


1 Introduct1on

For a software development in thcoretlcal and expemnental physxcs itis

o v1mportant to have rapid and reliable random numnbers generators (RNG).

“The experience of previous efforts in this field {1] shows an obvious advan-

S tage of random number generators worklng in a group generatmg mode. . ..
~ The last assertion leads to an idea of the usage of cellular automata: (CA) SRR

- A ‘well-known paper of S. Wolfram [2] gives a detail example of RNG

lon the base ‘of one-dlmensmnal CA implementing a pseudorandom Fie

- bonacci sequence In this ‘way, the authors of given paper decided to use’
more extended possrblhtles of two-dnnensronal CA, desribed in sectlon 2.

‘.;The ‘difficulties of a pure analytlcal way -to study RNG properties wcre- .
mentioned yet in [2]. It causes to apply statistical testing for’ determinat- -

* ing both a generated sequences period and its statlstlcal propertics. The
_latters usually includes 1nvest1gat10ns of umformlty ‘of multi-dimensional
dlstrlbutlon, correlation analysis etc. It demands to develop an adequate'

- set of software tools for a conﬁdentlal testing of obtained sequences. Be- '

- sides ‘of well-known statlstlcal tests hkc monotony and gap tests (3] the
_ authors propose in section 3. a ‘novel easy-to-use and’ powerfull method :
for testing the un1form1ty of multidimentiaonal random vectors distribu-

. tion (with d1men31on up to 20 and more) called the 1mbedded hlstogram -
- method. B o

- Results of the study of proposed methods for gencratmg of’ multl—
: d1mens1onal random sequences by two-dnnensmnal blnary CA (TBCA) -
“..are glven SR : : : _ ‘ . :

2 Cellular automata as random number gen—
' erators ‘ i o e

| Accordlng to the classxcal T. Toﬁoh work [4] ” Cellular automata are dis-

. crete dynamic systems Wthh behav10ur is deterrmned in termis’ of local' .

dependencies”. e o - SR e

- The evolutlon of CA occurs in dlscrete spaces consrstmg of cells Evo- [EE
lutlon laws are local i i.e. system’ dynamlcs is given by an unchanged set
* of rules, by which a new state of cells is calculated in dependence of .
“states of its- nelghbours It is essential that thls change of statc occurs D

i : s1multaneously and tlme 1s clocked
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Desplte of the simplicity of their construction, CA can be capable of
diverse and complex behaviour (5], which gives a possibility to use CAin
simulating of nature systems and physrcal processes |6, 7). In part1cular
CA can be used for generatmg of random numbers.

In this paper we propose one way of such TBCA applications. In
the general case two-dimensional CA consists of N * M cells a;; filling
N * M matrix. The states of cells are integers between 0 and k—1. These
values are updated in a parallel mode in discrete steps according:to the
followmg rule: :
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We consider the case of k 2, r=qg=1, that means tha.t our cellular

a.utomaton is binary and next states of each cell is deﬁned by states of

‘ both itsefl and its eight nearest nelghbours

. We investigate the propertles of random vectors generators‘ on the
basrs of two TBCAs Wthh are deﬁned accordmg to the rules ‘
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3 The method of 1mbedded h1stograms as
a randomness test

The-distribution unuformity of d-d1men51ona.l ra.ndom veetors is & neces-
sary and sufficient condition for a successful realization of Monte-Carlo

algorithms with a-dimension, of d [8]. The obtained sequences of integer

random ‘numbers can be normalized by d1v1d1ng ‘each of these numbersf
by (2M - 12 The resultmg numbers under some condltlons supposed to
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be umform y d1str1buted in the range from 0 to 1 a.nd can be cons1dered
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By spllttmg a single multidimensional cube to equal volumes (bins) we .

can find a frequency of random vectors hits-in each of these bins. "If
binning to m is made for each dimension we obtain m¢ equal volumes.
- Such the conventional approach to study statistical characteristics of mul-
t1d1ment1onal histograms is too tlme-consummg and. requires computer
‘memory growing as m? . :

We propose instead a subst1tutlon of this cumbersome way of mul-
tidimensional h1stogramm1ng by a simple elegant procedure [9] which
allows to spht a cube of any d1mens1on into m equal bins. A k-th bin
(k=1,2,. ,m) is located between two d- d1mensronal cubes with:the
lengths of s1des equal correspondmgly to Q1= "m and a; = ﬁ

m

(In other words it.is located inside a cube w1th a side-ay, but outside

a cube with a side ay_;. ) For more detailed checking of uniformity of

multi-dimensional distribution it ought to make both: binning from each
corner of a d - dimensional s1ngle cube and from-its center. In this way we

obtain" (2d -+ 1) h1stograms, each with an unchanged number of hlstoram
“cells'm. :

