


1L.INTRODUCTION

In the present paper the numerical analysis method for the dynamics of the clas-
sical Hamiltonian systems with pair potentials is described. The Hamiltonian /{ of
such a system of N particles has the form

N =2
H=22"—r;1+2u,(¢-q‘,)sr+u. (1)
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The need for the analysis of such systems often arises in investigations of models in
theoretical and experimental physics [1- 5. The problem is reduced to the solution of
the nonlinear equations of motion

dj, _0H  dp _ 8H
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with the given initial conditions
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the independent variable ¢t varying within a sufficiently large interval, 0 < t < T,
T » 1. Moreover, in a number of physical cases of interest it is necessary to know
with the given accuracy the asymptotic behavior of the solutions when T — co.

Only in extremely rare cases it appears to be possible to find the analytical solution
of the Cauchy problem (2), (3). Therefore, the numerical methods are the main
tool for solving this problem. General methods of the Runge-Kutta type [6] and
corresponding programs, developed for a wide variety of equations, are often used
in this case without taking the specific features of the problem (2), (3) into account.
This results in the unjustifiable complication of the computations and sometimes even
in the loss of the accuracy [7,8].

In contrary to such an approach, we develop our numerical algorithm basing on
the Taylor decomposition of the solution to be found, supposing that the terms of this
series may be expressed analytically. This supposition is justified for some potentials
V,; important in physics. This allows us to choose efficiently the integration step
depending on the behavior of the series truncation error, and also to carry out the
parallel analysis of the small perturbation dynamics, which, in turn, makes it possible
to reason about such properties of the system as the stability and the transition to
chaotic regime [9] .

In Section 2 the proposed method and algorithm are described. In Section 3 the
results of the calculations and the numerical analysis of the system dynamics are
presented for some classical potentials - Coulomb, Gaussian, Toda and Henon-Heiles
[2 ). The analysis carried out shows that in some cases the so-called unstable regime
is a computational effect.



2.NUMERICAL INTEGRATION METHOD

To get an approximate solution of the Cauchy problem (2}, (3) in this paper the
Taylor expansion of the solution in the vicinity of the point ¢ is used.

Suppose that at a certain moment ¢ of time the radius-vectors {g;(¢)} and the
momenta {p;(t)} are known. Taking a derivative of Eq. (2) with respect to { yields

&2qi(t) AH(t) *H dp, 3*H dqJ
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Making use of Eq. (2), one gets
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In a similar way the following expression for the second derivatives may be obtained

N
EgA0) Z[afﬂ OH BH aH] i=1,....N. (6)
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Supposing that for the Hamiltonian considered it is possible to get analytical expres-
sions for the partial derivatives in all variables up to the order of n + | and using
the similar recursion procedure one can find n derivatives of {§;(¢}} and {p,(t)} with
respect to ¢.

Note that for any vector function 7(t), differentiable n + 1 times in the interval
(t,¢ + At], the following identity is valid
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where #}(¢) is the j-th derivative of 7(t) at the point ¢, and £ belongs to the interval
[t,¢ + At]. Replacing the right-hand side of equation (7) with zero we get an
approximate equation for 7(f + At). Varying the integration step At, one can control
the error, contributed to Eq. (7). Supposing that the variation of #"*!(£} is small
within the interval [t, ¢4+ At] and setting the accuracy ¢ for the local error, it is possible
to express the integration step in time as

“,/ e(n +1)!
At = m (8)

Let us consider i{t) = (§i(t), - - ., gn{t), Fir(t),. .., Fn(1))T as the vector function 7(t)
and make use of Egs. (7) and (8). Then the values {¢i} and {5;} at the point { + At
may be found.



