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1'. Introduction

~

. The matrlx Schrodmger equatron can be written in the form (h = 1)

{dz/,mz ZQ(R) d/dR+[2Mc—'H(R)]} lIl(R)_ o ‘(1)“ ;I k

. /where Q (R) and 'H(R) are real n X n matrlces of eﬂ'ectlve potentxals of the problem, Ilf

N s the reduced mass and € is the total energy.. The eﬂ'ectlve potentlals are subJect to the :

e

R condltxons provrdmg self-adjomtness of the drﬂ'erentlal operator Q (R) ds antlsymmetrlc ’;

and HT(R) = H(R) - ZdQ(R)/dR or H(R) = IC(R) + dQ(R) /dR ‘where IC(R) is

symmetrlc We w111 assume that potentlals Q and K have the asymptotlc form

_where Els d1agonal matrrx whose elements are the threshold energles of the dlﬂ'erent chan-

potential Q can be. nonzero at the mﬁmty This assumptlon allows us to mclude 1nto

consrderatron the standard adlabatlc PSS method [1 2] (also named as the ‘multi- level adi- ’

BN -

Ic(R) £+ me-m

m=1 "

‘ Q(R) ,='ZB<"'?R-."',; :

m—O :

" nels. Matrxces A(’") are’ symmetrlc and B('") are antlsymmetrrc We adn'ut also that

: abatxc approach [3] ) and other adxabatxc approaches based for example, on hypersphencal

’ coordmates [4,5].

-The methods bexng used for solv:ng the radlal Schrodxnger equatlon, can be- dlvrded

lnto two large groups. The ﬁrst group cons:sts of the methods based on evolutxonary

o equatlons started from R=0 and contlnulng the solution to the asymptotlc reglon These

are, for example, the log denvatrve method [6] and variable phasc methods [7,8]. Another

group regards Eq (1) asa boundary inhomogeneous equation’ or a boundary ergenvalue

problem We mentlon here the matrix Numerov method [9] (lt can be used only when Q-

- ds van1shed), the contxnuous analog of the Newton method [10 11] 1mposmg the nonllnear :

boundary condition i m ‘the asymptotlc regron w1th the phase shift as a parameter and

* finally, the R-matrlx method [12] where the exgenvalue problcm is solved to obtam the R-

i matrxx dsa functron of energy cat some point beyond the 1nteract10n The dlsadvantage of

the major of these methods (maybe except the Numerov method) is ab initio nonlmearlty of

)
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the problem that complicates the application of perturbative theory when you appoximate
the operator (1) by a more simple zero-order (not necessarily differential) operator.

The method proposed in this paper treats the equation (1) as a boundary inhomo-'
geneous differential equation with a linear boundary condition in an asymptotic region.
That helps us to develop an efficient computational scheme based on the variable order
difference approximation [13] and the perturbative splitting of the initial operator. It was
applied to calculate the scattering processes of mesoatoms of hydrogen isotopes on “bare

nuclei in the framework of the multi-level adiabatic approach [14] with the use of about

500 adiabatic states.

2. Boundary conditions

We are looking for solutions of Eq. (1) having asymptotic behaviour

\P(‘) (R) ~ &_) _ Z Sl'qu(j-l-)’ (2(1)
j=1
where .
FE) (R) ~ e HilkiR+AIR), (20)

and  is a vector scaling the asymptotic function to the unit flux [15]. Channel ¢ is said to
be open if k; is real otherwise it is closed (we adopt the convention that k; ‘has a positive
imaginary part for closed channels and k; is a real positive number for open channels).
The quantities S;; for open channels form the S-matrix of the reaction. We deliberately
omit here orbital momentum and Coulomb phase shift corrections, since the major part of
adiabatic methods leads to equations having mixed asymptotic states of atomic functions.
From the other side, they could be easily put into calculated S-matrix afterwords.

We can continue the solution (2) from the infinity to some finite point R, using the
asymptotic expansion
N
#F) (R) = R ERPs [eg;) +3 enR—"] . , (3)
' n=1
Inserting (3) into equation (1) yields us a sequence of equations providing solutions for

unknown quantities in (3)

_ 4
[k? + 2ik;Bo + € — €] €& = 0; (1a)
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(k2 + 2ik;Bo + € — €] € + [2kifi + 2ifi Bo + 2ik; By + A1]& = 0; (4b)

and

B; = _(Eg, [2ikiBl + Al']_‘EO). (5)
(%o, [2k; + iBo] &)

So for a given accuracy € we can find a value R, of R such that expansion (3) differs in

absolute value from the exact solution by an amount smaller than € for all R > R,.