. ,Each vector belongs to a k-th volume'

k= mteger{m * [ma:v ($1, ; ;-’Ed)l }+ 1 (5) 7'

In order to test the un1form1ty of the d1str1butlon of n d—dlmenslonal
random vectors we can use well-known X ~cr1ter1um

For each of k volumes we obtain a frequency of hit vy v, and’ ‘then cal-
culate the value of X ,

BN

thecased 2, m 4.

" Let us spht a square 1 *l (Flg 1 ) to 4 blocks w1th equal areas (1 / m="

1/ 4) the ﬁrst one is a square a; *a; (accordrngly, ap = 1/1/m), and others
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Tt s, convement to 1llustrate the method of 1mbedded hlstograms by’

Figure 1: 2 — D example of the embedded hlstogra.mmmg h

are situated between 4'imbedded squares," in'tfhe general case:

‘» a={k/m k=1,m (V)
‘ Accordmgly, a h1t into a k-th- block is deﬁned by the mequahty
' ak < maa:[a:l,:vz] < ak+1 G (8)
or, in the general case: | B o P P
e < masien, ozl < fEFDm )
or -

k<m*(ma:v[:v1, :vd]) <k+1, o (10)

from Wthh the equation. (5) follows

4 Algorlthms and program reallzatlon of
the generator and statlstlcal tests

l Theoretlcally CAs are assumed as ob]ects w1th 1nﬁn1te numbers of oe]ls :
| However in any practical 1mplementat1on it requlres a finite number of




- CA cells. This contradiction can be resolved on a way of creating of a

cyclic structure by defining special boundary conditions. For the rule
(1) forr =g =1 and number of cells N * M we can define boundary
conditions as:

[

! -
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geometrrcally that means a srmple convolution of a:rectangle N » M to
a torus. '
‘Computations ‘were made for TBCA w1th varrous numbers of N of
a matrix columns with a’fixed number of tows M = 31 The content
of each column is loading.bit by. bit into a 32-bit. machrne word, which
is then normalized by dividing it by (2“ - 1) after that. We choose
M = 31.due. to the following reasons: it:is close to the word‘length of
the majority: .of computers and it is a s1mple number that considerably
increases a CA cycle length [3] .”As the result of CA evolution we obtain
N numbers in the range of ( 0,1 ). : L atelien '
"While software iinplementing of formulae (2), (3) (11) it is important
to use such properties of Fortran-90 as array assignmerit, masked array
asignment and array sections It gives an advantage for the program
compilation with the vector optimization. '

One of the main characteristics of RNG is its period, i.e. a coincidence

of CA: state ‘B’ with respect to’ any its’ prevrous state ’A’. It means an
existence of a period because from state to state CA changes according a
fixed rule. It ought. to keep in a view that an initial conditions set-up can
affect not only on a duration of a possible period but also on a moment
of evolution of CA ‘from which" this perrochcrty begins. Due to that we
develope a procedure of, checking for a periodicity which takes'in the
account an influence of initial conditions and allows to set many control

points. (states of a mattix of CA" wh1ch are cheked for a comcrdence) w1th :

a varying stcp e el RN
One of neccessary requrrements to RNG is 'the absence of a correla-

tion between obtained random numbers. In this way calculatrons of a
coefficient of correlation were made according a formula:

n—kz 1931*33z+k—37 o1&
pe= "= T g7 where ¥ = EPZI T (12)
for k =1,2,. 16 where k is the d1stance between two numbers of

‘a sequence wh1ch are tested.

