


The simulation of some nonlinear effects in the polar medium and in the
field models leads to the singular, nonlinear boundary value problems for the
differential equations depending on the "external” physical parameters of a
model. Taking in account their additional coupling allows to reduce the num-
ber of the parameters of the equations. It should be pointed out that in this
case the additional conditions arises.As a rule, they connect the integral char-
acteristics of the desired solutions with their asymptotic behavior. As far as
now the group of the dependent parameters can be replaced by the asymptot-
ical relations for some researched solutions, we can speak about the boundary
value problem original statement in which the equations depend not only on
the solution but on the boundary conditions directly

L7+ ¥, 5,7, 70), 7o), ] = 0, R

0<z<o00, ||ALfll<oo if z—-0, ||Apfl|<oo if z— o0,
V(ALY ARY) =0, (2)

Here I is a unit matrix and A, AR are degenerate matrixes, F is a nonlinear
matrix-function, ¥ is a functional and @ is a parameter vector of a physical
model.

The iterative scheme based on the combination of Continuous analogue of
the Newton’s method and Continuation method was developed in ref.[1]. In
this paper we consider the general statement for the boundary value problem
with the additional conditions. The suggested method was applied for the
numerical investigation of the equations of the solvated electron problem [2],
of the some bielectron problem [4] and one QCD problem with an increasing
potential [3)].
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1 The Statement of the Boundary Value Problem
with the Additional Conditions

Let us consider the system of the differential equations in the vector form

R(H) =7 +F@§;2:8) =0,
0<z< o0, 3)

where the prime means the differentiation on z, § is a N-component vector-
function, @ is a M-component vector of parameters, F is a continuous vector-
function of §, 7, @, and as the function on z can have a singularity as 1/z!,1 <
2, if z — 0. The components of & are the physical parameters of the problem
( particle mass, charge, the coupling constant and etc.) or their combinations;
#(0) and g{oo) - the asymptotical limits of the solutions and some integrals
on the functions researched.

Let us research the solution of the system (3) ( existence of which is as-
sumed) with the asymptotical conditions

RL(§) = Gr(f{(zL); ¥ (z1); 21; @) = 0,21 — 0,
Rr(%) = Gr(§#(zr); ¥ (zr); zR; @) = 0,2 — 00, (4)

and the additional functional conditions
Ra(¥) = S(4; 73 7;8) = 0, (5)

where Gy, and Gp are the N-component vector-functions, S is a p-component
vector-function, where p < M. If p < M, then there are some free parame-
ters.For the fixed parameter we can find the solutions using the Continuous
analogue of the Newton’s method and the continuation method for the free
parameters. Further we suppose that p = M.

In the case p = M we can exclude all the parameters from the equations,
solving the eq.(4) with respect to @ (if it is possible) and substitute the solution
in eq.(1). In other case it is necessary to solve the boundary value problem
(3)—(4) taking in account the additional condition (5). For the numerical
solution of the boundary value problem (3)—(4) on (0 < z < o0) it is necessary
to determine the boundary conditions on the finite interval (0 < z < zR).
Fhus we have an additional problem connected with the statement of the
boundary conditions for the solutions in the finite points (z = z;, z = zRg)
and with the accuracy estimation for such an approximation. In general, such
an estimate can be obtained only numerically. We can use the calculations for

the set of the parameters z,, zRr. Then suppose that the approximation of
the boundary conditions(11) for the z;, = 0 and zg < o0 are sufficient accurate
for the taking into account of the asymptotic behavior of the solutions. We use
the Continuous analogue of the Newton method [5] for the numerical solution
of the boundary value problem (3)—(4) on the finite interval (0 < z < ZR)-
Newtonian iterations for this problem consist of the solution of a linear problem
at the every k-step’s

T+ F i+ Fii = —R(§) — igFg (6)
with the boundary conditions
G'L; (0 + G1(0) = —-RL(§) - #1GLa
Gy 7(@R) + Gry¥k(sR) = ~Ra() ~ it Gra (7
and the additional equation
S + Sk = ~Ra(d) - #ESz (8)

with respect to iteration correction ¥y = Ay, i = Ady to the known ap-
proximation {§(z)g, @} of the solution. Let us consider the solution of the
system (6) in the form