The additional control of accuracy may be realized by means of checking the
conservation laws for the energy E and the momentum P, which are valid for the
system (2), (3) with the Hamiltonian (1):

N N
H()= H(to) = E=const,  P(t)= Y alt) = Alte) = 7. (9)
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Within the framework of the approach considered the proposed algorithm may be
also applied to the analysis of the dynamics of small deviations {Ag,} and {Ap,} of the
coordinates {q,} and momenta {5}. The linearized set of equations (2}, describing
the propagation dynamics for small perturbations of the solution in time, has the

form N
dAg, &H . i,
TE"‘Z;{aaamA“'*éﬁaiA“]'
dAp, [ &H 9*H ,
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Let us write this set in the matrix form
dz _ 0 iY. 4. N
Fri ( ~%0 0 )Z = B(1)3, Hto) = 27, (11)

where 7 = (Ag,...,Adn, Apr, ..., Apn )7 is the complete set of sm:all deviations, 0
and [ are the zero and unity matrices, respectively. The matrix S(¢) in (11) is a
symmetrical block-structure matrix composed of blocks
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of the second derivatives of the total potential energy U = U(qy,...,gn) along the
trajectory of motion ¢; = ¢;(¢):

o U dn)
,,(t = ——E_la—q_.]—— (]2)

It is known that the local stability of the solutions of the problem (2), (3) may
be controlled by means of the analysis of the spectrum of the matrix B(t) entering

q. (11). If the real part of the spectrum a(B) of the matrix Bt} is strictly negative,
the asymptotic stability of the solution with respect to small deviations takes place.
If the real part of the spectrum is positive, Re(a(é)) > 0, small deviations increase
exponentially in the vicinity of the point ¢.

Being realized as the program BODYN, the algorithm described above allows one
to analyse both the dynamics of the trajectories in the phase space and their local
stability at a fixed point of the phase space. The program is written in FORTRAN-77
and installed on the EC-1066 (IBM) type of computer. In this particular program
the fourth order of the Taylor expansion in the time step At is used.



3.NUMERICAL STUDY OF SOME HAMILTONIAN SYSTEMS

In the present section we describe the peculiarities of the numerical analysis of the
dynamics of some Hamiltonian systems by means of the algorithm presented above.
A. Toda and Henon-Heiles models
Consider the Hamiltonian (1) for a system of three “one-dimensional” particles (N =
3), corresponding to the Toda and Henon-Heiles models {2)

1
H= §(Pf+P§+P§)+U(‘lh‘h'fla)- (13)
where

Uignan @) =Vig~ )+ Viea—qa) + Vs — 1) - 3

is the potential energy of the system. Here
V(q) = expl(q) (14)

is the pair interaction potential for the Toda model and

1 1
Vig)=1+3¢"+ 2¢° 15
(@=1+50+34 (15)
is the pair interaction potential for the Henon-Heiles model.

The generalization of the Henon-Heiles model is described by the following pair
interaction potential

M
V(q)=1+z%- (152)
1=2
For these models the energy and momentum conservation laws hold
H(t) = H(ty) = F = const

P(t) = pi(t) + pa(t) + ps(t) = P(to) = P = const. (16)
Note that in the present zlgorithm the momentum conservation law is valid automat-

ically for pair potentials. Since the Toda model is a completely integrable system,
the third, additional, time-independent integral of motion exists for it, namely

1(t) = p1(t)p2(t)pa(t) — pr(t)sa(t) ~ pa(t)sa(t) — pa(t)si(t) = I(te) = 1 = const, (17)

where
s1(t) = exp(q:(t) ~ qa(t}), s2(t) = exp(ga(t) — ga(t)),

s3(t) = exp(qa(t) — q: (1)), (17)

are the pair interaction potentials.

It is known that for some initial data Hamiltonian systems like Henon-Heiles model
pass through unstable and chaotic regimes. One of the mechanisms responsible for
these regimes in deterministic systems is the local instability which causes the
exponential divergence of initially close trajectories in the phase space [ 9].



