


1 Introduction
One of the s1mplest models of evolutlon of nonhnear rea.ctlon -diffusion systems but
’ w1th great varlety of solutions and many. 1nterestmg fea.tures is the problem

Cow=Au 4wt 150, zeq, 5 (1)
L o u(() z)—uo(z)>0 z_GQ o (2)
fﬂy,,ﬁ,‘u(t D=0 t20z€d0 . . @

. where Nisa bounded doma.m in: HZN w:th smooth boun(lary, o > 0 ﬂ > 1 uo €.
C(Q) wte H‘(Q) '
. The solutlon of the Ca.uchy problem (1) (2), Q= RN is mvestlgd.te(l in deta.ll from ‘
theoretical and numenca.l point of view (see for example [1-8]). When f < o+1 +2/N
*and ug $ 0 this problem has blow-up solutlon The asymptotlc behaviour of an wide

 class’ of solutlons with varlous initial datais descrlbed by the self-similar solution

of (1).” ‘But the presence of finite bounda.r1es cha.nges essentla.lly ‘the propertles of
the solution.” When 8 <'¢o’ + 1 the problem (1) (3) is known to have a global time
‘solution [9 10, 1] There is a unrque posrtlve stea.dy sta.te solutlon of (1) (3) to whlch
Tl solutlons ‘of (1)-(3) tend as t = oo [1, 11].-
_ For # = o +1 the behaviour of the solutlou of (l) (3) is determrned from the’ ﬁrst'
‘elgenvalue A. of the Dmchlet problem D , : ~

‘ ‘Q;—Aw—z\w, Fen, w..o zEﬂQ @

Let us denote by wy’ the: correspondmg elgenfunctlon Then if’ Al_ > 1 the prob-
* lem (1)- ~(3)" has a global time solution” which tends to zero as't — oo [1,11]:" For.

" A1 =1 the problem has a- global time solution ,which tends to a. wl/(a“) o, =

(w0, wi)(fy w(°+2)/(°+')d )7 astio oo [11). ‘When Al < 1 the results from [9, 10]
~“show that a local time solution exists but (1)- (3) has no nontr1v1a.l positive solution
* which exists for all time. It is proved in [11] that there exists To > 0 To < oo such

tha.t (1) (3) has solutlon in [0 To):and R ~ a :

¥

Sl e 1) um= oo

For B>0+1 (and B < (a + 1)(N + 2)/(N - 2) for N > 3) a local tlme
solution of (1)- -(3) exists but it may or.may not exist for all time — the existence
of a global time solution depends on 2 and ug [1, 11, 12). In particular & = 0 is an
‘asymptotlca.lly stable .equilibrium’ solutlon of (1)- (3) whlle any positive: equlhbrlum
solutlon 1s unsta.ble : .
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" From now on we shall assume that Qis'a ball of radlus‘;\v’ around the or1g1n and k_

we are only lnterested in the rad1a.lly symmetrlc solutlons of (1) (3), ie

S 1 S
W N1("N1”") +u, t’>0,,0<r<R,: (5)
“u(0,1) = up(r) 2 0, QS 'f <R, EAREEA (6)
: u,-(t, 0) =0, -t >0, e [ (7)
u(t,R) =0, t>0,

--

where r = (aHva, :::2)‘/2 ‘RZ (—:—)‘/ZX e

o+

-~ Some numerical 1llustratrons of the cases of explosrve growth decreasmg evolutron )
- and of the limiting case of approa.ch the equlhbrrum solutlon for thrs problem may be ’f :

found in [13].

Y

- haviour of the solutrons of :(5)- -(8) is done., In. the case ,B*' .o, +:1 blow-up and

global time self-similar solutions are sought Some of them are obtalned numerlcally .

It is, shown that, they descrrbe the asymptotrc behavnour ‘of an wide class of 1n1t1al R

perturba.tlons

~Forf>0o +l the-behav1our of the nontrwxal equlhbrlum solution i: nvestlgated.‘ :

It seems to be the llmlt between the blow- -up and the global solutlons ‘The results

from the numerrcal experrments done here and i in some other . works 11,4, 5 6,8 show = .
that on the asymptotrc stage an wide class of blow -up. ‘solutions evolve in consrstency’ oo
with. the self-s1m11ar law for the Cauchy problem For. the global t1me solutxons an e
hypothesis. i is done that a.pprox1mate self-srmllar solutlons descr1be the1r behav1our; R D

for large t1mes

2 Self-srmllar solutlons for ﬁ =0 + 1

When Q is'a ba.ll of rad1us X around the or1g1n the ﬁrst e1genvalue and the ﬁrst

ergenfunctron of the D1r1chlet problem (4) are.