6]: = 17(,:) + ﬁi‘l-)‘;:). (9)

Substitution of eq.(9) into eq.(6) and eq.(7) leads to the problems

) +Fp @) +Fi) = R (10)

Gy () + Gy} (0) = ~Ru(®)
Gy ((zR)) + Gy} (zR) = ~Ra(d) (11)
and 2 ' (2)y ! {2) '
D) + Fp(57) + Fgiy = ~Fq (12)
G, (FD(0)) + G5, (0) = ~Glq
Gy ((2R)) + Gry¥y, (2R) = ~Grpa (13)




For the functions 175:) and 712 determinating we have boundary value problems
(10)-(11) and (12)-(13). Substituting eq.(9) to eq.(8) we receive the system
of algebraic equations for the i determination. Thus it is necessary to solve
the boundary value problems (10)-(11), (12)-(13) and the system of the linear
algebraic equations (8) for the ji; determination on every iteration. The next
approximations were received by means of the formulas

Uee1 = G + Tk
Giyr = dp + Tifik, (14)

where 74 is a iteration parameter whose appropriate choice may provide an
optimal conditions for the iterations convergence[6,7]. Iterations stop if

bk < ¢,
where §; is a discrepancy and can be determined as

Jk—ma.xma.x max |R,-(y,~k(:c),cjk)|, i=1,2,---,N, j=1,2,---, M,

¢ z€lzLzr

where € > 0 is a small constant.

Difference approximation by Numerov method for the problems (10)-(11)
and (12)-(13) is applied on a uniform grid with step k, which gives an accurate
approximation of these systems up to O(h*) and the same order of difference
solution’s convergency for our problem.

2 Statements of the Boundary Value Problems for
some Physical Models

The method proposed we apply to the solution of the next three nonlinear
boundary value problems

¢ The solvated electron
This problem is formulated as a system of the nonlinear equations [1]

JORLCRE e - mz) _

n () + Ez(z)-— (15)
1)~ S sinh (P22 4 D) -

with the boundary conditions

£(0) = £(00) = m(0) = 7y (00) = M(0) = m(c0) =0,  (16)

® e2
mieo) = [ €,
_ 0
and the simplest form of the asymptotical behavior of the desired solu-
tion researched

£(z) ~ e %, m(z) ~ const,mp(z) ~ e7°%, when z — o0 (17)

where a, b, d are the "physical” parameters.

In our paper [1] we used the additional conditions of the connection
between the parameters

_ 41}

i 5.2629 - 102’

da?
_ do” 18
" My 6.2125- 102 (18)

where .
Ty = / €¥(2)dz = m(o0), (19)
0

m is a electron effective mass, n is a ion concentration, and they can be
determined experimentally. In this case the nonlinear boundary value
problem with the three parameters can be formulated as a nonlinear
boundary value problem with one parameter and the additional condi-
tions (19)

£'(z)- E(x) +£(2)

m () + E(z) 0 (20)

1(z) - Freni(oo)sinh (FHEZ) 4 2¢%(=) =0
l

m(z) = m(z) _,

where
dT? = Ay,
doa® = A, (21)
5




Ay =m-5.2629-10%
Ay = %-6.2125-10’ (22)

are known constants.

The bielectron problem
This problem is formulated as a system of equations [4]

€

£(2)— £e) - n o t(@) + D) g
n(@) +;8() =0 (23)
M(2) - o?m(z)+ 2 =0
with the boundary conditions
£(0) = £(c0) = m(0) = 7y (00) = Mm(0) = m(c0) =0,  (24)

oo
m() = [ e,
and the simplest form of asymptotics of the desired solution
&(z) ~ €%, m(z) ~ const,pa(z) ~ €%, when z — o0, (25)
where a, 21, 2; are "physical” parameters.

The QCD model with the decreasing potential

The problem of the barion states investigations in the framework of
1/N QCD-decomposition was reduced to the solving of the Schrédinger
equation with the nonlocal potential 3]

~ o A¥D) - ¥() [VAF-F) 19 Far = BY@)  (26)

Jrempar=1 21)

where M is a quark mass, E is a quark energy of the bound state, V is
a potential for quarks pair interactions.