Consider for the models studied a set of linearized equations ( 11 ) for the small
deviations Z(t) for N = 3. Remind that the local behaviour of () in the vicinity of
cach ¢ value is determined by the spectrum of the matrix B = B(). This spectrum
may be expressed via the spectrum of the matrix §$= S(t) The matrix § is symmet-
rical, hence its spectrum 0(5) = {A }2., is real. Respectively. the spectrum of the
matrix B is a(B) = {£v-=X)}2_,. Then the solution 3{(?) in the vicinity of ¢ may bhe

preseuted as
3

A= 30 (TN 4 ), (18)
i=1
It follows from (18) that if at least one of {A ] is negative, we have the exponential
growth of the small deviation (1), For the Toda model the matrix § looks as

) S+ 3y Sy, — &y
S = - s+ 8 —y . {19)
— Ny -3 Sy + 8y

where s,.8,, 83 are defined in (177). The eigenvalues of the symmetrical matrix S are

A =0 Aa=lod \/\_;,' TS (20)
where Vg = s, + 83 + 3, Vo > 0. It follows that all the cigenvalues A, for the Toda

modcl are always non-negative |-t any initial data. Therefore. the chaotir regime
does not occur, since the exponents in (18) are cither purely inaginary, or zero.

A different situation may  occure for the Henon-Heiles model. The eigenvalues
A, of the matrix § may appear Lo be negative. e the chaotic regime arises since the
exponents in'(18) become positive. The explicit expression of the eigenvalues A, has
the form

M=0,  Aps=(Gr+Cr+ Gt 01+ Gy G2 — 3G G + G2l + GGy,
(21)

where
Gy =1+2q-a) Gz =1+ 2(¢3 ~ qu) Gy =1+ 2q1 — q3)-

If the values of g; are such that (G,G2 + G205 + (14(7y) < 0, then one of the values A,
is negative and the small deviations demonstrate the exponential growth. Thercefore,
as a result of the long presence of the trajectory in this region. the motion becomes
chaotic.

Using the algorithm proposed the particle trajectories have been calculated for
the Toda model. The validity of the conservation laws for the energy (16) and the
additional integral I(t) (17), depending on the prescribed upper limit of the local
crror ¢ and the time ¢, is shown in Tables 1 and 2 , respectively. In the same tables
the mean step value At,, = ({ —ty)/k, where (1o, t) is the integration interval in time,
k is the number of the integration steps, is presented as one of the characteristics of
the algorithm. In Table 3 the dependence of the coordinates ¢,(7) and momenta p (1)



upon the value of ¢ is shown. This Table demonstrates the influence of Lthe summary
error upon the results in all the integration interval (¢, {}. Analogous results in case
of the stable regime were obtained for the Henon-Heiles model. They are illustrated
in Tables 4-6.

The results of calculations of unstable computational regime are shown in Tables
7-9 for the Henon-Heiles model . [t may be seen from Table 9 that in case of un-
stable computational regime the coordinates ¢,(t) and the momenta p,(t) cannot be
determined with the prescribed accuracy. In Tables 10, 11 the dependence of minimal
eigenvalues {15} of the matrix S upon ¢ and ¢ is demonstrated for the Henon-Heiles
model in stable and unstable computational regimes. For comparison in Table 12 the
same dependence is shown for the Toda model.

Another mechanism responsible for the unstable calculational regime is the local
unstability which causes large deviations between positive eigenvalues {},}. In Table
13 the dependence of deviations between cigenvalues (A3} and {A;} of the matrix
S upon  and M is demonstrated for the generalized Henon-Heiles model. For odd
and even numbers of potential we have unstable and stable regimes correspondingly.
Unstability of calculations in the considered example is result of large magnitudes
of egenvalues {);}and {3} of the matrix § upon ¢ (A, = 0). In this case the sup-
position about small variation of 7 *+!/(£) within the interval {t,t + At] is not valid
for proposed method. It should be noted that the same situation holds in  another
approach like Runge-Kutta type methods. As it follows from our analysis the re-
s1lt obtained in unstable regime is rather a consequence of the computational effects
(error accumulation, the limited number of digits, etc.) than a reflection of the real
picture. The latter should be obtained by means of the specially designed algorithms,
analogous to those applied to the solution of the hard differential equation sets [ 6 ).