Unfortunately, this point can appear at some large distance from the origin. In this case
it will be useful to integrate the solution inward by some certain numerical technique. If all
channels are open, then the given solutions can be obtained by some initial value method
(like Runge-Kutta or linear multistep methods which are available in a wide choice in
different Fortran package libraries). The use of these methods in a case when some channels
are closed, leads to instability and poor linear independence of obtained solutions. The
Fox-Goodwin technique for the solution of two-point boundary value problems allows one
to avoid the instability and to build a set of solutions whicil has good linear independence
at the given point R,, [16].

Hereafter we assume that all the necessary solutions (and their derivatives) are obtained
by one or another method at a given point R,,. We denote by &) (R) the n X n matrix
composed of solutions having an a.éymptotic form ~ exp (ikR) for open channels and
exponentially decaying for closed channels which we assume to be non-singular.

We look for the boundary conditions of the form
| | V(R)+GU(R) =H), ' (6)
which selects from the common asymptotic solution functions having an asymptotic be-
haviour as in (2). To do that wel can consider the equations
9 = ¢2(—) _ q,l(+)5(i)’
T = ¢;(7) — (P @)
and try to get rid of unknown parameters S;; using the regularity of the matrix ®(+) (R).

Extracting S() from the second equation and inserting it into the first one we obtain the

necessary expressions for the matrix G:

G=—3™ [q)(ﬂ]‘l.,

-

and for the right-hand side term:
b9 = ¢ 4 G,

For the case of the finite-difference approximation to Eq. (1) it would be better to

modify the boundary condition to the form without derivatives:
U¥ (Ry)+ WY (Ry) =85,

where R; and Rz are two neighbouring nodes in the difference grid. Matrices U and W
can be obtained in a similar way.
For numerical calculations it is more convenient to work with real functions and real-

boundary conditions. We can transfer our asymptotic solutions to get a real form:
1 -
1 +)
#7 =5 (47 -47),

&0 =L (89 440,

For these “standing wave” functions a common solution can be expressed in a form:
m
s 2
PO~ g0 -3 Ko, "
=

where K is the so-called reactance matrix:

K=i(I+8)'UI-5), S=({+iK)(I-iK)",

that has a real symmetric form [17].

3. Solution of the boundary problem

In the case of multichannel scattering we can usually describe an appropriate zero-
order problem which has a satisfactory solution to the original equation. We assume that
this zero-order approximation has a block-diagonal form and Eq. (1) can be rewritten as

follows:

{@*JdR? — 2Q(R);; d/dR + [2Me — H(R);}} ¥i(R) =

= 3" {20(R); d/dR+ H(R);} ¥ (R),
J#



where the left-hand side of the equation is a system of uncoupled differential operators
and the right-hand side represents the perturbative part. Denote them as Hy and V,

.
respectively. So we can introduce a standard perturbative scheme of the solution of Eq. (1)

HoXpp1=VXi, k=0,1,... (8)

where X is an iterative solution of Eq. (1) and X = 0. We recall that Eq. (8) is
inhomogeneous equation due to inhomogeneous boundary condition (6).

The existence of first derivative term in Eq. (1) makes an application of Numerov
difference fourth order approximation impossible. Compact three-point difference scheme
thus can only provide a second order approximation to the original differential operator.
The use of higher order approximations requires increasing of the number of points for the
finite difference scheme that in its turn increases the width of the band of the matrix of an
approximation and respectively increases memory and computational time réquirements.
Lentini, Pereyra [13] proposed the method that allowed to avoid these problems. It is based
. on the splitting of initial high order difference scheme into its second order approximation

on one side and four, six and higher order corrections on the other

y"(z) = {aP) + 68 + 60 + .. Jy (=),
o (zx) = {0 + 60 4+ 50 2 Yy (aa),

where
—2y(zi)+y(zr—
Agz)y(zk)zy(zkﬂ) y’EZk) y(2e-1)
y(zr41) — y(=r-1)
APy (a4) = ( +1)2h (za-),
and
5Py (1) = =y (zrq2) + 4y (zr41) — 6y (z1) + 4y (zk—1) — Y (zk-2)
s Y\Tk) = 12h2 . ?
50y (z4) = —Y(zk+2) + 29 (zh41) — 2y (zk-1) + ¥ (zk—2)
¢ YT 12h a
and so on. ;