5 Statistical Tests

Firstly we have investigated the properties of the generator built in accor-
dance with the rule (2). As it was found this generator has comparatively
short period. Only for lengths of a matrix column N = 125, 150, 250, 500
we determined that a period length is > 108. For other various column
lengths we determined that a period length does not exceed 108. It ought -
to mention that a length of a penod essentlally depends on an 1n1ta1l state
of ' CA matrix. : oy P
Attempts to find a generator with a larger per1od led us to the gener-f
ator based on the rule(3), which amplifies the rule (2) (called bellow .as
generator CARNG) The period of this generator is equal to1,5- 107 only
for'a CA matrix’size 3 *' 31 startrng from the spec1al initial state of CA
matrix with one non—zero row in a‘center of a matrix. For other cases be-“"'
ing tested (N =2;4,5,...,10, 25 50 100) a perrod length is suﬁicrently
longer (at'least > 108) h e
For both generators we have also sat1sfactory results on correlat1on
checkrng N r o o
Dragrams presented on Frg 2 demonstrate a good convergence of the.: ‘
coefficient correlation to zero with increasing of statistics.
The embedded hrstogram method shows the uniformity of distribution
of obtained random vectors in spaces with dimension from 1 to20._ :
Distributions of random vectors via splitting a single d- dimensional
smgle cube. into 50 equal .bins.are presented on- Frg 3 (the quantity: of
obtarned random numbers is equal 2 106) e L T
Tt i is known that if the degree of freedom is greater then 30 : x2 should‘
be normally dlstrrbuted Therefore. 99% of; x*'s are located: within 3¢ -~
limits, i.e., in our case, 1n the interval (20, 80).. The- calculations:carried -
out up t0.2- 106 random numbers. show that the value of x? keeps:within =
this interval.
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' F1gure '2: The values of correlat10n coefficient px for CARNG Wlth a
number of columns N = 16 of CA matrix for quantities of obtalned
numbers 106 and 107 accordmgly

As 1t was ment1oned in [3], monotony test is one of the most powerfull k

RNG propertms tests. We have applied the mod1ﬁcat1on of this test rec-
ommended in [3] when each element 1mmed1ately followmg every serie of
’ monotony is discarded to make successive runs statistically independent.

" Classical gap test gives also quit. sat1sfactory results (it is known that ;

many generators fail on this test [10])

" From two described generators we prefer CARNG it has qu1t sat- ..

‘1sfactory statistical properties, a long per1od and conforms to desirable
properties of: RNG glven in [1] :

6 Conclusmns

Py
[

The glven results of teﬁtmg of the proposed CARNG on the basis of 2D-

cellular automaton show its quite suitable properties: multl-dlmensmnal‘

uniformity of random sequences, the absence of correlatwe links and quite

satisfactory Tesults on various statistical tests. It was also determined
that its period is sufficiently long (at least > *10°). In our opinion,

as though the best” features of this generator (due to"its nature) can
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‘Figure 3: Frequcncy of hits of random vectors lnto m = 50 Bins with

dimensions d = 1, 3, 10, 20 for CARNG with a nuinber of columns N =25

of CA matrix (the solid line is for binning from a left low corner, the

dashed line is for binning from a right top corner of a d- dunensmnal
single cube).

be effectively achieved in its parallel realization as a-highly integrated
electronic chip, the CARNG implementation (vector or parallel) should
be solved dependently of specifics of every concrete application.

'This work was completed due to the support of the Russian Founda-
tion for Fundamental Research.
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Ocockos TA., Tuxotienko E.A. . ~ E11-95:198
Ha 6a3e naymepnoro KJIETOYHOTO aBTOMara . -

~ Onwbit ucnonbzoaanuﬂ reueparopoa cnyqaunux uncen npu Monenupoaannn
(ocoﬁermo B (buam(e) MOKAa3bIBAET O4EBHIHbIE npeumymecma MCTIONL30BatHs reHe-
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qucen). l'lpen.noer HOBBIH aqxbex'ruanbm MeTox reHepauuu BEKTOPOB C/Iy4aHHBIX |
YHcefl Ha OCHOBE naymepuoro 6MHAPHOrO' KJIETOYHOO aBTOMAaTa. l'lpoaeneHbl coor-

BCTCTByK)ll.lHC TNpOBEPKH cnyqaymbrx nocnenoaarenbnom‘eu Ha nepuonwmocrb KOp-
pCHﬂUHOHHblC CBOIiCTBaA M paBHOMCpHOCTb MHO[UMCPHOI‘O pacnpeneneHml :
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‘ Ososkov G A, lehonenko E. A : L
-"New Random Number Generator S =
on the Base of 2D CeIIular Automaton :

The experlence of generatmg of random numbers for varlous slmulatmgs

veSpecrally in physrcs shows the evident advantages of programmed random number

generators’ emanatmg random vectors (groups of random numbers) In this way we
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proposed a new efﬁcnent method for generatmg of random vectors on the basis of . e

two-dimensional bmary cellular automaton. Due to its nature our method is suitable’
for the parallel lmplementatlon The corresponding set of statlstlcal criteria’ for testing |-

the random vector sequence perlod correlatmg propertles and multr dlmenslonal

drstrlbutlon is developed U TN LU e ]
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