B. System of similar particles with Coulomb and Gaussian potentials

Test calculations for similar charged Coulomb particles having the unit masses
and charges have been also carried out to check up the accuracy of the method. At
the initial moment ¢, = 0 of time all the particles were considered to be placed in
the apexes of the rectilinear octagon inscribed in a unit circle, the velocities of the
particles being equal in absolute values and directed along the radius-vectors {¢;}
towards the center. It follows from the symmetry of the problem that at any mement
t of time each of the particles will move along the ray passing from the center via
the initial position of the particle. The results of checking up the validity of the
conservation laws are presented in Table 14. From this Table one can also see the
dependence of the energy £(t}, coordinate ¢,(¢}, momentum p,(¢) and the mean step
value &f,, upon the value of the local error ¢ and stability of calculations up to the
time as large as ¢ = 1000 . The mean time of one calculation was from 0.1 to 4 s
using the EC-1060 computer.

This configuration of material points has also been calculated for the potentials
V,; having the Gaussian form

Vii(¢: — ;) = cexp{-BlG — ;I}-



The corresponding results for a = 1., f§ = 0.1 are shown in Table 15.

So, the calculation technique developed may be extended over the class of poten-
tials, for which it appears to be possible to write explicitly the partial derivatives of
the Hamiltonian with respect to the phase variables.

It should be noted that the program realizing the method proposed is included
into the system for modelling the events in the experimental setup “FOBOS” in the
l.aboratory of Nuclear Reactions, JINR.

4.CONCLUSION

The algorithm proposed for the class of problems considered seems to be more
efficient compared to general methods of the Runge-Kutta type. This is confirmed
by the successful operation of the corresponding program included into the mod-
elling system of the experimental setup, where the mass calculations are realized. As
compared with the standard programs, the program based on this algorithm has the
advantage of the possibility to analyze the stability of the solutions, which permits
one to evaluate the reliability of the results. The latter is particularly important
in the studies of chaotic regimes in Hamiltonian systems and, in principle, makes it
possible to judge whether the chaotic regime is really the essence of the phenomena
considered or it is a computational effect.

The prospects of developing the algorithms, combining the calculations of the
system dynamics with the stability analysis, are promising in modelling the complex
behaviour of simple systems.
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Table 1:

The dependence of the energy E(t), the additional integral of motion /(t) and the
mean step value 8t,, = (t — £y)/k (where (5, t) is the integration interval in time, k
is the number of the integration steps) upon the value of the local error ¢ (see
€q.(8)) in the Toda model for the value of time t = 20

e T EQ | T | bt
10~ [ 21.0702 | -1.24645 | 0.05958
10-° | 21.5681 | -0.89949 | 001888
10-® [ 21.5883 | -0.88543 | 0.00598
10-° | 21.5889 | -0.88494 | 0.00189




Table 2:

The lependence of the energy FE(t) and the additional integral of motion /(1) upon
the value of time ¢ for the value of the local error £ = 107¢ in the Toda model

¢ | E() 1)
0. | 21.5889 | -0.88492
4. | 21.5856 | -0.88867
8. | 21.5820 | -0.89005 |
12. | 21.5799 | -0.89325
16. | 21.5702 | -0.89552
20. | 21.5681 | -0.89948

Table 3:
The dependence of the coordinates ¢,(¢) and momenta p,{f) upon the value of the
local error ¢ in the Toda model for the value of time t = 20

€ a(t) [ gt) | galt) | mtt) | pu() p(t)
104 111.992 | 15.296 | 14.010 | 3.9803 | -1.7722 | -0.1881
10°% 112.190 [ 15.259 | 13.949 [ 4.4653 | -1.9611 | -0.-1842
107% [12.199 [ 15.253 | 13.946 | 4.4835 | -1.9680 | -0.41934
10T [ 12.200 | 15.253 | 13.946 | 1.4840 | -1.9682 | -0.4938 |

