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1 Introduction 

Pa.rtial · differential equations of evolution type describe many natural proc~sses · and 
phenomena in different areas of physics: plasma physics, hydrodynamics, acoustics, 

. quantum mechanics; nonlinear optics, etc. 
There are two different groups of methods being used for solving nonlinear evolution 

equations (NEE) exactly. One is based on an explicit transformation from the nonlin­
ear equation to a linear one. The other one uses the connection with an underlying 
isospectral linear eigenvalue problem. The well-known Burgers and Korteveg-de Vries · 

· (KdV) equations 'are prototypes of NEE solvable by the first and the second tech.nique, 
respectively. . ' 

· Exactly solvable, or integrable, NEE possess a number of remarkable properties 
reflecting their very .rich internal algebraic structure: they have localized (soliton 
and multisoliton) solutions, Lax pair, infinite sequences of conserved quantities and 

· higher or Lie-Backlund symmetries, nontrivial· prolongation structures in Whalquis·t­
Estabrook method, Backlund transformati~ns, the Painleve property, Hirota bilinear 
form,; hereditary algebra, non-degenerated dispersion laws, etc. ' · 

It is very important to know whether a given NEE is integrable or not. To test any 
of above remarkable properties one has to perform, as a rule, very.cumbersome alge­
braic transformations over mathematical expressions are generated by a given equation 
and to verify underlying algebraic identities. That is why modern computer algebr.;_ 
systems, such as.Reduce, Maple, Mathematica, Macsyma, and Axiom are used no~ to : 
develop a computer-aided test of integrability. A number of software pa~kagcs written 
in different computer algebra languages have been created for verifying integrability 
of NEE (Table I). Each package uses some criterion of integrability bas_ed on one or' 
other remarkable property of integrable equations listed above. 

Generally different criteria.complement each other. However, for quasilinear (linear. 
with respect to the highest spatial derivatives of dependent variables) evolution equa­
tions _in one-spatial and one-temporal dimensions, the most efficient _and constructive 
criterion is that one based on symmetry approach (12). In this approach integrability 
conditions are nothing more than con_ditions of existence of high order conservation 
laws and symmetries .. 
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Table 1. Computer tests of integrability. 

Criterion CAS Equation Author(s) Comments 

Lax pair Reduce iit = F[ii(x, t)] Ito M. [1] (1975) Ansatz for 
L-A pair 

Mac- Reiman A. [2] (1979) Closure of 
syma Lie algebra 

Whalquist- Jacobi ldent-

Estabrook Reduce ii1 = F[u(x, t)J Gragert P. [3] (1989) ities & Closure 
method of Lie algebra 

Akselrod l.,Gerdt V., Construction 
Reduce Kovtun V.,Robuk V. , of Lie algebra 

[4] (1991) 
Mac- Hereman W., Sufficient 

Painleve syma F[ii(x, t)] = o•l Angenent S. condition 
property [5) (1989) 

Reduce Ut = Uh + f[u]•l Renner F. Interactive 
u = u(x,t) [6] (1991) mode 

Gerdt V., Including 
u1 = F[u(x,t)]•l Shvachka A., Backlund 

Zharkov A. [7] (1985) transformation 

Formac iit = Aiikx + f[uj•l Gerdt V., Shabat A. A = diag(>.;) 
ii= ii(x, t) Svinolupov S., >.; =/di (i :/: j) 

Zharkov A. [8] (1989) ,\; :/: 0 

Symmetry iit = A( u)iixx + f 2 - component 

approach mu- f = f[u] Mikhailov A. (1988) equations, 
MATH t7 = it(x, t) unpublished 

Bakirov l.,Sokolov V., Unpublished 
Svinolupov S. (1990) 

Ut = F[u(x, t)] Bocharov A., 
DELiA Sokolov V., Unpublished 

Svinolupov S. (1991) 
Reduce iii = Aiikx + f[u]•l Gerdt V.,Zharkov A. A = diag(>.;) 

ii= it(x,t) [9] (1990) >.; :/: 0 
Hirota P;i(Dz)Ji Ji= o·> Hietarinta J. Three- and 
method Reduce Ji= Ji(x,t) [10] {1991) four-soliton 

solutions 
Hereditary Wiwianka W., FE A(D,I,u) 
algebra Maple Ut = F[u(x, t)] Fuchsstainer B. ' D = d/dx 