.il AID R R (]) A ey [ SRR Phes ol A IRE
i N :
M _(_(27(—)/_2) o= 2(2 ,Nm*’(2 N)/z(\/ : Z)

'”‘r”

where J(Z_N)/z(z) is the Bessel functron of the ﬁrst kmd of order (2 N)/2, 2(2 N)/2 ’i o :
is the least positive root of J(Z_N)/z(z), z -—' (ZN ) Then the problem (5) (8)'. S

i"l l
will have stea.dy state solutron lf

R Rsl —Z(z N)/z("'l' 1) 1/2 ‘

L8

In the presented work more deta.rled numerlcal analysrs of the asymptotlc be- i

- "'a.re sought then

- . and(),,R(r) Sa.tisﬁgs"

o the solutlon 9,,,(1‘) is the ezgenfunctwn 0 (r)
. k(7), R=co. It vamshes at the point r,, (|6,170;)(rs) = 0 and- therefore it can be
. ‘extended as 0, (r) =0 forr >.r, [1] But _then 6,(r) will be solution of (9) for any -

. R>r,—ie. 0,p(r) =0,(r) when R > r,. Let us note that for N = 1 the explicit
- form of 6, has ‘been obtained in (2, 3,1]. For N > 1 numerlcal methods for ﬁndlng 0,
"-are developed in 4, 14, 15].

2. 1 Blow-up self-srmllar solutlons ; S
:If R > R,y then /\1 <1 and the problem (5)—(8) has a solutlon wluch exrsts ﬁmte

time. If as for the Cauchy problem [1 2, 3 4] blow -up self-similar solutlons of the

; klnd

’:;mﬂaﬁ gm&ﬂﬁ ﬂm_r Am-oomuo_ol'

mj( ﬂﬂ U—ﬁTrW n>0

1 SR T

. N-]( N 100’ ,R)""—‘T +0:-§1____0 B .
Do :R(R)-—O ST R s B e T e TR T

0<r<R,‘l

e 'lt is known from [1] that the problem : \' S o .

—f 70 = R S
rN-1 : ) TO -l-k|9|v;9w0,\ L ,

3 9(0) . V; )
. ‘_: < 01(0) : sl S : Coy ok : L

. ha,s umque solutlon 0,,(1') for any ;4 > 0 whlch is pos1t1ve in R‘*‘ for small ;z For

< s —sup{y |0(r)>0m R+for0<y<y°}<oo : ki

,w(r) for the Cauchy problem (5)—

To 1nvest1gate the solutlons of-the problem (10) 1t was transformed to a system of

"two ordnnary dlfferentlal equatlons (ODE) of ﬁrst order for v= 0 aud w= |0|"0’ A

. ‘. (0)_l‘1 S (11)
|v|"v, : (0)—0 R

This system was solved numerically by a modrﬁcatlon of an expllclt Runge-Kutta

* method [16] which has second order of accuracy and an extended region of stability.

The step Aris chosen automatically so as to guarantee relative stability and a desired

* accuracy € at’ the end of the interval. In our calculatlons €= 10‘7 and the solutlon :



i

as calculated until v < 107 or Ar < "1'0;“;» ‘The’ llum;encal'ex erlrnen'tls)done for
w. P

Ty =1/0 and p> p, show. that 0,(r) vanishes at r, < Tsy. (|9,,|"9’ )(ru) #0. When

we-increase p then r, decreases and tends to R,t when p#— .00, The obtamed 9, (r)
are solutions of (9) for R ="r, > R, and Ty =
given To, > 0 then:it has. solution for arbltrary Topa: > 0. If by 0, R(r, Toi), i = 1, 2:
the solutions, correspondmg to the blow up tlmes To,i are denoted then [4 6] o

s R(r TO 2) = (Tg‘l') sR(r’ TO l)
: " L :

-

2.2 Global self-s1mllar solutlons

If R < R, then ), > 1 and the problem (5) (8) has a global tlme solutlon If the 3

possnble self-51mllar solutlons are. of the kind -

Sl 1) - (t)f, R(r), (0) -1, f,, (0) =0, 4 R(R) -

then‘v; ,‘ ; : k .
e i g(t)’:(l‘l' t/T)—l/a,* T >0

and' St , e ‘
‘,jfv‘;;_(N”v, ’R)+_;:R
Chaose
aLam—o

: iThe‘ problem :

