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1. Introduction 

Nonlinear algebraic equations arise in many fundamental and applied problems. The ' 
analysis• and sblvi~g such sy;tenis is oil~ ~f ~c'nttal, directions 'of' coi:npbter · algebra 

,developJTie:nt [1]. Th~ most universal ·and developedalgo~ithmic method for' analysis 
and solution of systems of nonlinear algebraic equations is that based on Grobner basis 
co;1;tru~tion [2, 3] 'The' ~omput'ation ti~e for Grabner basis ' strongly depends on 
a terlll ordering to be c:hpseri. Jn practi~e the pure lexicographical ordering.'and the 
total. degr~e the1i inverse. lexicographical ( degree-rever-se-lexicographic:~l). one are used. 
more often. The corresponding algorithms and pacbges are implemented in all mod~;n 

, computer algebra systems. : ·, . , . 
. - ' • ' ~ I 

_ Unfort~nately, in many practical casesfo order.to construct a Grobner bas.is, extremely 
tedious algebraic computations should be performed which are, caused by exponential 
complexity.of the Buchberger algorithm [2] in a number of variables.. In the crse. 

·• of finitely J:nany, solutions, i.e., a z~ro~diniensional ideal, the algorithm c:ompl~xity is 
.. - 2 , , ' ' • ' ! l • ' ' •· ; - . • '. 

O(dn.) .in polynomials degreed .arid,a number of variables n for the.lexicographical 
-- ordering 'and d,n for the degree-reverse-l~xicographical one, respectively [4].' I~this case 

the optimal strategy is.to •compute Grobner basis for the degree~:reverse-lexicographical 
. ordering;and then ,to recompute it to the lexicographical one according to algorithm 
, [4], which also has polynomial complexity in dn. As a result we obtain a "triangular" 
'Grobner basis with "separated" variables .. 

. - For pqsitive dimensional ideals, i.e. for the systems with infinitely many ·solutions, , 
both theoretical analysis of algorithms and a Grabner basis construction become much .· 
more difficult. In this case'the complexity of Buchberger algorithm is estimated to be 
O(d~•2

") • . That is why th~ mo~t of computer algebra packages are designed mainly 
for zer~~-dimensional ideals and' ·have ·not th'e necessary' built:in facilities for the case 
of,po~itive-dimensiorial'ones. From the other.hand, the systems of nonlinear:algebraic 
equations with infinitely many solutions arise in practice quite often, for example, 

. , . .in analyzing int~grability of n.onlinear evolution equations [5, 6,' 7] and ismjiorphism .. 
' verification of Lie algebras [8]. · ,· · · · , : , , · · · , . . 

In this pap~~ wed~scrib~ ~n approach to simplifying a'u~l often to solving polynomi~l 
. syst~ms with infinitely many solutions implem~nted in the form of REDUCE package , 
ASYS. In contrast. to many other pacbge's ba~ed on the Grobner ba;is technique,' 
it allows to compute the independe'nt sets of vadables; which can be treated as free 
parameters, and due to them to split an initial polynomial into a set of triangular ones 
over rational function field. . . . . 

; In 'the'case if a polynomial system possesses nontrivial hmn:ogen~ity properties, it'is 
. transform:ed by another way, into smaller. su~systems _with reduced number -of variables, 
· : and,· therefore, necessary computational time is decreas~d. drastically. Homogeneity is 



, ; 

typical, in particular, for the problems considered in [5, 6, 8), Some examples [4, 5, 7, 9); 
, including those with fihite many solutions for completeness, and results of comparison 
· with other packages are given. 

2. · Basic definitions and notations 

2.1. Dimension of polynomial ideal and sets of independent, 
variables -

, ' . . . , , ·. 
, The dimension of the algebraic variety defined by. a polynomial system can be deter-
mined in terms of the Hilbert polynomial; which, in its turn, can b~ computed via 
Grobner .. basis. This method is used, for.example, in the GROEBNER package of the 
REDUCE computer algebra system. [10, 11): _ 
·However, the knowledge of dimension is unsufficient to analyze a structure of a variety 
for, a positive dimensional ideal that is often necessary to find solutions in ·an algebraic 

,-form. One would like to find these solutions in the form of the explicit pa~ametrization 
· of different irreducible subvarieties of the ~hole variety for a given system. , 

, In paper [12) the algorithm was proposed for finding a complete set of different maximal 
sets of variables, which are {algebraically) independent modulo given polynomial ideal. ,., 
This algorithm is based on the knowledge of the Grobner basis and the following 
statement. ·- · 

For minimal or reduced [2] Grobner basis G a set 

S ={xii, ... ,x;,} ~ X ={xi, ... ,xn} 

isJstrongly) independent modulo I= Ideal(G), if and only if 

T(S) n LT(G) = {0}, (1) 

where T(S) means a set of all possible moho~ials (terms) depending only on variables· 
x; ES, and LT(G)- a set of leading, w.r.t. chosen ordering, monomials in a Grobner 
basis. , · 

. A maximal, in number of its elements, set corresponds to the highest dimensio~al :
variety. Therefore this number gives the dimension of the ideal. All other maximal (in , 
the sense, that the addition of any other variable violates condition (1)) independent 
sets correspond [12) to the Jsolated prime ideal ~sociated with J and a number of 
elements in _the set is a dimension of this prime ideal. 