[11) (1990) I= n-1 

•J Equation(s) may content arbitrary numeric parameters. ' 
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2 Symmetries' and conservation laws 

The symmetry approach allows to make in a completely algorithmic way the integra­
bility analysis for the following form of NEE [8, 9, 13] 

u1 = <I\(x, u, ... , uN) = AuN + F(x, u, ... , UN-Ii aI, ... , aK ), u = u(x, t) 
u;=Di(u), D=d/dx,u=(u1, ... ,uM), <l\=(<[>1, ... ,<[>M), (1) 
A=diag(>.I,···,)..M), .>..;aiEC, .>.;-=JO, >.;-=J>.i(i-=/-j), 

where the nonlinear part Fin r.h.s. is a polynomial in all its variables. 
To be integrable, (1) must possess infinitely many time-independent higher sym­

metries, i.e. vector-functions ii = (HI, ... , HM) in a finite number of differential 
variables x, u, uI, ... , Un such that NEE u7 = ii(x, u, ui, ... , un) is compatible with 
(1). In practice, however, the existence of M different higher symmetries of the order 
n > N is sufficient for integrability of M-component NEE [14]. Symmetry ii satisfies 
the differential equation dii/dt = <[>.(ii) which is equivalent to the operator relation 

dH. l d<[>. 
dt - [H.,<[>. = dr' (2) 

where <[>. and H. are matrix differential operators 

N n 

<[>.=~<[>;Di, (<[>iL- = fJ<[>kjfJu{, H. = ~ H;Di, [H;]k = fJHk/fJuj. 6 J . 6 . 1 
i=O i=O 

Integrability, i.e. solvability of (2) for as high order of ii as desired, is equivalent [12] 
to solvability of the operator relation 

Lt - [<[>.,L] = 0 (3) 

in terms of formal series 
m 

L = L AkDk, m > 0, deg(L) = m, res(L) = A-I, (4) 
k=-oo 

with matrix M X M coefficients Ak depending on a finite number of differential variables 
x, u, ui, ... and such that det[A,,;] -=/- 0. 

The necessary integrability conditions have the form of conservation laws [8, 9] 

!(R(i,j)) E ImD, i ~ 0, j = 1,2, ... ,M, (5) 

where q E Im D means that q = D(u(x, u, ... , uk)) and densities R(i,j) are determined 
by formulas 

. . { fJFi / au3rv_I , i = 0, 
R(i,J)= . . · 

8/fJµi [trace (res(L))], i > 0. 
(6) 

~-~..,,,~;;;:4~ ,,. " ,.-)~ ~., ·1:~· i-i.,;..i,J f., .. ~ -=.wtr.,. -,.,:til ~,.{o. ·1-: 

/;~'t!rt!f~~~.~')~•/ '(!J .. ;\tf~~L 
. ·.,._;~: ~-~ \ i''tt;.._/;; r.-:lt·:,,,~,;,.f, 

~-· •• •-/~~· ,., 'J .: .·, '. '."',"4 ..... ;~ 

), 

r 

~ 

' i 
~l 
1 

Here L is series (4) of degree m = i. Its coefficients can be computed by recurrence 
relations, which follow from (1),(3) and (4) 

k > m Ak = 0, 

k=m [Am]··= { O ~-=/- ~' 
•J µ; i = J, 

(7) 

{ 

,\;~,\; { ft([AN+k];j) - [cN+ktlAk=o}, i-=/- j 

[Ak];j = 1:1\,~-I {fi([AN+k-IU- [cN+k-I];;ldiag(Ak)=O} + 'Yf' 
i = J 

k<m 

whereµ;, ,f E C are arbitrary constants and c; are coefficients of commutator [F., L] = 
I: e;Di. In addition to computation of conservation laws (6), recurrence relations (7) 
form the basis for computation of them-order symmetry as a solution of (2) [8, 13]. 

3 Algorithm description 

Heuristically optimal computational strategy of integrability analysis consists of the 
following three sequential steps [13]: 

I. Verification of some first I necessary integrability conditions (5) (i S I) by the 
following procedure 

1) i := 0 

2) for j := 1 to M do R(0,j) := fJFi /fJu~-I 

% computation of the firstdensities by formula (6) 

3) if !(R(i,j)) E ImD then go to 4) else STOP 

% testing conditions (5) 

4) i := i + 1 (8) 

5) for k := i to - 1 step - l do compute Ak(j, 1) 
% computation of coefficients of series (4) by formulas (7) 

6) R(i,j) := 8/fJµi trace (A-I) 
% computation of densities by formula (6) 

7) if i < I then go to 4) else STOP 

In the presence of the arbitrary parameters a; in (1) conditions (5) are equivalent 
to some system of nonlinear algebraic equations in those parameters which can be 
produced by a completely automatic way [8, 9, 13]. 

