


Introduction

Under processing of the experimental results, obtained in 1993 on the setup EX-
CHARM, the question was emerged about behaviour and level of magnetic field
in the region where registering apparatus and targets were placed. The setup
EXCHARM is a forward-spectrometer for investigation of hadrén production of
charmed particles and the indication of the narrow resonances in neutron- nucleus
interactions on the U-70 accelerator, at IHEP, Serpukhov, near Moscow. It is a fur-
ther development of spectrometer BIS-2 [1]. The spectrometer includes the following
basic elements: the SP-40 magnet, proportional. chambers, a charged particle identi-
fication system, a Cherenkov shower detector, scintillation hodoscopes, an electronic
system for event preselection and data acquisition. The schematic view of the setup
is shown in fig.1. -

The spectrometer magnet is a dipole with external dimensions 450x 323 x 305 cm®,
with aperture 100x48 cm?. The length of the magnet is 190 cm and the working
magnitude of magnetic field is 0.75 T. The schematic picture of the magnet is shown
in fig.2.

The Cherenkov shower detector-hodoscope is proposed for the registration and
identification of electrons, positrons and gamma-quanta.

The proportional chambers are used for track reconstruction of the particles.
Identification of charged particle momentum is very important problem and its
solving is based on well knowledge of the magnetic field not only inside magnet
but also in the region, where targets and other registering apparatus are placed.
The measurements of the magnetic field components have been performed in aper-
‘ture of the magnet for —158¢m < z < 142¢m. Experimental data are absent for
|z] > 158em , but this information is very interesting. For investigation of the mag-
netic field distribution in the region of basic detectors - propartional chambers and
near target T(z =~ 500cm) the computation of the SP-40 magnetic field has been
performed by code MSFE3D [2]. For computing two methods were used: the finite
element method (FEM) and the FEM with suggested new infinite elements. Yor ac-

. curacy control the computations were carried out on a sequence of three-dimensional
meshes. In this paper the computed results are given and the numerical methods
are described. The performed results can be used for the field behaviour estimate
of similar spectrometer magnets.

1 Using the finite element method

We consider the differential formulation of the magnetostatic problem for two
scalar potentials [3], total - ¥ and reduced - 4. Let fiF bea region with ferromag-
netic material. We choose some region (1, which contains Qz. Let Ty be a boundary
of the region St and {14 = Q\{lp. isa boundary between (p and Q4. Thenwe.have
equations

: div(pVi) =0, z€0Fy (1)
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Fig.1. Schematic view of the setup. PC i)roportional chambers; M:
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(12: Cherenkov shower detector-hodescope
Y,om
450 Yiem
150
88 100 190
b 7
. 7
// of ool - il sl 760 |
) / Xem | s Lem
’ %

X.em Fig.2.5chematic view
of the SP-40 magnet



div(Ve) =0, =€ (2)
with the boundary conditions |
(89 /on) = 8¢/0n — n-HS, z€l; (3)
v=¢+4°,  z€N _ (4)
$=0, z€l. {5)

Function g = p{|V¥1) is given from the closed interval 1 < p. < p < p" where . and
p* are known constants. Vector HY is computed by the Biot-Savart’s law

1
| — 2o

HS(0) = %]Jxv dQs,
Qs

ﬁhere Qs is a source region, J is a known vector of current density, po is .the
permeability of free space, |z — To] is the distance between points z and Zo. Potentiak
4° is defined from the Laplace equation in the region {1F ' :

A¢*(z) =0, z¢€8r, {6)
with the boundary conditions

s
9 _ —nH5, ze€T, jn-Hsds =0. N
on :

It is known that the generalized solutions of the formulated boundary value
problems exist. The generalized solution of nonlinear problem (1)- (5) is unique,
and the generalized solution of Neumann problem {6) - (7} is defined with constant.
Finite element approximations converge to the exact generalized solutions. Asa
finite element {};, we choose convex hexahedron. Let us divide Q by the finite
elements so that = ufY; , uNQ; = @, when i5£§, supposing also, that every face of
element §; is either a subset of To, or a face of the other element, and the boundary

T is formed by faces of the chosen elements. -
We introduce in space with Cartesian coordinate system related to variable £ =

