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: 'qutxal differentia.l equa.tions of evolutlon type descrlbe many natural processes and .
> phenomena in"different areas of physics: plasma physics, hydrodynamics acoustics, "
o ‘_Aquantum mechamcs, nonlmea.r optics, etc. o
. There are two different ¢ groups of methods being used for solvmg nonlmea.r evolution

: equatlons (NEE) exactly. One is based on an explicit transformation from the nonlin-

" ear equation to a linear one.:The other one uses the conneétion with an underlymg :
‘isospectral linear exgenvalue problem. The well-known' Burgers and Korteveg-de Vries 7.
“-(KdV) equations are prototypes of NEE solva.ble by the ﬁrst and the second techmque,'. T

~ respectively

: “Exactly solvable, or mtegrable, NEE possess a number of remarka.ble propertles -
e reflectmg their ‘very .rich internal algebra.xc structure: -
- and_multisoliton) solutions, Lax pair, infinite sequences of conserved quantities a.nd ;

- higher or Lie-Bicklund symmetries, nontrivial prolongation structures in Whalquist~

Estabrook method, Backlund transforma.tlons, the Painlevé property, leota bllmear" i

‘;form hereditary algebra, non-degenerated dispersion laws, etc.

“..It is very important to know whether a given NEE is integrable or not. To test any .
“of above remarkable properties one has to perform, as a-rule, very cumbersome alge- .-

braic transformations over mathematrcal expressions are generated by a given equation

and to verify underlymg algebraic identities. That is why modern computer algebra G : .
- systems, such as Reduce, Maple, Mathematica, Macsyma, and Axiom are used now to

develop a computer-axded test of integrability.” A number of software packages written

““in"different computer algebra languages have been created for verifying integrability’
~..of NEE (Table 1). Each package uses some critetion of mtegrabllity based on one or ..
o other remarkable property of mtegrable equations listed above. "</ L
Genera.lly different criteria complement each other. However, for quasnlmear (lmear Sl
s w1th respect to the highest spatlal derivatives of dependent variables) evolution equa-
tions in one-spatial and one-temporal dimensions, the most efficient and constructive .. -
- criterion is that one based on symmetry approach [12]. In this approach integrability - =
" conditions are nothing more than condxtrons of exrstence of high order conservation S

) laws and symmetries.s

o

they have localized (soliton -

Table 1. Computer tests of integrability.

Criterion | CAS Equation Author(s) ; Comments
Lax pair Reduce | @, = Flii(z,t)] Ito M. [1] (1975) Ansatz for
L — A pair
Mac- Reiman A. [2] (1979) | Closure of
syma Lie algebra
Whalquist- Jacobi Ident-
Estabrook | Reduce | @, = Fii(Z,t)] Gragert P. [3] (1989) | ities & Closure
method : of Lie algebra
Akselrod 1.,Gerdt V., | Construction
Reduce Kovtun V.,Robuk V. | of Lie algebra
{4] (1991) ‘
Mac- Hereman W., Sufficient
Painlevé syma | F[i(Z,t)] = 0" Angenent S. condition
property - | -[5] (1989) ,
Reduce | u; = ug, + f[u]) | Renner F. Interactive
u = u(z,t) (6] {1991) .mode
Gerdt V., Including
= Flu(z,t)]" Shvachka A., Backlund
Zharkov A. [7] (1985) | transformation
Formac | @ = Aty + f[d]*) | Gerdt V., Shabat A. | A = diag();)
@ = t(z,t) Svinolupov S., A #E X (E#T)
Zharkov A. [8] (1989) | A #0
Symmetry iy = A(8)tz: + £l 2 - component
approach | mu- f=fla - Mikhailov A. (1988) | equations,
MATH | @ = i(=z,t) ‘ unpublished
Bakirov 1.,Sckolov V., | Unpublished
Svinolupov S. (1990) ‘
u, = Flu(z,1)] Bocharov A.,
DELiA Sokolov V.- Unpublished
Svinolupov S. (1991)
Reduce | @, = Adix, + f[u]?) | Gerdt V.,Zhatkov A. | A = diag(\;)-
4 = t(z,1) [9] (1990) A #0
Hirota v , :(Dz)f* f = 07 | Hietarinta J. Three- and
method Reduce f f( t) {10] (1991) four-soliton
‘ solutions
Hereditary Wiwianka W., FeAD,Iu)
algebra Maple = Flu(z,t)] Fuchsstainer B. D =d/dz
[11] (1990) I=Dt

