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1.INTRODUCTION 

In the present paper the numerical analysis method for the dynamics of the clas­
sical Hamiltonian systems with pair potentials is described. The Hamiltonian H of 
such a system of N particles has the form 

/ / = L£- + E ^ ( ? , - ? ; ) = 7 ' + 1/. (I) 

The need for the analysis of such systems often arises in investigations of models in 
theoretical and experimental physics (1-5). The problem is reduced to the solution of 
the nonlinear equations of motion 

dt dp,' it dq,' { ' 

with the given initial conditions 

*(«o) = «?. PiM = Й". (3) 

the independent variable t varying within a sufficiently large interval, 0 < t < T, 
T > 1. Moreover, in a number of physical cases of interest it is necessary to know 
with the given accuracy the asymptotic behavior of the solutions when T —» oo. 

Only in extremely rare cases it appears to be possible to find the analytical solution 
of the Cauchy problem (2), (3). Therefore, the numerical methods are the main 
tool for solving this problem. General methods of the Runge-Kutta type [6] and 
corresponding programs, developed for a wide variety of equations, are often used 
in this case without taking the specific features of the problem (2), (3) into account. 
This results in the unjustifiable complication of the computations and sometimes even 
in the loss of the accuracy [7,8). 

In contrary to such an approach, we develop our numerical algorithm basing on 
the Taylor decomposition of the solution to be found, supposing that the terms of this 
series may be expressed analytically. This supposition is justified for some potentials 
V4 important in physics. This allows us to choose efficiently the integration step 
depending on the behavior of the series truncation error, and also to carry out the 
parallel analysis of the small perturbation dynamics, which, in turn, makes it possible 
to reason about such properties of the system as the stability and the transition to 
chaotic regime [9] . 

In Section 2 the proposed method and algorithm are described. In Section 3 the 
results of the calculations and the numerical analysis of the system dynamics are 
presented for some classical potentials - Coulomb, Gaussian, Toda and Henon-Heiles 
[2 ]. The analysis carried out shows that in some cases the so-called unstable regime 
is a computational effect. 
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2.NUMERICAL INTEGRATION METHOD 

To get an approximate solution of the Cauchy problem (2), (3) in this paper the 
Taylor expansion of the solution in the vicinity of the point t is used. 

Suppose that at a certain moment t of time the radius-vectors {q.{t)} and the 
momenta {/>•(<)} a r e known. Taking a derivative of Eq. (2) with respect to < yields 

<Pjj(Q = d (dH(t)\ = А Г дгН dp, d'H dq, 
&P ~ dt\ dpi / ^ [др.др, dt + dp,dq, dt 

Making use of Eq. (2), one gets 

'£(<) _ Л Г д*Н дН д7Н дН 
л ' ~ j£ I dPiaP> дЪ dp.dq, dp, 

1. ,N. 

(4) 

(5) 

In a similar way the following expression for the second derivatives may be obtained 

i = l N. (6) <Pptt) = A f &H дН &Н дН 
d?1 ~[ [д&др, dqj dq,dqjdp, 

Supposing that for the Hamiltonian considered it is possible to get analytical expres­
sions for the partial derivatives in all variables up to the order of n + I and using 
the similar recursion procedure one can find n derivatives of {£(<)} and {p,(i)} with 
respect to t. 

Note that for any vector function r(t), differentiable n + 1 times in the interval 
[t,t + At], the following identity is valid 

г(1 + Д г ) - ] Г -
M(t){At)> г'"+Ч({)(Д0"+ 

(n + l)! (7) 

where r^^t) is the j'-th derivative of r(() at the point t, and ( belongs to the interval 
[(,( + At]. Replacing the right-hand side of equation (7) with zero we get an 
approximate equation for f(t + At). Varying the integration step Д/, one can control 
the error, contributed to Eq. (7). Supposing that the variation of f ,n+1'(£) is small 
within the interval [t, t+At] and setting the accuracy t for the local error, it is possible 
to express the integration step in time as 

At: 
e(n + l) ! 

|f<-+»(0|-
(8) 

Let us consider r(t) = (q\{t),. ..,qf/(t),p\(t),.. .,PN(t))T as the vector function f(t) 
and make use of Eqs. (7) and (8). Then the values {q,} and {p,} at the point t + Д( 
may be found. 
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The additional control of accuracy may be realized by means of checking the 
conservation laws for the energy E and the momentum P, which are valid for the 
system (2), (3) with the Hamiltonian (1): 