Therefore, if one considers elements of any maximal independent set as free parameters, 
then in other variables the,original polynomial ideal is a zero~dimensi~nal one and its 
lexicographical Grobner basis has a "triangular" fo~m with "separated" .;,ariable~. The. 

· solving of such a triangular system may be done step by step starting'· with the l~t
. imivariate polynomial in the lowest variable w.r.t. the chosen ordering. At each step 

the problem is eventually reduced to a:\mivariate one; To find th~ ro~ts.or to split 
this polynomial into lower degree ones, one can try to factorize or to decompose it. In 
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addition to the REDUCE fact<>_!"izator, a user of ASYS may use a simple decomposition 

algorithm of paper [13]: 

2.2. Homogeneity 

Let us consider a system of polynomial equations 

'\:"""' (i) . . 
fm = L.J am,(i)X = 0, m =J,2, ... ,M, (2) 

(i) 

Where (;) - (; ; ) a (') - a(m) x(i) - xii ••• xin 
• - c.t, • • •, "n , m, i - i1 , ... ,i,i' - 1 n •, ~ 

Definition._ The system of polynomial equations {2) possesses a property of homogeneity 

if under the scale transformations 

.x;----i,a;x;, x(i) ~. aCi>xCi>, a;> O, (3)' 

with at least one factor a; #- 1, each of monomial of any given polynomial 1;,,,(x1; ... 'Xn) 
in (2) takes the same scale factor. In other words, for.two arbitrary monomials ( i) (j) 
of polynomial fm the equality aCi) = aCi) or l'.:~,;,1 (ik ...:jk)ih = 0, where ak = logak, 
takes place. It should be noted, that in general case scale factors aCi), corresponding 
to different polynomials f m might be different. ' . . 
This definition is closely conriected with the coilcept ofT - horn'.ogeneity [14), which 
is very useful for computation ofhomogeneous Grobner bases, and already used, for 
example, in [15]. We-, however, assume ak to take any value.from the 1:oefficient field 
of system (2) but _not only. integer one as. in [14), and use homogeneity not for the 
Grobner basis construction .for system (2) but for splitting -the latt_er into a set of 
simpler subsystems (see section 3.2). , 
Equating the scale factors.arising from different terms of each polynomial,.we obtain 
a system of linear equations with integer coefficients 

n 

~ZikOk = 0, ''Zij E'Z. 
k=l 

{4} 

It is clear, that system (4) always has the trivial solution ak = 0 or ak = 1, k = 
1,2, ... ,n. · ·' · 
From the other hand, if there is a nontrivial solution; then (4) h~ infinitely many 

. solutions, In this case one can consider-a part the variables (a;) as free parameters. A 
maximal set of such free variables is a maximal independent'one,-(section 2.i) modulo 
ideal generated by the left hand sides of system ( 4). 
pefinition'. .Variables x: ~o~~~sp~i.idf~g to_an,'.~rbitrary scale. fa~to~; a; are· falled ho
mogeneous variables-for system (2), and their n~mber is called its homoger,,eity degree. 
Itis,s~~ar, thath?!llogeneity degree_}s less 9r _equal ,to dimension of ~he corre~po~ding 

polynomial ideal. ' 
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. . 
3- Reduct_ion•of p~lyriomial·systems with infinitely 

many solutions 

3.1. Reduction by maximal independent sets 

Computation of a Grobner basi; allows one to verify compatibility of the initial system 
of polynomials and to determine .whether it has finitely or infinitely many solutions 
[2]. In the latter case one can apply the method of reduction to zero-dimensional 
polynomial subsystems over rational function field implemented in ASYS package in 
the form of the following sequential steps 

• Computatio'n of a Grobner basis for the original system according to Buchberger 
algorithm [2, 3] for some chosen ordering, typically lexicographical one. 
If 1 E Grobner basis, this means that the ideal generated by the input polynomials 
is improper one, or equivalently; that the input polynomials have no common 
roots [2] and the computation process is terminated. 

I . ' 

• Computation of all the maximum independent sets using leading terms of Grabner 
basis according to (1) and paper [12]. ·· 

• Sequential sorting out all maximal independent sets obtained at the previous 
step and, trt;ati~g the variables of each set as free parameters, then computing a 

· lexicographical Gro~ner basis in remaining variables. 