+ f;’?'z’ =

’3+mw 0

;ﬁxr mvv+
SO =n,
r (0) = 0
has i umque solutlon f,.(r) for any p S 0 wlnch vamsh at some point r, < oo andk
(lf,.l”f')(r,.) #0 [1] The problem (14) was “solved numerlcally by the same method "

as (10). The experlments show that when  increases then 1, increases also and tends :
to R, when g — oco. In this way. we find solutions of (13) when R'< Ry, T= l/a :
The solutlon fe, R for arbltrary T may be found replacmg 0_, R in (12) by f, R and To>

byT

1/o. But. if 9) has a ‘solution fora

l (12) pr

3 Asymptot1c and structural stablllty of the self-i 4
R s1m1lar solut1ons ' o

In 1] self- szmzlar representatzon 0(t r) of the solutlon u(t r) with blow -up time T >:
0, To <. for the Cauchy problem is 1ntroduced

0(t r)—(l —t/To)l/au(t r), ’te (o, To) o (15) .‘

g : It is proved for N —‘1 that if uo(r) has a ﬁnlte support and | nonmcreases for r > 0.

then i

0(t r)—vﬂ(r),‘t—rT0

- .where 0, (r) corresponds to the same' blow- -up time To, Lel the self-s1m|lar solutlon.
: Ua(t 1) ='Uy00(t, 7) is asymptotically stable: /i L L fos

Usually the exact blow-up'time is not known In'the numerlcal experlments the ,

o blow -up time can be’ found approxnmately, but a small change of Tp produces a great -
‘ change of 0(t r) for’ t near To.’ That is why'in[4, 6] the self-similar representatlon -~
; that does not use exphcxtly To 1s mtroduced for the Cauchy problem et

max0(7)3 S e
Lsen= i

)

- max u(t,r

and u,(t, 7). iscalled structur‘ally’stable 1f there existsa class of initial perturbations
- ug(r):# 04(r) whose self-similar representatlons o(t,r) defined by (16) tend to 0,(r) -

when t & Ty - These deﬁmtlons may be extended for the boundary problem replacmg

0 by O,R

The numerical experlments (see for example [2 3,6, 8]) show structural stablllty
of u,(t,r) for N = 1,2,3 and arbitrary initial data. In [7} some kind of self-similar-
representatlon is'not used but it is also asserted: that the numerical: solutions ‘with

- various mltlal data approach the self-smnlar solutlon asymptotlcally in. the case N =

‘1.

For N=1 the locahzatlon of the solutlon of (1), (2), 2= R W1th an arbltrary
initial condition with a finite connected support is proved i in [1}. - Moreover if: by
L, the so called fundamental Ienyth (L, depends only on the medium’ parameters -

v Ly =2m(o + 1)o7 for N =1, L, "=,messupp0 (z) for N > 1), by u,(t,z; xo; To)

the self-similar solution symmetrlc about zo with blow-up time Ty, and by To(uo) the
blow-up time of the solution with initial data uo(:c) are denoted then :

1. if the initial condition uo(:c), uo(—:c) = up(z), is nonincreasing for z > 0; if -
- messuppug < L; if there exists Ty such that u,(0, z;0; Tp) > uo(:c) in R and‘
: uo(:c) mtersects u,(O z; 0 T) for all T > To'i in two pomts then

’ mes suppu(t :c) < L for t E (0 To(uo))

. In this case the Cauchy problem (1), (2) w1th Q R and the boundary problem -
(1) (3) with Q - symmetrlc about the origin, mes 2 > L are equlvalent



L if suppu(t a:) = (h (t) h+(t)), .1:0 = h+(0) L /2 1f messuppug > L,, .]f".,
'there exists Ty such that u,(O z; .1:0, To) < ug(a:) 1n IR a.nd ug(a:) mtersects :

us(0,z;20; T) for a.ll 0 < T < To in one pomt then
' he(t) = h+(0) for te (o, To(uo))

The conditions for 1nmob111ty of the left front pomt are a.na.logous and’ hence in

this case the Cauchy problem (1), (2) with @ = IR and the bounda.ry problem -

(1)- (3) with Q o) suppug(a:) are equlva.lent

The numerical experlments done w1th various 1n1t1al da.ta. conﬁrm these assertlons in.

the radially-symmetric case for N'=2, 3.