{€1,62,€5), the linear shape functions V¢, for cube {—1,11°
Ne (&) = (1/8)(1 + omibr)(1 + omaba)(1 + Imafs)y ™ =.1" ..,8,

where the coefficients ¢mi are chosen as 1 or -1 so that N& isequal to 1 in the vertex
with number m and 0 in any other vertex. In view of that the cube [—1, 1]® turns
into the element {; under the use of the transformation

s
ve = 3 ap NR(€), k= 1,2,3,

me=1

where zi‘ml, k= 1 2,3 are coordinates of the element §); vertex with number m, the
base fum?tlons Ny (é(z)),m = 1,...8 on element ; may be obtained. We shall find
the solutions of the problems {1)-(5) and (6)-(7) in the form

o(z) =Y $;Ni(z), zelp;
i
4(z) = S 0;Ni(a), welin; | (®)
7
$°(z) = 3 87 Ni(z), =€,
i
where ¢5,¢;,7 = 1,..., M and éf,j = 1,...,, Mg are unknown potentials values in
nodes.of Fhe space mesh, which is obtained as a result of partitioning the region Q.
Substituting the expressions for 1 and ¢ from (8) into generalized formulation of

problem (1)-(5) and taking the boundary conditions into account, we perform the
equation

> ;{;ijN;-VN,-dﬂ + 5 ¢,-]wv,— SN+ S ¢,-]VN.- - VN;dQ =

zrellp Qf =1 €l ' IESt, 14
= —jNill HSdS+ S ¢;‘?.]VN.- - VNdD, (9)
T =€l Qa
i=1,.,M
Potential 4% is found from the equation
3 6f f N - VN;dQ = — j Nn - HdS, (10)
#EQr Qe r
3=1,..,Ms.

Note that there is no need to solve this equation in whole g, because H3 = -v¢®
is orthogonal to gradients of the functions which are equal to 0 on the boundary
of 1 [4]. Le. it is enough to solve equation (10} in some situated near boundary
volume of the region, completing the boundary conditions.

The integrals over regions Qp, Q4 in (9) - (10) are computed by summation of
Fhe_ contributions from separate elements Q,-. In such an element g is a constant,
its argument is computed in the centre. The centre is the point, every coordinate of
which is the arithmetic mean of coordinates of hexahedron vertices.

Let us write the discretized system of the nonlinear algebraic equations (9) with
sparse matrix as .

Fluyy=f, b=py) : (11}

Usually for solving such a system some linearization is used and then the finding
of the solution of system (11) reduces to the sequential solving of the linear problems.
General iterative scheme for solving the nonlinear equation (11) has the form



Bﬂyni—l ¥ —(Fayn—f), n=0,1,., (12}

n

where yo, Fo, 7o are given. Two kinds of this process are usually used:
1. B, = F,, t.=1;
2. B, = F., where F, is-Jacobi matrix.

We use iterative scheme (12) for B, = F, and 7,€(0,1]. The parameter 7 is
chosen depending on behavior of 4 on every iteration. Note that the general theory
of the iterative process (12) for self-adjoint, positive definite operator F is given in
book [5].

Independently of B, form, the linearized system of equations on every iteration

should be solved :
‘ Az=b, (13)
where A- symmetric, positive definite sparse matrix. Usually for this purpose the
incomplete Cholessky decomposition with conjugate gradient method is used [6].
The special algorithms developed by authors in [7] are used for solving the equation
{13} on the vector computer CONVEX C120.

2 Infinite elements
Let us use a more exact boundary condition than approximation (5). Let

lim ¢ =0, ' (14)

O

i.e. the solution region of the problem extends to infinity. Usually in such cases

infinite elements or boundary equations methods are used ¢r the probleii is formu-
lated in volume integral equation form [8]. There are some approaches to construct
infinite elements [9]. We shall use the fact that for the Laplace equation in spherical
coordinate system the solution of the Dirichlet problem has, for example, [10], the
known form -

B0 =3 L Y0,0), (15)

where spherical functions Y, are given by the formulas

Ya(8,0) = Y (atnk cos ko + Bax sin k) PY(cos ), (16)
k=0

here P{¥) are associated Legendre functions.