In refs.[8,9] spherically-symmetrical solutions of eq.(26) for the potential

V = (ayr! - agr) (28),

where a; and a; are constants, was reduced to the initial value problem
for the nonlinear differential equation of the 6-th order ( if the a; = 0,
then we have the 4-th order).

Here we use the equation (26) and the potential (28) too, but try to apply
our method. Let us consider this problem as a system of equations

_ LAY - [ Vi(7) - aaVa(M]¥() = EX()

2M 2 (29)
AVA(7) + 4 | ¥(7) [P= 0
AVy(F) - 2Vi(7) =0 .

Thus we use the spherically-symmetrical solution in the form

¥(F) = ?(—) 0, Va(f) = V‘f')Yoo, V() = V—zfﬂYom (30)

where Yoo = 1/V/4r is a spherical function Y, (8,¢) for ['= 0,m = 0.
Substituting the expressions eq.(30) in eq.(29) and replacing

— Vl e V2
;= — 0, i=—, V2=—F=,
E g, €2>U, 1 \/4—1‘_ | 2 \/4—7;_'
we obtain
1 " 1 - v

m‘l’(r) —e¥(r) + ;_-[011V1(1‘) — aaV(r)]¥(r) = 0
— 1 W 2 1
v+ (:) =0 (31)
V, —2V; =0

The transformation
r=Xe, ¥=v m=Vi, m=V,

reduce the system(31) and the normalization (27) to the system

€ -t+ %(711 —zp)f=0

v & (32)
S —0
at s
n,—2m =0
where
1 £ C!zz\




2Ma? e
£= N_zl N = /0 dzt*(z) (33)
The researched solutions of the system(32) satisfy the asymptotic con-

ditions
£(O)=0’ m=0, n=20
§(z) = €a(z), m(z) = ma(z), m(z) > ma(z) if z-—o00 (34)

where ,
o= 5(-%3-%0”, (= (zN)%(z + ;!ﬁ)
1
ma=N, ma=2z’N+ 32 (35)
N = / 3¢ (z)dz (36)
()

3 Numerical investigations and some results

For the numerical investigations the computer program was developed. This
program was tested by means of the specially constructed example with the
known analytical solution

vi(2) - @)+ BEBE oy ey =0
13 (@) + 29(2) ~ Baf) = 0 a7
y;(::) - -ﬁ%xC‘ sinh Alyg,(:) + byft(z) — R3(z)=0

where

Ry(z) = Be *(-2+ C — Ce™* — Dz%e™%%)
Ry(z) = —Ce™= + Bze™ %=

-2z
Ry(z) = 2De™ (1 — 4z + 22%) - %zc‘ sinh -A‘—DC’,’-;—- 4+ bB%ze™
(38)
0 < z < zRp , and the boundary conditions
11(0) = y2(0) = ¥3(0) = 0
%i(zr) + (1 - —)n(zr) =0
R (39)

v2(zRr) + llz(zng= C
va(zr) + (2 - ;;)ya(zn) =0

with the additional condition

/rn y2(z)dz — C = 0. (40)
0

Fig.1 shows the convergency of the iterations to the exact solutions for this
example. The discontinuous in asymptotic region function was simulated for
the initial approximation. The smoothing of this discontinuite as a result of
the iterations are obtained. The initial approximation discrepancy is ~ 0.1,
the iterations stop if the discrepancy ~ 107°. Tab.1 shows the solution con-
vergency for the sequence of the twice compressible grids for the test example
with h = 0.132. The relation

_um-wd)
T w®-u®)

shown in Tab.1, confirms the 4th order of the oonvergenéy. For calculations the
constants: B =10, ¢ =025, D=10, n=10, =05 m=1.0
were used.