N N 

H(i) = //((0) = £ = const, W = & ( l ) = ^ f t ( 4 = f° . 0) 
1 = 1 1 = 1 

Within the framework of the approach considered the proposed algorithm may be 
also applied to the analysis of the dynamics of small deviations {Aq,} and {Ap,}ofthe 
coordinates {q,} and momenta {p,}. The linearized set of equations (2), describing 
the propagation dynamics for small perturbations of the solution in time, has the 
form 

д2Н л _ 041 4 Л 
^ * ч > 4 7Z7ZFAP' • 

dAq, _ y* 
dt dp,dq} ' dp,dpj 

dAp, 
dt 

J = I 

д2н 4 _ д'н л , (10) 
N r 

dq.dq, ' dq.dpj 

Let us write this set in the matrix form 

£=( - !« ) J ) * 3 * ' * "{to)="°- (11) 

where z = (Aqi,..., Aqn, Api, • . . , AJ>N)T is the complete set of small deviations, б 
and / are the zero and unity matrices, respectively. The matrix S(t) in (11) is a 
symmetrical block-structure matrix composed of blocks 

of the second derivatives of the total potential energy U = U{qi,.. • ,9V) along the 
trajectory of motion £ = q,{t): 

ьм-^Ы!*11- <12) 
It is known that the local stability of the solutions of the problem (2), (3) may 
be controlled by means of the analysis of the spectrum of the matrix B(t) entering 
Eq. (11). If the real part of the spectrum (т[В) of the matrix B(t) is strictly negative, 
the asymptotic stability of the solution with respect to small deviations takes place. 
If the real part of the spectrum is positive, Re(<r(B)) > 0, small deviations increase 
exponentially in the vicinity of the point t. 

Being realized as the program BODYN, the algorithm described above allows one 
to analyse both the dynamics of the trajectories in the phase space and their local 
stability at a fixed point of the phase space. The program is written in FORTRAN-77 
and installed on the EC-1066 (IBM) type of computer. In this particular program 
the fourth order of the Taylor expansion in the time step At is used. 
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3.NUMERICAL STUDY OF SOME HAMILTONIAN SYSTEMS 

In the present section we describe the peculiarities of the numerical analysis of the 
dynamics of some Hamiltonian systems by means of the algorithm presented above. 

A. Toda and Henon-Heiles models 
Consider the Hamiltonian (1) for a system of three "one-dimensional" particles (N = 
3), corresponding to the Toda and Henon-Heiles models (2| 

H = 2<P? + Pi + РЗ) + ''(?>• «»• Ял). (13) 

where 
У(Ч\,Ч1.Чъ) = V{q, - q2) + V[qt - q3) + V(q3 - 4l) - 3 

is the potential energy of the system. Here 

V{q)=cxp{q) (M) 

is the pair interaction potential for the Toda model and 

У(я)=1 + \я7 + 1ч3 (15) 

is the pair interaction potential for the Henon-Heiles model. 
The generalization of the Henon-Heiles model is described by the following pair 

interaction potential 
м , 

V(?) = 1 + ^ 7 T - <l5a> 
i = 2 

For these models the energy and momentum conservation laws hold 

H(t) = H(t0) = E = const 

P(t) = P,M + Pi(t) + РзЩ = P(lo) = P = const. (16) 
Note that in the present f.lgorithm the momentum conservation law is valid automat­
ically for pair potentials. Since the Toda model is a completely integrable system, 
the third, additional, time-independent integral of motion exists for it, namely 

/ ( 0 = P i ( 0 M 0 f t ( 0 - P i ( * W ) - P2CWO - Р э ( Ф . С ) = '(to) = I = const, (17) 

where 
ai(t) = exp(?1(0 - „ ( t ) ) , s2(t) = ехр(?2(0 - Ы 0 ) . 