Let us circumseribe around the magnetic system some sphere with radius rp, the
centre of the sphere is the same as the centre of the magnetic system. It is known,
for example, {10], that for harmenic function ¢ the following behaviour is valid

#(z) ~ O(ghy) when || — os,

rj%.ﬂ":o,

where [ is the surface of the sphere.
For required solution cutside of this sphere the representation

under the condition

8r,0.9) = 2 (20,0,
) n=1

is corr.ect. Function Y5 = 0 in view of symmetry of the magnetic system, the
coefficients o and B, have the form:
(2n+D(n—k F 7

Qg = -mofb/é(rg,ﬁ,cp)l’:(cos ) cos ki sin 0d0dyp,

(20 +1)(n—k) 7 7
s = T L 0/ 0] 6(r0, 8, ) PX(cos B) sin kypsin §d8d:p.

Note that every element of the sphere surface may correspond to the element of a
cube surface, including the sphere and having the common centre with it.

As infinite elements, we consider infinite regions formed by the rays, starting
from_rectangular clements of the cube surface and which are extension of the rays
starting from the sphere centre. In every such an infinite element the solution has t~he:
fom.m (15). Find the approximation for solution ¢(r,8,¢) convenient for numerical
realization. Consider the case, when a cube face is the part of plane 3 = L = const
The other cube faces are considered by analogous approach. ‘

. For the rectangular element of the chosen face, when 2¢ < z; < a¥, 4 = 1,2, we
ave

. i .
¢y, z, L) = Z gﬁ(mf,mg,L)(akml + bexo + crzyz2 + di )+ {17)

=1
+0(87 + 62),

where according to bilinear representation

i

__ KR K2 K2 Kkl
ar = = (1 = —=8,), by = —2(] — =&
( 2 2) % 262(1 61 Sl))

24, )
Ki1 Kx2 agby
k= 7, dp = —.
o 51 62 k Ck
Here for i = 1,2 the notations
6 =zt — 22, Si =zt + 22,



are used. Coeflicients x;; are chosen as 1 or -1 so that the bilinear function

" M; = arzy + beza + T2 + dy
4000 - is equal to 1 in the vertex of the rectangular element with number k and 0 in other
- its vertices.
X On the other hand. according to (13),(16) for the infinite element we have:
5000 ¢~ é(r,0,¢) = 7—;(a.gc038+a“sin9c05<p+ﬁnsin03incp)+ (18)
L r
: + 225, 36in? 8sin 20) + O((1))
4000 5P v ).
3 Let -
L ro = LJcos8,
3000 |-
- then from the condition of function continuity on the cube face as in form (15), and
Y as in form (17), we get:
200 ) n=rl
oo = (1/L)Sho dede,  any = The, bra,
1000 But = Timr Pxbs, Bz = (1/6) Ticy ducs-
\ ) Substituting the obtained coeflicients into (18) and using the notations
FEPETEESS B U AE SN B EE T TGN N T T B A0 S N 0 I % L]
O $=sa06"ho00 7500 70000 12560 15000 17500 20000

8(GS) recospsind = (Lfzg)ry, rasingsing = (L/z3)z,,

Fig.3.Function u(|B}) we have the following approximation for infinite element:

4
By/80 $z) m ) du((LfesYarzs + (L3 bezs + (Lfzs) exzras + (L) 23) ds).
L k=]
For the other cube faces we have
4
08 - ¢(-’L’) ~ Z QSk((L/ZCg)aak:Ul “+ (L/I'z)abk.‘ﬂ;; + (L/$2)56k$|$3 + (L/.‘L‘z)zdk),

k=t

if a cube face is the part of plane zy = £ = const and

Hx) = >

0.8 =

$e((Lfxr) arrs + (L] 21 Pbezs + (Lfz1 P erzaza + (Lf21)2dy),

k=1
if a cube face is the part of plane 2y = L = const.

The elements of local matrixes for infinite elements are calculated by simple
analytical formulas.

Note that such an approach for construction of the base functions for infinite
element allows one to raise the approximation order up to required accuracy degree.