Tab. 1

. — ,L
x | gi(anal) | witinapr) | wn) | w(h | wh) | Epd
2.11 | 0.255543 | 0.281097 | 0.255550 | 0.255543 | 0.255543 |  15.87
0.219751 | 0.263701 | 0.219765 | 0.219752 | 0.219751 |  15.88
0.065302 | 0.071832 | 0.065269 | 0.065301 | 0.065303 |  15.83
3.04 | 0.145809 | 0.160390 | 0.145813 | 0.145809 [ 0.145809 |  15.86
0.237993 | 0.285592 | 0.238008 | 0.237994 [ 0.237993 |  15.87
0.021260 | 0.023386 | 0.021232 | 0.021259 | 0.021261 | 15.80
4.09 | 0.068360 | 0.000000 | 0.068362 | 0.068360 | 0.068360 |  15.86
0.245824 | 0.294988 | 0.245838 | 0.245824 | 0.245823 |  15.87
0.004673 | 0.000000 | 0.004650 | 0.004672 | 0.004674 | 15.76
5.02 | 0.033261 | 0.000000 | 0.033262 | 0.033261 | 0.033261 |  15.85
0.248342 | 0.208011 | 0.248357 | 0.248343 | 0.248342 |  15.87
0.001106 | 0.000000 | 0.001087 | 0.001106 | 0.001107 | 15.73
6.07 | 0.014005 | 0.000000 | 0.014006 | 0.014005 | 0.014005 |  15.84
0.249423 | 0.299308 | 0.249439 | 0.240424 | 0.249423 |  15.87
0.000196 | 0.000000 | 0.000180 | 0.000196 | 0.000197 | 15.69.

The next table shows the dependence of the solution from the choice of
the right boundary zp if grid step h = 0.03( §; = ¥i — Y;apal is a difference




of numerical and analytical solutions) . 1t is obvious that the error of the
approximations of asymptotical conditions can be done much smaller than the
error of the discrete approximation of the problem.

Tab. 2
z [81(zr=3)[8:i(zrn=9) | 6:(zr = 15) [ b1(zr = 30) | éi(zn = 45) [ 8:(zr = 60)
0.0 | .0000E+00 | .0000E+00 | .0000E+00 | .0000E+00 | .0000E+400 | .0000E+400
0.3 | .2540E-02 | .7764E-07 | -.9610E-08 | -.9391E-08 | -.9315E-08 | -.9276E-08
0.6 | .4455E-02 | .1366E-06 | -.1613E-07 | -.1574E-07 | -.1560E-07 | -.1553E-07
0.9 | .5435E-02 | .1661E-06 | -.1914E-07 | -.1864E-07 | -.1846E-07 | -.1838E-07
1.2 | .5611E-02 | .1703E-06 | -.1937E-07 | -.1882E-07 | -.1862E-07 | -.1853E-07
1.5 | .5274E-02 | .1584E-06 | -.1790E-07 | -.1734E-07 | -.1714E-07 | -.1705E-07
1.8 | .4682E-02 | .1388E-06 | -.1563E-07 | -.1509E-07 { -.1491E-07 | -.1481E-07
2.4 | .3358E-02 | .9637E-07 | -.1080E-07 | -.1035E-07 | -.1020E-07 | -.1012E-07
2.7 | .2773E-02 | .7798E-07 | -.8720E-08 | -.8323E-08 | -.8185E-08 | -.8115E-08
3.0 | .2274E-02 | .6239E-07 | -.6957TE-08 | -.6612E-08 -.6492E-08 | -.6431E-08
z [ 82(zr=3) | b2(zr =9) | b2(zr = 15) | 82(zr = 30) | b3(zr = 45) | ba(zr = 60)
0.0 | .0000E+00 | .0000E+400 | .0000E+00 | .0000E+400 | .0000E400 | .0000E+00
0.3 | .3140E-02 | .8031E-07 | -.8341E-08 | -.7656E-08 | -.7417TE-08 | -.7T297E-08
0.6 | .5963E-02 | .1509E-06 | -.1542E-07 | -.1408E-07 |} -.1361E-07 | -.1338E-07
0.9 | .8361E-02 | .2085E-06 | -.2091E-07 | -.1895E-07 | -.1827E-07 | -.1792E-07
1.2 | .1037E-01 | .2540E-06 | -.2498E-07 | -.2244E-07 | -.2155E-07 | -.2110E-07
1.5 | .1207E-01 | .2903E-06 | -.2798E-07 | -.2488E-07 | -.2380E-07 | -.2326E-07
1.8 | .1357E-01 | .3203E-06 | -.3023E-07 | -.2660E-07 | -.2534E-07 | -.2470E-07
24| .1618E-01 | .3691E-06 | -.334TE-07 | -.2882E-07 | -.2720E-07 | -.2638E-07
2.7 .1739E-01 | .3807E-06 | -.3474E-07 | -.2960E-07 | -.2781E-07 | -.2690E-07
3.0 | .1857E-01 | .4112E-06 | -.3591E-07 | -.3027E-07 | -.2831E-07 | -.2732E-07
z | 63(zr=3) | bas(zrn=9) | 63(zr = 15) | 83(zp = 30) | 83(zr = 45) | ba(zr = 60)
0.0 | .0000E+00 | .0000E+00 | .0000E+400 | .0000E+400 | .0000E+00 [ .0000E+400
0.3 | -.1021E-01 | -.3373E-06 | .3245E-07 3214E-07 .3202E-07 3197E-07
0.6 | -.2225E-01 | -.7380E-06 { .6886E-07 .6816E-07 .6791E-07 6T7T9E-07
0.9 | -.2756E-01 | -.9138E-06 | .8484E-07 .8398E-07 .8367E-07 .8352E-07
1.2 | -.2695E-01 | -.8935E-06 | .8284E-07 .8199E-07 .8170E-07 .8154E-07
1.5 | -.2316E-01 | -.7674E-06 | .7110E-07 .7T038E-07 .7013E-07 .T000E-07
1.8 | -.1832E-01 | -.6071E-06 | .5624E-07 .BB6TE-07 .5647E-07 5537TE-07
2.4} -.9828E-02 | -.3255E-06. | .3016E-07 .2985E-07 .2974E-07 .2969E-07
2.7 | -.6831E-02 | -.2262E-06 | .2096E-07 .2074E-07 .2067E-07 .2063E-07
3.0 | -.4630E-02 | -.1533E-06 | .1423E-07 .1408E-07 .1403E-07