II. Construction of a given order higher symmetry. Here in addition to the necessary 
conditions (5) one has to verify new ones which provide the existence of the symmetry 
and may lead to additional algebraic equations in arbitrary parameters a; (13]. 
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III. Solving the resulting system of the nonlinear algebraic equations obtained at 
steps I-II. An effective,algorithmic method for doing this step is described in the next 
section. 

4 Solving nonlinear algebraic equations 

The systems of nonlinear algebraic equations which arise as integrability conditions for 
multiparametric NEE usually have infinitely many solutions. It follows from the fact 
that scale transformations of both independent and dependent variables in ( 1) do not 
impact at the property of integrability. 

Therefore, to investigate and exactly solve those algebraic equations one needs an 
appropriate technique. We use that one [15] based on a Grobner basis construction [16) 
for the polynomial ideal generated by the set of polynomials of the system under 
consideration. This technique allows in a completely algorithmic way to obtain the 
following information on the algebraic system: 

• To verify its compatibility, i.e. the existence of common roots. 

• To find the dimension of the solution space (algebraic variety) or, in other words, 
the dimension of the polynomial ideal generated by the algebraic system. 

• To. detect whether the system has finitely or infinit.ely many solutions. 

• In finitely many solutions case (zero-dimensional ideal) to transform the system 
into an equivalent "triangular" form and therefore to reduce the initial multivari­
ate problem to successive solving univariate equations. 

• In infinitely many solutions case (positive dimensional ideal) to find all the max­
imal sets of (algebraically) independent variables modulo polynomial ideal [17) 
which could be considered as free parameters giving the parametrization of the 
solution space. 

In addition to these general facilities in the framework of Grabner basis technique one 
can effectively take into account such a property of polynomial systems resulting from 
integrability conditions as homogeneity [15) which follows from the above mentioned 
scale invariance. It leads to reduction a number of variables involved in Grabner basis 
computation and makes the procedure much more efficient with respect to computing 
time and readability of output by splitting the initial systems into smaller subsystems 
with a reduced number of variables. 
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5 Implementation in Reduce: 
and ASYS 

packages HSYM 

The algorithmic approaches of sections 3 and 4 have been implemented in the for~ 
of packages HSYM (Higher SYMmetries) [9, 13) and ASYS (Algebraic SYStems) [15], 
respectively, both written in the symbolic mode language Rlisp of computer algebra 
system Reduce [18). 

Package HSYM uses the built-in recu;sive representation of polynomials in the Re­
duce "standard form". Algebraic operation over differential polynomials are realized 
by calls to the corresponding built-in procedures acting at "standard forms" and "stan­
dard quotients". Main procedures of the package are those ones which compute series 
(4), densities R(i,j) by formulas (6), symmetries Ji as solution of (2) and reverse op­
erator of total spatial derivative D. The latter operation (D-1 ) plays the key role in 
verification of the necessary integrability conditions (5 as well as in recurrence relations 
(7). In both these cases the problem is reduced to solvability equations of the form 
D(Q) = S <¢=> Q = n-1s in terms of local functions, i.e. functions in a finite number 
of differential variables x, ii, ii1 , .... Namely at the step of n-1 computation there arise 
restrictions on the r.h.s. of NEE (1 ), in particular, nonlinear algebraic equations in 
arbitrary parameters a; if they are. 

Package ASYS provides a user with all the set of facilities mentioned in section 4: 

• Grobner basis constructing by Buchberger algorithm [16); 

• determination of the dimension of a solution space for a given polynomial sys­
tem, computation of all sets of independent variables. and reduction by these 
sets to zero-dimensional subsystems treating the independent variables as free 
parameters; 

• verification of homogeneity properties and carrying out homogeneity reduction 
to a set of subsystems with reduced number of variables. 

Unlike the HSYM package, the basic recursive polynomial representation used in RE­
DUCE does not provide reasonable efficiency of a Grobner basis construction. By this 
reason the ASYS package much like the REDUCE standard package GROEBNER [18) 
uses the distributive representation. 