s3(t) = exp(q3(t) - q,(t)), (17') 

are the pair interaction potentials. 
It is known that for some initial data Hamiltonian systems like Henon-Heiles model 

pass through unstable and chaotic regimes. One of the mechanisms responsible for 
these regimes in deterministic systems is the local instability which causes the 
exponential divergence of initially close trajectories in the phase space [ 9]. 
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Consider for the models studied a set of linearized equations ( П ) for the small 
deviations z(t) for /V = 3. Remind that the local behaviour of z(t) in the vicinity of 
each t value is determined by the spectrum of the matrix В = B(t). This spectrum 
may be expressed via the spectrum of the matrix S = S(t). The matrix S is symmet­
rical, hence its spectrum <r(5) = {A,}f_, is real. Respectively, the spectrum of the 
matrix В is a(B) = {±v/-A,}?_,. Then the solution :(t) in the vicinity of / may he 
presented as 

f (0 = £ ( ' ' " v ' r l " 4 + ' + , / r V ' ' r - ' ) - (18) 
1 = 1 

It follows from (18) that if «I least one of { Л,}a*_, is negative we have the exponential 
growth of the small deviation :(t}. Учу the Toda model the matrix S looks as 

/ *i + -4:i •, - .«3 \ 
S = - - , .-i + . « * ---2 J • ( 1 9 ) 

where .s,..s2,.s3 are defined ill (17"). The eigenvalues of the symmetrical matrix 5 are 

A, = 0 . A2.3 = V|, ± yfyj - : t l 0 . (20) 

where V'o = a, +s3 + s3, Va > 0. It follows that all the eigenvalues A, for the Toda 
model are always non-negative 1 r any initial data. Therefore, the chaotic regime 
does not occur, since the exponents in (IS) are either purely imaginary, or zero. 

A different situation may occure for the llenon-lleiles model. The eigenvalues 
A, of the matrix 5 may appear to be negative, i.e..the chaotic regime arises since the 
exponents in (18) become positive. The explicit expression of the eigenvalues A, has 
the form 

A, = 0. А2,з = (G, + G2 + G3) ± x/K-'i + c;2 +77;й"-":и7л"с;2 + G2G3 + G3G,). 
l-'l) 

where 

G, = 1 + 2 ( ^ - 9 , ) , C2 = l + 2 ( 9 3 - 9 2 ) , G... = 1 + 2(9, - 93). 

If the values of 9, are such that (G1G2 + G2G'3 + G;i(7,) < 0. then one of the value.-. A, 
is negative and the small deviations demonstrate the exponential growth. Therefore, 
as a result of the long presence of the trajectory in this region, the motion becomes 
chaotic. 

Using the algorithm proposed the particle trajectories have been calculated for 
the Toda model. The validity of the conservation laws for the energy (16) and the 
additional integral /(f) (17), depending on the prescribed upper limit of the local 
error с and the time t, is shown in Tables 1 and 2 , respectively. In the same tables 
the mean step value Atav = (t — t0)/k, where (t0,t) is the integration interval in lime. 
к is the number of the integration steps, is presented as one of the characteristics of 
the algorithm. In Table 3 the dependence of the coordinates </,{r) and momenta l>,(lj 
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upon the value of с is shown. This Table demonstrates the influence of the summary 
error upon the results in all the integration interval (to,'). Analogous results in case 
of the stable regime were obtained for the Henon-Heiles mode). They are illustrated 
in Tables 4-6. 

The results of calculations of unstable computational regime arc shown in Tables 
7-9 for the Henon-Heiles model . It may be seen from Table 9 that in case of un­
stable computational regime the coordinates </,(() and the momenta ;*,(i) cannot be 
determined with the prescribed accuracy. In Tables 10, 11 the dependence of minimal 
eigenvalues {A3} of the matrix S upon t and < is demonstrated for the Henon-Heiles 
model in stable and unstable computational regimes. For comparison in Table 12 the 
same dependence is shown for the Toda model. 

Another mechanism responsible for the unstable calculational regime is the local 
unstability which causes large deviations between positive eigenvalues {A,}. In Table 
13 the dependence of deviations between eigenvalues {A3} and {A,} of the matrix 
S upon t and M is demonstrated for the generalized Henon-Heiles model. For odd 
and even numbers of potential we have unstable and stable regimes correspondingly. 
Unstabiiity of calculations in the considered example is result of large magnitudes 
of egenvalues {A3}and {A3} of the matrix S upon t (Xt = 0). In this case the sup­
position about small variation of г'п+"(£) within the interval [t,t + At) is not valid 
for proposed method. It should be noled that the same situation holds in another 
approach like Runge-Kutta type methods. As it follows from our analysis the re­
sult obtained in unstable regime is rather a consequence of the computational effects 
(error accumulation, the limited number of digits, etc.) than a reflection of the real 
picture. The latter should be obtained by means of the specially designed algorithms, 
analogous to those applied to the solution of the hard differential equation sets ( 6 ]. 