. Therefore. for ‘the boundary problem w1th mesﬂ > L, the self—51mlla.r solution -
u,(t, r) will be asymptotically and. structura.lly sta.ble for w1de class of -
1n1t1al perturba.tlons That is why in this work the case when mes Q < Lis cons1dered ,

u, R(t r)=

—- then we may expect a different behaviour of the solutlon on the asymptotic sta.ge
Below we SllOW numerlcally the structural sta.blhty of the self-s1mlla.r solutlons when

mesQ < L,. Also if the initial perturbation ug(r).is the solutlon 0, R(r, To). of (9),,j

corresponding to the blow- -up time Tp, the 11umer1ca.l solutlon blows up for t=x To, i.e.
the blow-up time is restored in the calculations. 1, | e :
: For globa.l tlme solutlons the self—sunlla.r representa.tlon ‘may be deﬁned as.

f(t r) = (1 + t/T)‘/"u(t ), 0t >0

stable if for some class of untlal perturba.tlons ug(r) .,-'é f, R('l)
o lim ll S, r) f,n(r) |l—
In th1s case the cholce of T is not essentla.l - 1f S

f(t i T,) = (1 +t/T1)‘/"u(t r) f,n(r T,),

tllen

f(t r; T,) = (1 +t/T2)‘/"u(t r)=

Q + t/T,)‘/"u(t r)

Cord o

o T] Vo o Gty L 4‘: ; 57‘_‘ e
(T ) f: R("1T1) = fa r("’T2)’ st ool
B ,2 . :

The numerlca.l exper1me11ts show the asynlptotlcal sta.blllty of the globa.l t1me e

self-similar solutlons If T is cllosen in an approprlate wa.y suggested in [4]

tn max u(tn,1) — t,,_H ma.x u(tn+1, r)

"”‘,‘“’T-'—-Tn: (18) :

‘max u(tn.H,r) < max u(tn,r)" SR

1+T2/t (T,
1+ T/t o)

(17) .

and then the self—sxmllar solution correspondmg to f, R(r) w1ll be ca.lled asymptotlcallyrk X

X where 0 <ﬂrt1 ’<7’t2 <.
©1L,2,...,k, then f(t,r) is close to f, R(r) for t <« oo.

Lty <. L< tn+k, n'is chosen so that T 2 T,,+,, 1=

The problem (5)-(8) was solved numerically by the method descrlbed in [8] For

~ discretization in space we use the lumped mass finite element method {17] with in-
terpolation [18; 19} of the nonlinear terms G(u) = Sy wdw = ut /(o + 1) and

f(u) = uP on the same basis, as for the solution. Linear finite elements (in the cal-
culations their number.was between 30 and 60) on; ‘uniform and nonuniform grids are.
used. The obtained system of ODE was solved numerically in’time by the modifica-

“tion of Runge-Kutta method [16] described in Section 2. The prescribed accuracy for
- solving the system was e = 10~3 and-the stop cr1terlon was 7 < 10718, 7 beemg the

time step. :
Example 1. The evolution in time of 0, R= 0,‘(7') for o =1.5, N= 3 p=3, R=
= 2.359628 i 1s illustrated on Fig.1.a. The blow-up time obtained in calculations
was To =0. 664230 the blow-up time of the exact ‘self- similar solution is To =1/ =

0.666667. Taking into account the approximations. made when solving the problems

(11) and (5)-(8) we think that this is a good restoration of the blow-up time. As’ it
is seen on Fig.1.b the all of the self-similar representations (16) coincide within the

- plottlng resolution. This allows us to think that tlle self-51mrla.r solutlon is structurally

stable. : ,
Example 2. Flg 2 a shows the evolutlon of the non-self- smnla.r initial da.ta

: 1—-7' r<l~
‘U(](T) { 'kr>l

7

PN

for o = 2 N = 2 R = 1713262 = r,‘, ;1 = 2 The correspondmg self-similar
‘representations H(t r) are shown on Fig.2.b. As it is seen they tend to 0, R(r)=0 (r)

which is also drawn and signed with x on’ F]g 2.a,i.e. the self-sunllar solutlon u, g is

_ structurally stable.