*} Equation(s) may content arbitrary numeric parameters. '
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2 Symmetries and conservation laws

The symmetry approach allows to make in a completely algorithmic way the integra-
bility analysis for the following form of NEE [8, 9, 13]

ﬁt=@(z,ﬁ,...,ﬁN)=AﬁN+F(z,ﬁ,...,ﬁN_1;al,...,aK), i = i(z,1)
U= DY), D =d/dr,i=(u,...,uM), &= (d,...,0M), (1)
A= diag(/\l,...,/\ju), /\,-a_,- € C, /\,‘ ;é 0, /\,‘ ;é /\J’ (Z -‘,lé ]),

where the nonlinear part F in r.h.s. is a polynomial in all its variables. .

To be integrable, (1) must possess infinitely many time-independent higher sym-
vector-functions H = (H',...,H™) in a finite number of differential
variables z,u,uy,...,u, such that NEE &, = fi(z,fi, #,...,U,) is compatible with
(1). In practice, however, the existence of M different higher symmetries of the order
n > N is sufficient for 1ntegrab111ty of M component NEE [14]. Symmetry H satisfies
the dxfferentlal equation df /dt =

metries, i.e.

o, (H ) which is equivalent to the operator relation

dH, do, .
-, e =2, 2)

where ®, and H, are matrix differential operators

®, _qu' ,]

Integrability, i.e. solvability of (2 (2) for as high order of H as deSIred is equivalent [12]
to solvability of the.operator relation .

= 8<I>k/8u H. = ZH;Di, [Hi]

=0

= OH*[0u! .

L;—[%,,L]=0 " : : (3)
inr terms of formal series

L= zm: AD*,

k=—o00

m>0, deg(L)=m, res(L)= Ay, (4)

with matrlx M x M coeflicients Ay depending on a finite number of differential variables
z,i,1,,... and such that det[An] # 0. -
The necessary integrability conditions have the form of conselvatlon laws [S 9]

d
E(R(l’J)) € ImD,

where ¢ € Im D means that g = D( (z,u,...
by formulas

,u)) and densities R(3, j) are determined

R(i,j) = { aFj/?u‘}V—l7 o
8/0p; [trace (res(L))],

1 =0,
> 0.

. (6)
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Here L is series (4) of degree m = 4. Its coefficients can be computed by recurrence
relations, which follow from (1),(3 ) and (4)

k>m Ak=0, )
[Aml,-,-={ 0 if )

Hi 1= Ja

r}g {%([ANH];,') - [CN+k]ij|A,‘=0} , 1#J

D7 {4 (Awiiils) = lenwsililsagia=o } + 75,
i=j

k<m [Ak],'j =

where p;,7F € C are arbitrary constants and ¢; are coefficients of commutator [F., L] =
S ¢;D'. In addition to computation of conservation laws (6), recurrence relations (7)
form the basis for computation of the m-order symmetry as a solution of (2) [8, 13].

3 Algbrithm description

Heunstlcally optimal computational strategy of integrability analy51s consists of the

following three sequential steps [13]:
1. Verification of some first I necessary integrability conditions (5) (¢ < I) by the

following procedure

1) i:=0
2) for j:=1to M do R(0,) := dF’|duly_;
% computation of the firstdensities by formula (6)

3) if dit(R(z,J)) € ImD then go to 4) else STOP

% testing conditions (5)
4) i:=14i+1 (8)
5) for k:=ito —1 step —1 do compute Ai(j,!) '
% computation of coef ficients of series (4) by formulas (7)
6) R(i,j):=0/0p;trace(A-)
% computation of densities by formula (6)
7) if i <1 then go to 4) else STOP ’

In the presence of the arbitrary parameters o; in (1) conditions (5) are equivalent
to some system of nonlinear algebraic equations in those parameters which can be
produced by a completely automatic way [8, 9, 13].