Table 4:
The dependence of the energy £(t) and the mean step value ét,, = (t -- {y)/k upon
the value of the local error ¢ in the case of stable regime of the Henon-Heiles model
for the value of time t = 2.5

€ E(t) bt oy
1072 ] 7.103314 | 0.13853
10-%] 7.100485 | 0.03510
10~%1 7.100033 | 0.00788
10~3 1 7.100000 | 0.00171

Table 5:
The dependence of the cnergy £(t}) upon the value of time ¢ and the value of the
local error ¢ in the case of stable regime of the Henon-Heiles model

t=0 |t=05]|t=1 |t=15]t=2
10-217.1000 | 7.0613 | 7.0013 | 7.0903 | 7.0982
1011 7.1000 | 7.0987 | 7.0960 | 7.0986 | 7.0996
=10"% [ 7.1000 | 7.0999 | 7.0998 | 7.0999 | 7.0999
€=10"%17.1000 | 7.0999 | 7.0999 | 7.0999 | 7.1000

£
£
£




Table 6:

The dependence of the coordinates ¢,(¢) and moinenta p,(t) upon the value of the
local error € in case of stable regime of the Henon-Heiles model for the value of time
t=2

€ oft) 1 elt) | glt) | pi(t) | pa(t) | pslt)
10=710.7894 § 3.2704 | 2.0581 [0.7273 [ 1.5971 [ -1.8772
10771 0.6977 1 3.3885 | 2.0316 [ 0.5136 | 1.8126 | -1.8790
10-% 1 0.6930 | 3.3946 | 2.0303 | 0.5020 | 1.8211 | -1.8789
10-% 1 0.6928 | 3.3949 | 2.0302 | 0.5014 | 1.8246 | -1.8789

Table 7:

The dependence of the cuergy E(t) and the mean step value 8t,, = (! — tp})/k upon
the value of the local error ¢ in the case of chaotic regiine of the Henon-Heiles model
for the value of time t = {

€ E(t) b5,

10-% [ 6.898651 | 0.0011072
10~% 1 7.090661 | 0.0008849
1010 | 7.099567 | 0.0001907
1072 [ 7.09998y | 0.0000410

Table 8:

The dependence of the energy F(t) upon the value of time t and the value of the
local error € in the case of chaotic regime of the Henon-Heiles model

t=0. | t=1 =2, t=3.
e =10"° [ 7.10000 | 7.09982 | 7.09998 | 7.10005
e =10"% [ 7.10000 | 7.09999 | 7.0999% | 7.10000
€ =10""917.10000 | 7.19000 | 7.10000 | 7.10000

Table 9:

The dependence of the coordinates ¢,(t) and momenta p,(/) upon the value of the
local error ¢ in case of chaotic regime of the Henon-Heiles model for the value of
time ¢ =4

€ a(t) 7:(t) a3(t} pi(t) pat) pa(t)

10~ | -31.9552 | 36.7735 | 1.57060 | -278.981 | 278.188 | 1.24009
10-% | -32.0793 | 36.8971 | 1.97106 | -260.523 | 279.709 | 1.26143
10-10 1.32.0852 | 36.9029 | 1.97108 [ -280.595 | 279.780 | 1.26245
10777 [ -32.0855 | 36.9030 | 1.97109 [ -280.599 | 279.783 | 1.26250




Table 10.

The dependence of the minimal eigenvatue {Ay} of the matrix $ {see eq.(21)) upon ¢
and ¢ for the Henon-Heiles mode)

t=0 [t=05]t=1Tt=15 =2 =25
e =10-7 | -3.9282 | -1.6777 | -1.1034 | -1.7202 | -4.2363 | 1. 1118
€ = 107 | -3.9282 | -1.6701 | -1.1251 | -1.8539 | -1.4265 | -5.0724 |
€= 10-%]-3.9282 | -1.6699 | 1.1257 | -1.8601 | 1.4361 | -5.1019
e =10"%|-3.9282 | -1.6699 | -1.1257 | -1.860¢ | 4.436G | -5.1065