B. System of similar particles with Coulomb and Gaussian potentials 

Test calculations for similar charged Coulomb particles having the unit masses 
and charges have been also carried out to check up the accuracy of the method. At 
the initial moment t0 = 0 of time all the particles were considered to be placed in 
the apexes of the rectilinear octagon inscribed in a unit circle, the velocities of the 
particles being equal in absolute values and directed along the radius-vectors {q,} 
towards the center. It follows from the symmetry of the problem that at any moment 
( of time each of the particles will move along the ray passing from the center via 
the initial position of the particle. The results of checking up the validity of the 
conservation laws are presented in Table 14. From this Table one can also see the 
dependence of the energy E[t), coordinate <fi(0, momentum pi(t) and the mean step 
value 6tav upon the value of the local error e and stability of calculations up to the 
time as large as t = 1000 . The mean time of one calculation was from 0.1 to 4 s 
using the EC-1060 computer. 

This configuration of material points has also been calculated for the potentials 
V,j having the Gaussian form 

КД£ - Я,) = аехр{-0\£ - q,\2}. 
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The corresponding results for a = 1., 0 = 0.1 are shown in Table 15. 
So, the calculation technique developed may be extended over the class of poten­

tials, for which it appears to be possible to write explicitly the partial derivatives of 
the Hamiltonian with respect to the phase variables. 

It should be noted that the program realizing the method proposed is included 
into the system for modelling the events in the experimental setup "FOBOS" in the 
Laboratory of Nuclear Reactions, JINR. 

4.CONCLUSION 

The algorithm proposed for the class of problems considered seems to be more 
efficient compared to general methods of the Runge-Kutta type. This is confirmed 
by the successful operation of the corresponding program included into the mod­
elling system of the experimental setup, where the mass calculations are realized. As 
compared with the standard programs, the program based on this algorithm has the 
advantage of the possibility to analyze the stability of the solutions, which permits 
one to evaluate the reliability of the results. The latter is particularly important 
in the studies of chaotic regimes in Hamiltonian systems and, in principle, makes it 
possible to judge whether the chaotic regime is really the essence of the phenomena 
considered or it is a computational effect. 

The prospects of developing the algorithms, combining the calculations of the 
system dynamics with the stability analysis, are promising in modelling the complex 
behaviour of simple systems. 
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Table 1: 

The dependence of the energy E(t), the additional integral of motion I(t) and the 
mean step value Stav = {t — io)/k (where (to, t) is the integration interval in time, к 

is the number of the integration steps) upon the value of the local error e (see 
eq.(8)) in the Toda model for the value of time ( = 20 

e 
Ю-* 
io-e 

ю-" 
10-io 

E(t) 
21.0702 
21.5681 
21.5883 
21.5839 

I(t) 
-1.24645 
-0.89949 
-0.88543 
-0.88494 

*'.v 
0.05958 
0.01888 
0.00598 
0.00189 
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Table 2: 

The lependence of the energy E(t) and the additional integral of motion /(/) upon 
the value of time t for the value of the local error e — I0"6 in the Toda model 

t 
0. 
4. 
8. 
12. 
1С. 
20. 

E{t) 
21.5889 
21.5856 
21.5820 
21.5739 
21.5702 
21.5681 

/(0 
•0.88192 
-0.88867 
-0.8900ft 
-0.89325 
-0.89552 
-0.89918 

Table 3: 
The dependence of the coordinates </,(/) and momenta /),(() upon the value of the 