II. Construction of a given order higher symmetry. Here in addition to the necessary
conditions (5) one has to verify new ones which provide the existence of the symmetry
and may lead to additional algebraic equations in arbitrary. parameters o; {13].



ITI. Solving the resulting system of the nonlinear algebraic equations obtained at
steps I-II. An effective algorithmic method for domg this step is described in the next
section.

4 Solving nonlinear algebraic equations

The systems of nonlinear algebraic equations which arise as integrability conditions for
multiparametric NEE usually have infinitely many solutions. It follows from the fact
that scale transformations of both independent and dependent variables in (1) do not
impact at the property of integrability.

Therefore, to investigate and exactly solve those algebraic equations one needs an
appropriate technique. We use that one [15] based on a Grobner basis construction [16]
for the polynomial ideal generated by the set of polynomials of the system under
consideration. This technique allows in a completely algorithmic way to obtain the
following information on the algebraic system:

o To verify its compatibility, i.e. the existence of common roots.

¢ To find the dimension of the solution space (algebraic variety) or, in other words,
the dimension of the polynomial ideal generated by the algebraic system.

o To detect whether the system has finitely or infinitely many solutions.

o In finitely many solutions case (zero-dimensional ideal) to transform the system
into an equivalent "triangular” form and therefore to reduce the initial multivari-
ate problem to successive solving univariate equations.

e In infinitely many solutions case (positive dimensional ideal) to find all the max-
imal sets of (algebraically) independent variables modulo polynomial ideal [17]
which could be considered as free parameters giving the parametrization of the
solution space.

In addition to these general facilities in the framework of Grébner basis technique one
can effectively take into account such a property of polynomial systems resulting from
integrability conditions as homogeneity [15] which follows from the above mentioned
scale invariance. It leads to reduction a number of variables involved in Grobner basis
computation and makes the procedure much more efficient with respect to computing
time and readability of output by splitting the initial systems into smaller subsystems
with a reduced number of variables.

\)

5 Implementation in Reduce: packages HSYM

and ASYS

The algorithmic approaches of sections 3 and 4 have been implemented in the form
of packages HSYM (Higher SYMmetries) [9, 13] and ASYS (Algebraic SYStems) [15],
respectively, both written in the symbolic mode language Rlisp of computer algebra
system Reduce [18]. «

Package HSYM uses the built-in recursive representation of polynomials in the Re-
duce ”standard form”. Algebraic operation over differential polynomials are realized
by calls to the corresponding built-in procedures acting at ”standard forms” and "stan-
dard quotients”. Main procedures of the package are those ones which compute series
(4), densities R(z,j) by formulas (6), symmetries H as solution of (2) and reverse op-
erator of total spatial derivative D. The latter operation (D~!) plays the key role in
verification of the necessary integrability conditions (5 as well as in recurrence relations
(7). In both these cases the problem is reduced to solvability equations of the form
D(Q) =S & Q = D7'S in terms of local functions, i.e. functions in a finite number
of differential variables z, @, 1, . ... Namely at the step of D~! computation there arise
restrictions on the r.h.s. of NEE (1), in particular, nonlinear algebraic equations in
arbitrary parameters «; if they are. ;

Package ASYS provides a user with all the set of facilities mentioned in section 4:

o Grobner basis constructing by Buchberger algorithm [16];

o determination of the dimension of a solution space for a given polynomial sys-
tem, computation of all sets of independent variables and reduction by these
sets to zero-dimensional subsystems treating the independent variables as free
parameters;

o verification of homogeneity properties and carrying out homogeneity reduction
to a set of subsystems with reduced number of variables.

Unlike the HSYM package, the basic recursive polynomial representation used in RE-
DUCE does not provide reasonable efficiency of a Grébner basis construction. By this

reason the ASYS package much like the REDUCE standard package GROEBNER (18]

uses the distributive representation.

6 Examples

We illustrate the above technique and computer algebra software at two different ex-
amples: one gives integrability verification of the given equation and another belongs
to a typical classification problem when all the integrable cases should be selected from
some multiparametric family of NEE.