Table 11:

‘The dependence of the minimal cigenvalue {3} of the matrix 5 (see eq.(21)) upon t
and ¢ for the Henon-Heiles model

t=0 [ t=1 [¢=2 [t=31 (=4. |
e=10"% [-39282 | -11.2574 | 1.1632 | -8.9556 | -203.19]
e =10"% [-39282 | -11.2577 | -4.436€ | -8.9603 | -203.935
e=10"""1-3.9282 [ -11.2577 | -1.4366 | -8.9606 | -203.970
e =10"171-3.9282 | -11.2577 | -4.4366 | -8.9606 | -203.971

Table 12:

The dependence of the minimal eigepvalue {A3} of the matrix § (sce eq.(20)) upon
and ¢ for the Toda inodel

t=0. t=4. t =8 =12. | t=16. | t =20,
e=10"1 [0.75379 { 2.41311 | 8.66217 | 2.43797 | 1.62631 | 5.06550
€= 10"% {0.75379 | 2.40225 | 8.60587 | 2.64877 | 1.72674 | 4.50984
€ =10"%10.75379 | 2.40163 | 8.60291 | 2.65849 | 1.73120 | 4.48662
€=10"170.75379 | 2.40160 | 8.60279 | 2.65883 | 1.73128 | 4.48596

Table 13:

The dependence of deviations between eigenvalues {A;} and {4} of the matrix §
upon t and M (see eq.(20)) of potential for the meneralized the Henon-Heiles model

t=02|t=04|t=06|t=08]| t=1. t=12
M=13] 1178 | 1.865 | 1.799 | 5.708 | 26.327 [ 157.857
M=4 ] 1354 1.692 | 3.455 [ 10.314 | 12.203 2.952
M =75 | 1.493 | 1.737 | 4.896 | 30.475 | 2799.2 | > 10000. |
M=6 [ 1603 | 1.867 [ 6.098 | 17.115 | 4.633 1.369
M=7) 1666 | 1.957 | 7.164 | 48.395 | >10000. -
M=8 | 1700 | 2011 | 7.503 | 19.857 | 4.723 1.668
M=9| 1715 | 2035 | 7T.R18 | 37.295 | >10000. -
M=10| 1.721 | 2.046 | 7.856 | 23.443 | 7.573 2.643




Table 14:

The dependence of the energy E(t), coordinate ¢,(¢), momentum p,(t) and the
mean step value 8¢,, upon the value of the local error ¢ for the system of the eight
similar charged Coulomb particles,the unit masses and charges at the moment
t = 1000 of time *°

€ E(t) alt) pi(t) [T
10-7 | 23.17997 | 2403.480 | 2.406794 | 76.769
10-% | 26.41664 | 2567.007 | 2.569431 | 23.039
10~ | 26.43974 | 2568.152 | 2.570555 | 6.989]
10-¥ | 26.43897 | 2568.114 | 2.570517 | 2.1881
10-10 | 26.43893 | 2568.112 | 2.570515 | 0.6892

* At the initial moment ¢y = 0 of time all the particles were considered to be placed
in the apexes of the rectilinear octagon inscribed in unit circle, the velocities of
particles being equal in absolute values and directed along the radius-vectors §,(t)
towards the center.

Table 15:

The dependence of the energy E(t), coordinate g,(¢), momentum p,(t) and the
mean step value §¢,, upon the value of the local error ¢ for the system of the eight
similar particles with pair Gaussian potentials(a = 1,4 = 0.1) at the moment ¢ = 6

of time *

€ E(‘) QI(t) pl(t) 6tnv
1072 ] 14.31632 | 8.71397 | 1.88565 | 1.83617
10~1123.75530 | 11.2764 | 2.43673 | 0.35703
10-° | 23.92727 | 11.3886 | 2.44557 | 0.10659
10~° 1 23.92547 | 11.3898 | 2.44547 | 0.03354

*The configuration of particles at the initial moment of time was the same as in
previous example.
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