local error e in the Toda model for the value of time t — 20 

t 

ю-" 
ю-6 

ю-8 
1 0 - i o 

9i (0 
11.992 
12.190 
12.199 
12.200 

ft(0 
15.396 
15.259 
15.253 
15.253 

?э(0 
И.010 
13.9-19 
13.946 
13.946 

/>.«) 
3.9803 
•1.4653 
-1.1835 
•1.1840 

р-ЛП 
-1.7722 
-1.9611 
-1.9680 
-1.9682 

Р-ЛП 
-0.1881 
•0.1812 
-0.4954 
-0.4958 

Table 4: 
The dependence of the energy E(t) and the mean step value bt„v = (t — 1ц)Ik upon 
the value of the local error £ in the case of stable regime of the Ilenon-Hciles model 

for the value of time ( = 2.5 

e 
io-4 

lO"1 

10"6 

io-s 

E(t) 
7.103314 
7.100485 
7.100033 
7.100000 

6la„ 
0.13853 
0.03510 
0.00788 
0.00171 

Table 5: 
The dependence of the energy E(t) upon the value of time / and the value of the 

local error £ in the case of stable regime of the Henon-lleiles model 

e = 10"2 

e = 10-* 
e = 10"6 

£ = 10-" 

r = 0. 
7.1000 
7.1000 
7.1000 
7.1000 

t = 0.5 
7.0613 
7.0987 
7.0999 
7.0999 

t = 1. 
7.0013 
7.0960 
7.0998 
7.0999 

t = 1.5 
7.0903 
7.0986 
7.0999 
7.0999 

t •= 2 . 

7.0982 
7.0996 
7.0999 
7.1000 



Table 6: 

The dependence of the coordinates q,(t) and momenta p,(t) upon the value of the 
local error e in case of stable regime of the Henou-lleiles model for the value of time 

/ = 2 

e 
10"J 
io-< 
io-e 

io-e 

«i(0 
0.7894 
0.6977 
0.6930 
0.6928 

bit) 
3.2701 
3.3885 
3.3916 
3.3919 

9э(0 
2.0581 
2.0316 
2.030.1 
2.0302 

P.(0 
0.7273 
0.5136 
0.5020 
0.5011 

л(0 
1.5971 
1.8126 
1.8211 
1.8216 

Рз(0 
•I.8772 
•I.8790 
• 1.8789 
•I.8789 

Table 7: 

The dependence of the energy E(t) and the mean step value Slav = (I — t0)/k upon 
the value of the local error £ in the case of chaotic regime of the llenon-Heiles model 

for the value of time I = 1 

e 
lO"6 

ю-" 
l 0-M 
io-,a 

£(<) 
6.898651 
7.090661 
7.099567 
7.09998У 

SlQ. 
0.00 II072 
0.0008819 
0.0001907 
0.0000110 

Table 8: 

The dependence of the energy /?(/) upon the value of time ( and the value of the 
local error £ in the case of chaotic regime of the Henon-Heiles model 

t = 10~6 

£ = Ю- 8 

£ = lO'10 

( = 0. 
7.10000 
7.10000 
7.10000 

t = 1. 

7.09982 
7.09999 
7.10000 

I = 2. 

7.09998 
7.09999 
7.10000 

/ = 3. 
7.10005 
7.10000 
7.10000 

Table 9: 

The dependence of the coordinates q,(t) a n ^ momenta ;),(') upon the value of the 
local error £ in case of chaotic regime of the Henon-lleilcs model for the value of 

time t = 1 

£ 

ю-6 

lO"» 
io-'° 
ю-'2 

9.(0 
-31.9552 
-32.0793 
-32.0852 
-32.0855 

*J(0 
36.7735 
36.8971 
36.9029 
36.9030 

9з(0 
l.S>7060 
1.97106 
1.97108 
1.97109 

p.(0 
-278.981 
-280.523 
-280.595 
-280.599 

P J ( 0 
278.188 
279.709 
279.780 
279.783 

Рэ(0 
1.24009 
1.26113 
1.26245 
1.26250 
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Table 10. 

The dependence of the minimal eigenvalue {Aj} of the matrix .S' (see со,.(21)) upon t 
and e for the llenon-Heiles model 

£ = lO"2 

£ = I0-" 

£= 10-" 

£ = 10"" 

( =0. 

•3.9282 

•3.9282 

I-3.9282 

•3.9282 

/ = 0.5 1 ( = 1. 

•1.6777 

•1.6701 

• 1.6699 

• 1.6699 

-1.1031 

•1.1251 

•I.I 217 

•I.I 257 

( = 1.5 

•1.7202 

• 1.8539 

•1.8601 

• 1.860! 