Example 3. The evolutlon of the globa.l tlme self similar 1n1t1al data. Uo(T)
for(r) = fu(r) for o = 3, N=3,p=1, R= r,‘ = 0.988611 is shown on Fig.3.a.
The corresponding self-similar representatlons f (t r; T), '=1/0 =0.(3) are shown
on Fig.3.b and as it is seen they comc1de for all tlme i.e. the self-s1mllar solutlon is

: asymptotically stable.: e R , g R

Example 4. Flg 4.a shows the evolutlon of the non- self—sumlar 1n1t1al data.

7 s 27‘ H 7'_<_ 1/2
“ug(r) = .2—27", 1/2<r<1
0 r>1.

for 0 =2, N'=3, R = 1.547856 = r,, p = 2. Fig.4.b illustrates the asymptotical
stability of the self-similar solution correspondlng to for(r;T), T =T, = 17.6712.
The finction f, g(r;T') is signed with x.

Example 5. An illustration of the case. Ay =1foro =2 N = 2 is glven on
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Flg.5. The irlitié.l perlurbaltloxl Lt
wlr) = 1—=r, <l
SHIT 0, 1 <r <1.388427

tends to the steady state sdlutiou' : : k

: V13 ' o '
Jo(V3r)rd
aw 1/(a+l) , fo - f""(r) "(‘/_")’,, rJ (\/5 r)‘/3 — 0381228 Jo(\/??r)‘/“
f V3 J(\/fi-r)"/"rdr R ;'f.

tha.t is a.lso dra.wn on the ﬁgure (SJgued w1th x)

4 Asymptotic
~ for ,3 75 o+1

4.1 The case,B<a+1

behav10ur " of - the

B N T R

As'it was noted in Section 1:when § < o +:1 the problem (1)~(3) has global time X
solution which tends to the umque posmve steady state solution of (1), (3) as t = oo..
An illustration of this case, is glven on Fxg 6 The evolutlon in tlrne of the initial -

perturbatlon o c T :
L of2ry f§r<1/2'
‘uo(r)= 2=-2r01f2<r <1

\ 0""' 1 <r<2344663

is shown there for o =2, ﬂ = 2 N = 3 The equlllbrlum solutlon U(r) . She

i},\}_,( N- ‘U"U’)’+ U" = 0 U’(O) = 0 U(R) = 0

" is also dra.wn on'the ﬁgure a.nd SJgned with- ‘X It was calculated numerlca.lly in the
- same way as 0,(r) in.Section 2 (instead of U(R) = 0 the condltlon U(O) =1 is put
on and then U vanishes at R = 2. 344663) i :

Let us note that for B 94 o+1-

; U(r,Rg)—aU(a r; Rl)

~ where U (r; R,) is the equlllbrxum solution correspoudlng to boundary coudltlon U (R ) =

0,i=1,2, m= (ﬂ-—a’——])/? a—(Rl/R2)l/m (1]

42 The case,B>a+1

For B > o + 1 also a unique positive equilibrium solutlon of (5), (8) exists (see -

1, 11, 12] and the references cited therein). It was calculated in the same way as for

10
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ﬂ <o+l The evolutlon of the equ1llbr1um solutlon U(1) for o= 2 ,3 = 4 N =

3, U(0) = 2, R ='1.415219 is shown on Fig. 7.a. Fort < 0. 998489 u(t,r) = u(0,r)

but after that it starts increasing and blows—up for Ty =1.220638 instead of existing

for all time. As it°'was noted in ‘Section 1 the equrhbrrum solution ‘is unstable. But

if as initial data uo(r) = 0. 99U(r) is taken the solution u(¢,r) exists for all time and °

tends to zero as t — oo, i.e. U(r) seems to be the limit between the blow -up and the
global solutions of the problem (5)-(8).

It is known from [1] that the Cauchy problem (5)- (7), R=oco has blow- up self-

sxmrlar solutlons of the kind’

u,(t r)=(1 —t/T) '/(ﬂ g (.f) T0 > 0

T ;m:s;ﬂ-a—l
R CETE D L T e
'g~ oy = e - e ”>+'0", 0 0<g<,

#(0) =0, 0 (oo) =

They are niot self—srmllar solutlons for the boundary problem because 0 ({) >0, 0<
£ < oo but in the numerical experiments {1, 4, 5, 6, 8] 1t is- observed that on the ‘

asymptotlc stage the self-srmllar representatlon

o(t, £ = u(t,’r(t)'"'f)/’r(t)
max u(t,r)

‘7()‘m d (,3—0—1)/2

of the solution of the boundary problem (5)- (8) with various 1n1t1al data tends to: s

the first eigen function on any ﬁnlte interval for £, An example is also shown on

Fig.7.b. As it is seen the self-smular representatlons of the solution with initial data - o
uo(r) = U(r), tend to the first eigen function of the Cauchy problem wlren t— To s

(the last one is also drawn on the figure and signed with x).