Finally we can rewrite the main equation (1) with the new splittiné of the operator

(A9 - 20(Ru); AP +[2Me - H(Re)i) } ¥ (Bi) =

=> {2Q(Rk)ij NG +H(Rk).‘j} ¥ (Re) ~
— {6 20 (R0 "} i (Ra) - {67 - 20 (R} 600} wi (i) + ..,
which can be successfully solved using perturbative corrections of the solution according

to iterative process (8).’

4. Numerical example

In this section we apply the described procedure for investigation of the charge transfer
process in du+1 — tu+d inelastic scattering. The approach is based on the decomposition
of the three-body wave function ¥ (R, r) using the adiadatic basis of states of the discrete

and continuous spectra of the two-center problem (see Ref. 2):
¥ (R,r) = Z én (r; R) X, (R) + /qusc (r; R, E) X (R; k), (9a)
n ° k o

where the functions ¢, and ¢, satisfy the stationary equations

{_lA, _1 l}qsn (55 B) = Ea (R) $u (v, B),

2 T T2 (9 b)

{_%_Ar _1 l} be (v R, E) = (K/2) e (v, B, k) .

TLoT2
Here R is an internuclear position vector, r is a muon position vector with respect to the ge-
ometric center of nuclei, r; and r; are respective muon-nucleus distances. (We should note
here that we slightly change our notation for the three-body and radial wave functions).
Inserting of (9) into the three-body Schrodinger equation and ave;aging over angular vari-
ables leads to the system of coupled equations for the amplitudes X; (R) describing the

relative motion of the nuclei:

2

d
Ez‘x" (R) + (2M€ -

f%_l)) Xi (R) - Z Uij (R)X; (R)

(10)
- dkU;; (R, k) X; (R, k) =0,
> ] @0 (R )X,

where the matrix elements Ui; (R) are effective potentials of the problem [2], ¢ is the
colliding energy in the body frame coordinates, J is the total orbital momentum and M

is the reduced mass of the system.



Table I. Convergence of the charge transfer cross section a4, (10_20cm2) for S-wave
dp 4+t — i+ d scattgring and different incident energies (in brackets the number of

channels is shown).

number of shells
discrete continuous 0.01eV 0.04eV 0.1eV
spectrum spectrum
1[2) - 1.209 0.596 0.369
2 [6] - 3.215 1.583 0.980
3[12] - 3.440 1.694 1.047
4 [20] - 3.498 1.722 1.065
4 [20] 1 [+88] 3.998 1.965 1.217
4 [20] 2 [+176] 4.129 2.029 1.257
4 [20] 3 [+264] 4.375 - 2.148 1.329
4 [20] 4 [+352] 4.381 2.154 1.333
420} | 5[+440] | 4376 2.150 1.329
=]
o
Ucl :
Uce
Ui Uj;
Uij Z
Ulj 3 Ulc
discrete | continuous

Fig.1 The scheme of effective potentials of the multi-channel adiabatic approach taken

into account in calculations.

To be sure that our multichannel model is invariant under space rotations we have to
use closed (with respect to the three-dimensional rotations) shells of states of continuous
and discrete spectra. In calculations we have taken into account (see the Figure) the
interaction of the states of the first three shells of the discrete spectrum which can be
described by the quantum numbers of isolated atom: {1s}, {2s,2p}, {3s,3p,3d}. And the
interaction of the first shell of discrete spectrum with the fourth shell of discrete spectrum
(with principal quantum number n = 4) and the shells of continuous spectrum: {l =
0,1,m = 0}, {l = 2,3,m = 0}, ... About description of quantum numbers of continuous
spectrum we refer to Ref. 18. The wave number parameter of continuous spectrum k has
been discretized to eliminate the integral part of Eq. (10): k, = 0.1(0.1)3.0(0.5)10 (44
points for every state).