( = 2. 

4.2363 

1.4265 

I.I 361 
r-4.430(f 

( = 2.5 

•4,1138 

•5.0721 

•5.10-19 

-5.1065 

Table I I: 

The dependence of the minimal eigenvalue jA3) of the matrix S (see cq.(2l)) upon I 
and £ for the llenon-llciles model 

£ = lO"6 

£ = 10-8 

£ = 10-''' 

£=10- 1 J 

( = 0. 

-3.9282 

•3.9282 

•3.9282 

-3.9282 

( = 1. 

-11.2574 

-11.2577 

-11.2577 

-11.2577 

t = 2. 

4.4632 

-4.4366 

-4.4366 

-4.4366 

( = 3. 

-8.9556 

8.9603 

-8.9606 

-8.9606 

1 = 4. 

•203.191 

-203.935 

•203.970 

-203.971 

Table 12: 

The dependence of the minimal eigenvalue {A3} of the matrix 5 (see eq.(20)) upon ( 

and £ for the Toda model 

£ = Ю- 4 

£ = 10-6 

£ = 10"» 

£=10-'° 

( = 0. 

0.75379 

0.75379 

0.75379 

0.75379 

( = 4. 

2.41311 

2.40225 

2.40163 

2.40160 

i = 8. 

8.66217 

8.60587 

8.60291 

8.60279 

( = 12. 

2.43797 

2.64877 

2.65849 

2.65883 

t = 16. 

1.62631 

1.72674 

1.73120 

1.73128 

( = 20. 

5.06550 

4.50984 

4.48662 

4.48596 

Table 13: 

The dependence of deviations between eigenvalues {A3} and {A,} of the matrix S 

upon ( and M (see eq.(20)) of potential for the generalized the Henon-Heiles model 

л/ = з 
M = 4 
M = b 
M = 6 
M = 7 
M = 8 
M = 9 

M = 10 

( = 0.2 
1.178 
1.354 
1.493 
1.603 
1.666 
1.700 
1.715 
1.721 

( = 0.4 
1.865 
1.692 
1.737 
1.867 
1.957 
2.011 
2.035 
2.046 

( = 0.6 
1.799 
3.455 
4.896 
6.098 
7.164 
7.503 
7.818 
7.856 

( = 0.8 
5.708 
10.314 
30.475 
17.115 
48.395 
19.857 
37.295 
23.443 

t = 1. 
26.327 
12.203 
2799.2 
4.633 

>10000. 
4.723 

>10000. 
7.573 

( = 1.2 
157.857 
2.952 

> 10000. 
1.369 
-

1.668 
-

2.643 



Table 14: 

The dependence of the energy E(t), coordinate qt(t), momentum pt{t) and the 
mean step value fte„ upon the value of the local error £ for the system of the eight 

similar charged Coulomb particles,the unit masses and charges at the moment 
t = 1000 of time * 

£ 

ю-5 

ю-4 
io-e 

ю-» ,0-ю 

E[t) 
23.17997 
26.41664 
26.43974 
26.43897 
26.43893 

9i (0 
2403.480 
2567.007 
2568.152 
2568.114 
2568.112 

P.O) 
2.406794 
2.569431 
2.570555 
2.570517 
2.570515 

*r.„ 
76.769 
23.039 
6.9891 
2.1881 
0.6892 

" At the initial moment t0 = 0 of lime all the particles were considered to be placed 
in the apexes of the rectilinear octagon inscribed in unit circle, the velocities of 

particles being equal in absolute values and directed along the radius-vectors q,{t) 
towards the center. 

Table 15: 

The dependence of the energy E(t), coordinate qi{t), momentum pi{t) and the 
mean step value 6t.v upon the value of the local error e for the system of the eight 
similar particles with pair Gaussian potentials(a = \,ii = 0.1) at the moment t - 6 

of time * 

e 
ю-* liH 
10"6 

ю-" 

E{t) 
14.31632 
23.75530 
23.92727 
23.92547 

«i(0 
8.71397 
11.2764 
11.3886 
11.3898 

МП 
1.88565 
2.43673 
2.44557 
2.44547 

6U 
1.83617 
0.35703 
0.10659 
0.03354 

*The configuration of particles at the initial moment of time was the same as 
previous example. 
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