To calculate the single-point blow-up solution for ¢ near Tp we nse a specral mesh

refinement consistent. with the space-tlme structure of the self-similar solution (8].-

I the boundary problem (5)-(8) had global t1me self—srmrlar solutlons of the klnd -

 uan(tyr) = g(O)fok(6), 9(0) =1, &= ’”‘r’(‘)v: "’(0) =1 u.R(R) =0,
the functrons g(t) and <p(t) should be 7. : | L
9(t) = (1 TV, 750,

e

But if f, r(£0) > 0 for some éy > 0, & < R then the value of u, r(to, R) g(to)f,(fo) >0
0 forty = T((R/E )1/"‘l -1) > 0 would not satisfy the boundary condition (8). Hence
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- Assummg that

. we Vgeﬂt_ ‘

\lvkh_i’ch is knowll [20

- where i o

: ’janc‘i:

“the boundary problem ‘has not self-srmllar solutlons of tlns ty])e Because of the
‘boundary condition'(8) and the numerical experiments done it may be assumed that

for large times the solutions of the boundary problem will evolve in consistency w1th
some approxrmate self-srmrlar solution of the kind::, '

u..(t r‘ég(t)f.,(r), g(O)—r f(0) 0, f.,(R)—o

(rN'lu"u,l ,.), 7— u —’ 0 t5 & co

Yot = TN\

e — (r”-'f"f)+g"“’"‘f"]-'0 t-,oofiﬁ a9

’,"When ,3 >0 +1 and lims—eo g(t) — 0 the last term in (19) may be ignored. But then
: ua(t r) mrght be the self-snnllar solutlon of t|1e equatlon without source =~

’v‘l - rN=1
v,.(t 0)—0 t>0

(4, R) = 0, t>0.

vv,),, t>0 0<r<R

] .to have asymptotlcally stable self—sumlar solutlons of the klnd ‘

0 ="(l +;t/r)‘-‘|/‘a:’ T>0’ -

- ﬁ"‘,vl;'"“,”,"f Ly +ifu —0,

rN-1%

',lf@_o
fa(R’)

(20) :

4.A1‘

. ";_Two examples, conﬁrmlng t|1at for large times the evolution of the global time solu- 8
| tions of the boundary problem (5)-(8), 8 > o+1, is in consistency with the self-similar - -
o ,llaw for the corresponding problem without source, are given below. Let us note this

_assumption was prompted by the fact that for the Cauchy problem (5)~(7), R = oo,

SB>o+1+ 2/N the asymptotic- behavrour of an wide class of global time solutions
s described by the ‘self-similar solution (in tlus case. wrth a constant energy) of the
o correspondmg problem without source. [1}. '

Example 1. The evolutron in time of the 1n1t1a| data

v (l—r)/2 <l s
"(’") { 1<r<1226252

S  ,‘ S 18-




S SN

7 6°0.000000 :

S @.28I8653) .
LR 12006346

TMLAL3.1664

S0t +.6529.785, ),
¢ % 26854.80 ]
e 114670(5 K
-4 501815.7
‘@ 2215078 ool
@ 10000001 " S

R
0.000000
62.74279

892.7343 .

2863.631

9628. 864

33854.85. - b
121777.8 EICHE e
442048, 1.7 U s
/1000000 -t L0

B e+ HEINE O

‘fora"=2 ,3—35 N—2 R—1226252 1sshown on F1g8a_ On F1g8bthel

correspondmg self-similar representatlous ‘

I, )= (1 +t/T)""u(t r),} >0 (21) |

with T = 13 6 (determmed from (18)) are’ .drawn and as it is seen they tend to the
solution fa(r T) of (20) that’is also drawn on the ﬁgure and” s1gued with x.
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SR80, AR T T e

. Screuce Bulgarra

v I{eﬁerences

275.8511-F /i R

;‘,,,Example,2.~Fig.Q.a‘illu‘strates‘;the=evoluti_on in time of the initial data :* * i/ -

‘1 <ir < 3.052734.

or o= 2 ,5 =4, N =3, R=3. 052734' The correspoudmg self-srrnllar representa-
- tions (21), T=532 drawn on Flg 9.b tend to fa(r, T) (slgued with: x) 5
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