Of course, the inclusion of infinity by infinite elements, as inclusion of any sin-
gularity, increases the mairix condition number. In such a case the use of the
preconditioning with the partial Gauss block elimination for the matrix block con-
o Lo

TR R S0 100 150 200 nected with the unknowns on the cube surface is recommended. Then the matrix
= — -y - - P
200 =150 condition number decreases [L1].
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Fig.4 The comparison of computed and experimental data for relative
field component By/ B, for x=0 cm, y=1cm
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3 Computed results

Z{CM)

At first for the comparison with two-dimensional computations {12}, magnetic
field simulation in the magnet central part has been performed by means of code
MSFE3D. Supposing that the winding is long enough and the ferromagnetic core is
infinite along the axis QZ, it is possible to find such a current density and a mesh
in plane XQY, which ensures with high accuracy the computed results accordance
with the two-dimensional computations. Farther suppose, that on the plane X0Y
and all other planes, which are parallel to the plane XOY and are used in computa-
tions, providing high enough accuracy meshes are chosen. Under these assumptions
the investigation of the approximate solution convergence along the axis OZ has
been performed. Computations were carried out on a sequence of three-dimensional
meshes,

Let us present vectors By and Bz, obtained as the result of solving the problem
on the first and the second mesh accordingly, in the form

field component distribution at the end

region of the magnet for y=0 cm

B, = AB" + RSN, AN M),

B, = P,B™ + B3(AP, A0, . hD),

where P, and P; are the operators, projecting continuous vector-functions on the
first and the second mesh; § is the error vector-function, A,..., AL 7 = 1,2 are the
meshes parameters of the quasiuniform partitions of these two meshes along the axis
OZ. It means that the region along this direction is divided into m — 1 elements, in
every of which the partition with the step ki, 1 € & < m is carried out for 7 = 1,2.

Z(cM)
15 cm

_' £
:2 g Suppose that the approximate relation is valid:
3 o .
Jg i 6(R1, .. Am)xCih + O(R?), where A = (L, he)/m.
4 x -
* ] 8 Then for main error member we have approximate estimates on the first and the
% o e second mesh: L
e - N
_‘—g ‘g ; (B1 — Ple)m%P)_C]ﬁ(l)
: g 1° 52
£ 3 — 2
z £ 1s (PoB1 = Bo) oy PG,
o (I} Y QOur calculations have shown that already for two meshes having 32000 and 42800
*

nodes the estimate for the main error member is not more than 61073,
All computed results are presented here in figures as the relations to the required
magnetic field value By in the magnet centre, where By is equal to 0.75 T. The

=100

ARk AT S

Fig.5.The comparison of computed and experimental data

for relative field component B,/ Bq,

8 corparison of the computed (42800 nodes) and experimental curves for the relative

T main field component By(z)/Bo, has shown ( fig.4 ) that inside the magnet the

T T S difference is not more than = 1072, In this case the current is 144308 A. In fig.5 the

e - o - ~ ° computed and experimental results are presented for the relative main component
g s S o

of the magnetic field for x = 0 ecm., y = 19 em.
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120 z(cM)

Fig.7.B,/B, field component distsibution at the end region of the
magnet for y=0 cm

In figs.6-8 the field components at the end region of the magnet are given for y =
0 crn. The computations have shown that the absolute values of the field components
B./B; and B,/Bp in this region are not more than 2,7 % and 4 % accordingly.

In figs.9-16 the relative field components behaviour in the basic detectors ( pro-
portional chambers ) region is presented. The computations have been performed
on the finite element mesh having 51840 nodes. As in these figures the difference
between the computed results obtained by the FEM and by the FEM with the in-
finite elements method is not practically observed, the field behaviour obtained by
the second method only is given here.

In figs.9-12 the relative main field component B,/B, behaviour in dependence
on X and z under the different values of y on boundaries of the detectors region is
presented.

In figs.13,14 the relative component B,/By in dependence on x for z = 167.5 cm
and in dependence on z for x = 93.6'cm under the different values of y is given.

In figs.15,16 the relative component B,/ Bo in dependence on x and on z is shown.

As it is clear from these figures, all field components are smooth functions and
rapidly decreasing with growth of z. With the growth of y the main field compo-
- nent changes the sign. The represented figures can be used for the field behaviour
estimates of similar spectrometer magnets.
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