The cross sections of charge transfer og4;(¢) (J = 0) while the number of states in
Eq. (10) increases are shown in the Table. It is clearly seen that'inc!usion of continuous
spectrum with a big number of states into consideration has a great effect on the accuracy
of the calculation. From the other side, the computational time bof the calculations taking
into account continuous spectrum didn’t increase significanly and grew linearly with the
number of continuous spectrum shells.

This method was applied for making up the Atlas of the elastic and inelastic cross
sections for mesic atomic processes {14] and for calculating muon transfer rates in hydrogen

isotope mixture [19].
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Kopo6os B. " : : E11-92-357
YucneHHoe pewerne MHOFOKaHanbHOM 3agaun paccemmn

MpeanaraeTcaA  BbIYUCANTENbHbIN anropuTM peLueHmnA MHOFOKaHaNbHOI
3apaum ynpyroro n Heynpyroro pacceankA. VicxoaHoit ABNAETCA cucTema pa-

ANanbHbIX ypaBHeHMM lllpenMHrepa yp.oaneraopmow.aﬂ FMHEMHOMY rpaHM'{-

- "HOMY YCNoBUi0, ONpeaeneHHOMyY B HekoTopoli . Touke R = Ry acumnroTnyec-

Ko obnactu. I‘Ionoﬁubre rPaHu4Hble YCIIOBUA MOTYT 6bIT nonyueHbl ¢ NOMO-

© Wbt0 aCMMNOTOTUYECKUX pEL!JEHMM ,U,nﬂ cuctem ¢ bonbLWNM yucnom OTKPbITbEX
»M 3aKprTle KaHanos NMpAmMoe . peweHune MCXOAHOW 3apayn (wcnonbayrou.ree .

CKaXem, meroa hasoBbix HyHKUUA nan norapMhMuyecKoii NPOM3BOAHOIA)

. NpeAcTaBnAeT. GOMbLIYI0 BbIMMCAMTENbHYIO TPYAHOCTL. O6CyMAaeTcA, Kak.

Ofy4eHHOE NUHeAHOe ypasHenue MoxeT GbiTs pa3buto Ha oneparop Hyne-

_BOro nomeKa n oneparop BO3MYLLEHWA, I'Ior<a3aHo 4TO - KOHEYHO- pa3Hocr- .

HbIfA metoa ﬂEpEMEHHOI"O nopAaKa NeHTUHN — Mepenpa kak HeNb3A nyve

. NOAXOAWT ANA peweHun noao6HOW 3apaun. PaspaboTanHaA npoueaypa npu-

‘MEHAETCA B pamMKax ap.uaﬁamqecxoro nonxona K 3anaqe Heynpyroro paccen-
Hundp+t+tu+d ' ~

Pa6oTta . BbanﬂHEHa B ﬂaﬁoparopuw Bbmwcnnrenbﬂon rexumm " aBTo-,

- _Matmsaumm OVIHVI

COoneHue OGbenMHeHHoro HHCTHTYTa g1epHbIX HCcre108aHui. Jy6ha 1992

L Korobov V I

~ batic. multichannel approach. -

- Technlques and Automatlon JINR

, ‘ v E11-9‘2-357

Numerlcal Solution of the Multrchannel Scatterlng Problem ’
A numerlcal algorithm for solvmg ‘the' multlchannel elastic and inelastic

scatterlng problem is proposed The starting point -is the system of radial

3 inchrodlnger equations with linear. boundary conditions imposed at some
- point'R = Rmy placed somewhere in asymptotic region. These boundary con-

ditions are constructed with the use of asymptotic solutions. For the systems. -

. with a great number of open"and closed channels the solving of the original

equation”directly (with the use, for example, ' of phase or log-derivative me-

- thods) is a cumbersome task. We discuss how the obtained linear equation

can be splitted into a zero-order operator and its perturbatlve part. 1t is shown

~that Lentini — Pereyra variable order finite-difference  method appears to be -
~ very suitable for solving that kind of problems.  The derived. procedure is

applred todu+t>tu+d melastlc scattenng |n the framework of the adia-

The mvestrgatlon has been performed at the Laboratory of Computrngb

'.\1“
S
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