Example 1. In paper [19] the second-order NEE of the form (1)
up = uy +2u° 9)

was derived for which one remained to be investigated whether or not it is integrable.
Verification of the first integrability condition from the canonical series (5) with the
help of the HSYM package immediately shows its violation. Density p1 = R(1,1) in
formula (6) and its time derivative computed with HSYM are p; = —3 ud, dp, /dt =
6 u, u—12 ut. One can easily see that the latter expression does not satisfy condition (5).
By this reason HSYM, doing all underlying computations completely automatically,
will give as an output line the message

"non-integrable expression”,

which means that equation (9) is not integrable.

Example 2. Seven-parametric family of the seven-order KdV-like NEE -
ug =7 + Auus + Agurta + Asustia + APug + Asu g + Ao + Arelu,  (10)

where ); € C. Family (10) was first investigated in (20]. Here we give the complete
solution in accordance with the scheme of section 3. Conditions (6) fori =1,3,5,7 (all
conditions with even i are identically satisfied for arbitrary );) generate the following
system of nonlinear algebraic equations ‘

M(he = Xs/2+ Xa) = (2/TAF = Ag)(—10X + 5Xy — X3) =0,

2/ = A)(BA— As + Xeé) =0, -

ay(=321 + 2X5) + 21az = a1(2hs — 2Xs) + a2(—45X; + 15Xz — 3As) =0,
924y A7 + a2(1204 — 3Xs + 2X6) = by(202 — M) + Tby = byds + b, = 0,
by(=2Xg — 2Xs) + b2(2h2 — 8X1) + 84b3 =0, (11)
bu(8/3)s + 6X6) + by(11A; — 17/3A; + 5/3)g) — 168b; = 0, '

15by A7 + by(5Xg — 2Xs) + ba(—120A; + 30X, — 6X3) =0,

—3by A7 + ba(—Aa/2 + Asf4 — Ne/2) + b3(24X; — 6X2) =0,

3by Ay + b3(40As — 85 +4X) =0, - | C(12)

where

ay = —2Af + AlAg + 2A1A3 - Ag - 7A5 + 21/\6, a9 = 7A7 - 2/\1/\4 + 3/7/\:15,
bl = A1(5A1 - 3/\2 + A3), b2 = A1(2A6 - 4A4), b3 = Al/\7/2 .

By means of the ASYS package the solution space is found to be three-dimensional
one [15] with a complete set of solutions collected in Table 2. ‘

Table 2. Parametrization of the solution space for system (11). -

Para- Solutions
meters

X2 = /21,0 = 61, hs = 2/TAE, As = O/TAL, Ao = 5/1402, Ay = 4/147X3
A A2 = 3A1, A3 = 5A1, Ay = 5/14X7 X5 = 10/7TA2, Xs = 5/1407, X7 = 5/98)3
/\2 = 2A1,/\3 == 3A1,)\4 = 2/7/\%,)\5 = 6/7/\¥,A6 = 1/7/\?,A7 = 4/147?

X, X1 =0, A5 = BAg, As = As = —2/63XZ, Xs = 4/63)0Z, A; = —10/13233
W 3= 0,05 = 0,0 = 0,% = hade = =20z, s = 0 '
A2, M A =0, A = BXg, As = 1/14X0% + 9/2X4, Xg = 1/14X2 + 3/2X4, A7 = 0
AL =0, A, =71, A = 0, \s = —2/161r; A3 + 40/23 g, A7 = 10/25921r, Ai—
Az, de 74/483r Mg — 16/3703X30g, 71 = (5)g & 1/25)2 — 5152X5)/46

Al =)\2: A4=‘A5=A7:0 : N
A :_0’4\4_: 0,46 = 1/21)\34‘1/3)\5,)\7 =0

A2) /\31 AS

Verification of the existence of conservation laws (5) with numbers 7 =-9,11 and
higher symmetries for the solutions of Table 2 with package HSYM shows that 6nly
top three rows correspond to integrable equations (10). Those three equations are
none others than the seven-order symmetries of the well-known low order NEE: the
third-order KdV equation and the fifth-order Sawada-Kotera and Kaup—Kupershmidt
equations, respectively [20, 21].

All computations took about 1 minute on a 25 Mhz 80386 DOS computer. ‘
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