.1401E-07

Phe same numerical tests were pertormed for all the real problems.

The next figures show some results, which we reached by our method.
There are plots of the functions calculated for the zero and first mode of
solvated electron model (eqgs.(15)-(16)) for the set of parameters on Fig.2-3.
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Figure 1: The solution of the example problem. The dot-dashed line is an
initial approximation, dashed line is a first iterations and solid line is a solution
which coincides with the analytical solution.

Figure 2: The zero mode solution of the polaron problem. b=1.0, m=2.0,
n=0.5 (0.25) 3.0, Y1 =£(Y2=1,,Y3 = 7.
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Figure 3: The first mode solution of the polaron

n=0.5(0.25) 3.0, Y1=£,Y2=m,Y3 =1

problem. b=1.0, m=2.0,
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Figure 4: The solution of QCD model for eleventh mode.
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Figure 5: The plot of functions £(z) for the a = 1.,2; = 1,21 = 0.(2.)20. The
case of z; = 0. is a polaron solution (the first one on the plot).

Figure 6: The solution of bielectron problem £(z) and the corresponding po-
tential V. The case of z; = 0. is a polaron solution (the solid line on the

plot).
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The QCD-model calculations (eqs.(32)-(36)) were performed for different
parameters z1,z;. We find the solutions for modes from zero up to eleven.
This result is better than those in refs.[8-9]. The plot of the solutions with the
11-zero are drawn together with the potential for the QCD model in Fig.4.

We have preliminary results for the bielectron model too. The zero mode
solutions (function £(z)) for different value of 2; and z; = 1 are shown in
Fig.5. In Fig.6 you can see these solutions for different z; and z; = 1 together
with the function V = — —zle :z + 2 m(z) ; m(2) .

The physical analysis of these results can be done in the future. The main
purpose of this work is the demonstration of possibilities of the suggested
method.

All the calculations were performed on PC/AT-386 by using NDP-Fortran
codes under MS/DOS. For the graphical illustrations and the graphical inter-
face the HIGZ-package [10] was used.
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