6 Examples 

We illustrate the above technique and computer algebra software at two different ex­
amples: one gives integrability verification of the given equation and another belongs 
to a typical classification problem when all ·the integrable cases should be selected from 
some multiparametric family of NEE. 
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Example 1. In pap~r [19] the second-order NEE of the form (1) 

Ut = U2 + 2u3 (9) 

was derived for which one remained to be investigated whether or not it is integrable. 
Verification of the first integrability condition from the canonical series (5) with the 
help of the HSYM package immediately shows its violation. Density p1 = R(l, 1) in 
formula (6) and its time derivative computed with HSYM are P1 = -3u

3
, dpifdt = 

6 u
2 
u-12 u4 • One can easily see that the latter expression does not satisfy condition (5). 

By this reason HSYM, doing all underlying computations completely automatically, 

will give as an output line the message 

"non-integrable expression", 

which means that equation (9) is not integrable. 

Example 2. Seven-parametric family of the seven-order KdV-like NEE · 

Ut = u1 + ,\1 u U5 + ,\2u1u4 + ,\3u2u3 + A4u
2
u3 + ,\5u u1u2 + ,\5uf + ,\1u

3
u1, (10) 

where ,\; E C. Family (10) was first investigated in [20]. Here we give the complete 
solution in accordance with the scheme of section 3. Conditions (5) for i = 1, 3, 5, 7 (all 
conditions with even i are identically satisfied for arbitrary ,\;) generate the following 
system of nonlinear algebraic equations 

where 

,\1(>.4 - ,\5/2 + ,\5) = (2/7,\i - ,\4)(-l0,\1 + 5,\2 - ,\3) = 0, 

(2/7 ,\i - ,\4)(3,\4 - ,\5 + ,\5) = 0, 
a1(-3,\1 + 2,\2) + 2la2 = a1(2,\4 - 2,\s) + a2(-45,\1 + 15,\2 - 3,\3) = 0, 

2a1,\1 + a2(12,\4 - 3,\5 + 2,\6) = b1(2,\2 - ,\1) + 7b2 = b1,\3 + 7b2 = 0, 

b1(-2,\4 - 2,\5) + b2(2,\2 - 8,\i) + 84b3 = 0, (11) 

b1(8/3,\5 + 6,\6) + b2(11,\1 -17/3,\2 + 5/3,\3) - l68b3 = 0, 

15b1,\7 + b2(5,\4 - 2,\5) + b3(-120,\1 + 30,\2 - 6,\3) = 0, 

-3b1,\1 + b2(-,\4/2 + ,\5/4 - ,\5/2) + b3(24,\1 - 6,\2) = 0, 

3b2,\1 + bJ( 40,\4 - 8,\5 + 4,\6) = 0, (12) 

a1 = -2,\i + ,\1,\~ + 2,\1,\3 - ,\~ - 7,\5 + 21,\6, a2 = 7,\1 - 2,\1,\4 + 3/7,\f, 

b1 = ,\1 (5,\1 - 3,\2 + ,\3), b2 = ,\1 (2,\6 - 4,\4), b3 = ,\1,\7/2. 

By means of the ASYS package the solution space is found to be three-dimensional 
one [15] with a complete set of solutions collected in Table 2. 
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Table 2. Parametrization of the solution space for system (11). 

Para- Solutions 
meters 

,\2 = 7/2,\1,,\3 = 6,\1,,\4 = 2/7>.i,,\5 = 9/7,\i,,\6 = 5/14,\i,>.1 = 4/147,\? 
,\1 >-2 = 3,\1,,\3 = 5,\1,>.4 = 5/14,\f,,\5 = 10/7,\i,,\6 = 5/14,\i,,\1 = 5/98,\f 

,\2 = 2,\1, ,\3 = 3,\1, ,\4 = 2/7,\i, ,\5 = 6/7 >.f, ,\6 = 1/7,\i, ,\1 = 4/14 7,\f 

,\2 ,\1 = 0, ,\3 = 5,\2, ,\4 = ,\5 = -2/63,\~, ,\6 = 4/63,\~, ,\7 = -10/1323,\~ 

,\4 ,\1 = 0, ,\2 = 0, ,\3 = 0, ,\5 = ,\4, >.6 = -2,\4, ,\7 = 0 

>-2, ,\4 ,\1 = 0, ,\3 = 5,\2, ,\5 = 1/14,\.~ + 9/2,\4, ,\6 = 1/14,\~ + 3/2,\4,,\7 = 0 

,\1 = 0, ,\2 = r1, ,\4 = 0, ,\5 = -2/16lr1A3 + 40/23,\6, ,\7 = 10/2592lr1,\~- . 