As an output of this algorithm a set of triangular subsystems over rational function field 
is obtained. Their solutions give the parametrization of the subvarieties corresponding 
to the .isolated prime·ideals associated with the initial ideal. · To overcome loss of 
solutions due to denominators of rational functions as coefficients in the firial Grobner 
bases, all those cases should be carefully analyzed. It can be done properly in the 

· framework of Grobner basis technique as well. 

3.2. Homogeneity Reduction 

Let us show, that if the system of polynomial equations under consideration possesses 
nontrivial homogeneity properties (section 2.2), it can be transformed into an equiva
lent, interms of generic zeros, set of subsystems with a reduced number of variables 
by another way than in previous section. 

. I 

We describe such a reduction in the form of the following sequential steps,. recursively · 
implemented in the ASYS package 

l. Generation and solving system of linear equations ( 4) 
For the system to be solved, one can use any suitable method, for example, Gauss• 

. elimination. In the ASYS package we use the Grobner basis technique on this 
step too. In this linear case both Buchberger algorithm and Gauss elimination 
method ~e equivalent [2]. . 
If this system has only trivial solution ci; = O, i.e. the original system is not 
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·homogeneous one at all, the re_duction process terminates, leaving initial polyno~ 
mial system (2) unchanged. '· . . · . · · ··· · · ·. ' 

. Otherwise, at this step. the set of l > o· arbitrary values ci; is obtained. Let 
those arbitrary scale factors and the corresponding,homogeneous variables_·ar~ 
o1 , ••• ·, 01 and x1, ••• , x1, respectively~_A solution of system (2) is given by .,,/ 

I 

Oj = L QjkOk, Q;j E Q, j = l + 1, ... , n. (5) . 
k=l 

2. Transformation of variables. ; 

From equations (5) taking into account that a; = e0
' one obtains expressions for 

scale factors O:j, j > l of transformation (3) 

I 

O:j = II o:tk 
k=l 

in terms of arbitrary o:1, •. :, 0:1. 

Under transformation of non~homogeneous variables Xj, j > l . 

I 

Xj = (II ~!'t)ij 
k=l 

each monomia} in m-th equation of system {2) transfo~ms multiplicatively 

xCi) = Kmx(i) 

with the same factor 
I . . . . . II it+ 1:;=l+l q,ti, l(rn(x1, ... , x1) = xk , 

k=l 

(6) 

depending only on the homogeneous variables. Correspondingly, system (2) 
transforms to the form " 

fm(X1, ... ,xn) = Km(X1, ... ,x1)im(X1+1,···•xn)-. (7) 

3 .. Reductions by non~zero homogeneous variables 
Let all x; 'f 0, i = 1, ... , l. Then multiplicative factors](,,. in (7) can be o~itted 

·and· the system of equations {2) in n variables reduces to· the subsystem 

im(x1+1,···,xn)=O, (m=l, ... ,M) {8) 

in n-1 variables. Compatibility of this subsysttm can be verified by construction 
of its Grobner basis and, in the case of its compatibility, the further ~nalysis and 
derivation of the solutions may be done within this technique. Return to ''old" 
vai:iables is performed by inverse.transformation to (6). Because homogeneous 
variables are treated as 'free parameters, the special analysis of their zero.values 
should be done according to the next step. . 
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4. Reduction by vanishing· homogeneous variables 
In thei~ ti:trn all diffe~ent sets of homogeneo~s variables when at least one variaple 
vanishes, are considered. All zero variables of each· such a set are substituted in 
initial system (2) and the process of homogeneity reduction is perforined again 
as long as new systems in reduced number of variables are generated. 
All inconsistent sets with zero homogeneity variables are rejected at step 3. Those 
of sets for which all the polynomials of (2) vanish, are immediately added to the 
soluHon list and subsequently the next set with zero homogeneous variables .is 
considered. 

In general case, vanishing some homogeneous variables may produce a new additiona.l 
homogeneous variable that, in turn, provides additional homogeneity reduction. 
It)s worth noting that the reduction by maximal independent sets may be performed 
after the homogeneity reduction. It often gives the most appropriate final set of sub
systems to find solutions (see ref.[8] for example). 

4. Description of the· ASYS package 

4.1. General structure 

The ASYS package is written in the symbolic mode langu.age Rlisp of the computer 
algebra system REDUCE 3.4 [11] and consists of a number of module,5 providing a user 
with the following facilities in accordance with the methods described above. 

• Grobner ,basis constructing by Buchberger algorithm [2, 3]; 

• determination of the dimension of a variety for a given poiynomial system, com
putation of all sets of incleperident variables and reduction by these sets; 

• verification of homogeneity properties and carrying out homogeneity reduction;. 

• polynomial· decomposition. 

