one of the most powerfull 
RNG;-properties tests. We have applied the modification of this test rec
omme~ded in [3] :wlien each·eleme~t immed·i~tely followi~g every serie of 
monotony is discarded to make successive runs statistically independent. 

Classical gap ·test gives also quit. satisfactory results (it is known that 
many generators fail on thi~ test [10]). 

From two described generators we prefer CARNG: it has quit sat
isfactory statis_tical properties, a long period and conforms to desirable 
properties of'RNG'given in [1]. · 

. ""'~ :-1(,( 

6 Conclusions 

The given results of testing of the proposed CARNG on the basis
1 

of 2D
cellular. automaton show its quite suitable properties: multi-dimensional 
uniformity of random sequences, the absence of correlati~e links aiicl quite 
satisfactory:results on various statistical tests.· It was also determined· 
that its period is sufficiently long (at least > · 108). -In our opinion, · 
as though the best features of this generator ( due to its nature) can 
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Figure 3: Frequency of hits of randoiii vectors int<;> in',~ 50 bins, with 
dimensions d = 1, 3, 10, 20 for CARNG with a number ofcolmims N = 25 
of CA matrix ( the solid line is for binning from a left low corner, the 
dashed line is for binning from a right top corner of a d-dimensional 
single cube). 

be effectively· achieved in its parallel realization as a-highly integrated 
electronic chip, the CARNG implementation (vector or parallel) should 
be solved dependently of specifics of every concrete application. 

This work was completed due to the support of the Russian Founda
tion for Fundamental Research. 
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OcoCKOB r.A., THXOHeHKO E.A; 
HoBbIH reHepaTOp CJI)"laHHblX •mc·en 
Ha 6aJe .llB)'MepHOro KJieTO'IHOro aBTOMaTa 

EI 1-95-198 

OnblT HCn_OJlb30BaHH51 reHepaTOpOB CJI)"laHHblX 'IHCeJI npH MO,lleJIHpOBaHHH 
( oco6eHHO B <pHJHKe) IlOKaJbIBaeT O'leBH.llHble npeHMymecTBa HCilOJlb30BaHH51 reHe
paTOpOB, Bblpa6aTb1Bal01llHX CJI)"laHHble BeKTOpbl (rpynm1 HeJaBHCHMblX CJI)"laHHblX 
'IHcen). TTpe.llJIO)Kett HOBbIH scpcpeKTHBHbIH MeTO.u reHepauHH BeKTopoe CJI)"laHHbIX 
'IHCeh Ha OCHOBe .llB)'Mepuoro 6HHapHoro KJieTO'IHOro aBTOMaTa .. TTpoBe,lleHbl COOT
BeTCTBYIOlllHe npoBepKH CJI)"laHHblX noCJie,llOBaTeJibHOCTei-i Ha nepHO.llH'IHOCTb, KOp
peJI51UHOHHble CBOHCTBa H paBHOMepHOCTb MHOroMepuoro pacnpe,lleJieHH51. - ' 

Pa6cfra BbmOJmeua B Jla6opaTOpHH Bbl'IHCJIHTeJibHOH TeXHHl(H 11 aBTOMaTHJaUHH 
omn1. · · · · · ·· · 

npenpHHT O6,,e)lHHCHHOro HHCTHT}'Ta llJlepn1,1x· HCCJICJlOBaHHii. Jly6na, I 995 

Ososkov G.A., Tikhonenko E,A. 
· New Random Number Generator 
on the Base of 2D~Cellular Automaton 
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... 

The. experience of generating of random numbers for. various. simulatings 
especially in physics shows.the.evident advantages·of programmed random number· 
generators emanating random vectors (groups of random numbers). In this•way we 
proposed a new efficient method for generating of random vectors on the basis of 
two-dimensional binary cellular automaton: Due fo its nature our method is suitable· I.,. 
for the parallel implementation. The corresponding set of statistical criteria for testing 
the random vector sequence' period, correlating properties and multi-dimensional 
distribution is developed. 

The investigation has been performed at the Laboratory of Coniputing 
Techniques and Automation, JINR. · · · 
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