A3, ,\6 74/483r1,\6 - 16/3703,\3,\6, r1 = (5,\3 ± J25,\5 - 5152,\5)/46 

,\1 = >-2 = ,\4 = ,\5 = >-1 = 0 

,\2, ,\3, ,\5 ,\1 ~ 0,,\4 = 0,,\6 = 1/21,\~ + 1/3,\5,,\7 ~ 0 

Verification of the existence of conservation laws (5) with numbers i = 9, 11 and 
higher symmetries for the solutions of Table 2 with package HSYM shows that only 
top three rows correspond to integrable equations (10). Those three equations are 
none others than the seven-order symmetries of the well-known low order NEE: tl~e 
third-order KdV equation and the fifth-order Sawada-Kotera and Kaup-Kupershmidt 
equations, respectively [20, 21 ]. 

All computations took about 1 minute on a 25 Mhz 80386 DOS computer. 
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repAT B.n. Ell-92-338 
Kor,mbioTepHas:i anre6pa, c111MMeTp111t:iHb1t:i aHan1113 
111 ll1HTerp111pyeMOCTb Hen111Het:iH~X 3BOn104111OHH~X ypaBHeH111t:i 

. npeAcTasneHbl 'KoMnb10TepHo-anre6paw-1ecK111e acneKTbl c111M­
MeTp111t:iHoro nOAXOAa K 111ccneAOBaHll1IO ll1HTerp111pyeMOCTll1 non111-
HOM111anbHO-Hen111Het:iH~X 3BOnio4111OHH~X ypaBHeH111t:i pa3MepHOCTll1 
1+1. noAXOA OCHOBaH Ha nposepKe cy~eCTBOBaHll1Sl 3aKOHOB 
coxpaHeH111s:i 111 c~~MeTp111t:i s~cw111x nops:iAK6s. Ecn111111ctneAye-

··Mb1e ypaBHeHll1Sl COAepmaT npo1113 BOnbHble 4111CnOBble napaMeTpbl, 
TOrAa 3aAal.fa oT6opa scex 111HTerp111pyeM~x cnyl.faes CBOA111Tcs:i 
K peweH11110 c111cTeM Hen111Het:iH~x anre6pa1114ecK111x ypasHeH111t:i H~ 
111Me~111ecs:i napaMeTpbl. ·· ttns:i 3TOt:i 4en111· .111cnonb3OBaHa TexH111Ka 
6a3111COB Tpe.6Hepa, no3BOns:i~as:i 3cjxpeKTll1BHO .ynpo~aTb 111 pe­
waTb BO3Hll1Ka~111e 'anre6paw-1ecK111e ypaBHeHll1Sl, KOTOPble 111Me­
lOT~ KaK npas111no, 6ecKOHe4HOe MHO)l{eCTBO peweH111t:i. 

Pa6oTa B~nonH~Ha B fla6opaTop111111 B~4111in111TenbHOt:i Te~--
Hll1Kll1 111 aBTOMaT1113a4111111 o~~~-. . . 

llpenp11Hr Om.e,n11~eHHoro 11Hcr11ry1a 11~epHLIX uccJie,noBaHHH. Jly6Ha t'992 

Gerdt V.P. . . Ell-92-338 
Computer Algebra, Symmetry Analysis 
and, Integrability of Nonlinear Evolution Equations 

A computer al gebr'a-a i ded · symmetry approach to in­
vestigating integrability of polynomial-nonlinear evo­
lution.equations An. one-temporal and one-spatial-di­
mensions is presented. The approach is based on 
verifying the existence of higher. conservation 
lawsand symmetries~. If the· equations contain arbitraty 
numerical parameters, the problem of selection of all 
the integrable cases is reduced to;the solving polyno­
mial ·equations in those parame.ters. The Grabner basis 
technique is used in order to simplify and to solve such 
polynomial systems which typically have infinitely many 
solutions. · 

The investigation has bee performed at the Labora­
tory of Computing Techniques and Automation, JINR. 
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