Because the basic recursive polynomial representation used in REDUCE does not pro-· 
vide reasonable efficiency of a Grobner basis construction, the ASYS package much like 
the REDUCE standard package GROEBNER [10; 11] uses the distributive represen-
tation,. · · . . 

L~t a pol)'.nomial be given in the form f =. E;'.:,1 c;-u; = E T;, where ti;-:- power prod~cts 
X~

1
' • •• 'x~n' and C; are their coefficients. Then, in the distributive representation this 

polynomial will have the form ((T1)(T2 ) ••• (Tm)), where·T; = (D;.c;)- a dot pair, 
D; = (i1i2,• .. in)- a list of exponents of power product u;, c; =< s.q. >. =-,_the coefficient 
at power prodµct U; in the form of standard quotient. 

4.2. Special switches 

The package cont~ns v~;iou~ switches lexord, setord, ~etdim, s~tgb, scaletest, 
scale for control over the reduction process and a Grobner basis comitruction, where ·..,,-., 
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lex~rd selects a term ordering (pure lexicographical one if the switch is on and ·d~gree-
reverse-lexicographical ordering otherwise); · 

· setord generates ,an heuristically optimal ordering [16]; 

setdim computes a dimension of a polynomial ideal and maximal independent sets of 
variables; 

setgb performs reduction by maximal independent sets with a Grobner basis construc-
tion for each subsystem; · 

scaletest verifies of homogeneity pr<>perties without doing the homogeneity reduction;· 

scale performs homogeneity reduction. 

By default only lexord switch is on and the others are off. In this case the call to the 
main procedure of ASYS, which has the same syntax as standard REDUCE package 
GROEBNER, provides nothing-more than computation of a lexicographic_al Grobner 
basis for the system under consideration. 

5', Examples and comparison with other packages 

In this section a number of polynomial systems are considered and comparison of 
:ASYS with high efficient standard REDUCE 3.4 package GROEBNER and the special
purpose systems for algebraists ALP I and FELIX (15] is given . 

Examples (-III were taken from (5, 7]. These systems arise in integrability analysis of 
nonlinear evolution equations which play an important role in modern mathematical · 
physics and applied II?,athematics. Well-known examples of zero~dimensionaLideals 
IV-V [4, 9] have now become classical benchmark for Grobner basis computation, are 
added for completeness. Note that two last examples distinguish from each other in 

. only one term and this leads to drastic distinction in computing time. 

All computations using ASYS and GROEBNER as well as FELIX have been performed 
on an 25,MHz MS-DOS based AT/386 computer with 8-Mb RAM. The results of 

· comparison are given in Tables 1 and 2. Data for AlP / were taken from paper [9] 
and reduced in factor 16/25 taking into account a difference in computer performance. · 
The C<?_mpari;on was· done using two different orderings and the results are collected in 
Tables 1 and 2 with the following notations 

Lex means lexicographical Grobner basis computation for initial polynomial system, 

Lex+Scale in~ans homogeneity reduction and then lexi~graphical Grobner basis 
computation for all the subsyst~ms. . , ., ·-

_For system FELIX (Table i) it nieaiis taking advantage of homogeneity to opti-
. mize the procedure of Grabner basis construction (14, 15]. · · · · · 

DegRevLex mean; Grobner basis computation in the degree-reverse-lexicographical 
ordering. · 
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Each example is supplieg with the chose?- ordering and_di~ension of the polynomial 
ideal. In addition, in examples I-III.their homogeneity degree and in example~ IV-, V 
a number of their solutions are indicated. · ' · 

Example I [5] 

Ordering - A1 > A6 >As> A4 > A3 > A2 > A1. 
. Dimension of polynomialideal - 3. 

Homogeneity degree - 1. 

where 

A1(A4 .:._ As/2 + A6) = (2/7Ai -A4)(-l0>.1 + 5A2 - A3) = 0, 

(2/7 Ai - A4)(3A4 - As + A6) = 0, 
a1(-3A1 + 2.\2) + 21a2 = a1(2A4 - 2As) + a2(-45>.1 + 15A2 - 3>.3) = 0, 

2a1A1 + a2(12>.4 - 3>.s + 2>.6) = b1(2>.2 - A1) + 7b2 = b1A3 + 7b2 = 0, 

b1(-2A4 -- 2As) + b2{2A2 - 8A1) + 84b3 = 0, 

b1 (8/3As + 6As) + b2(lU1 - 17 /3A2 + 5/3>.3) - l68b3 = 0, 

15b1..\7 + b:i(5A4 - 2As) + bJ(-120A1 + 30A2 - 6A3) = 0, 

-3-b1A1 + b2{-A4/2 + As/4 - >.s/2) + bJ(24>.1 - 6>.2) = 0, 

3~A1 + b3( 40A4 ...:. 8As + 4As) = 0, _ 1 , 

a1 = '-2Ai + A1A2 + 2A1A3 - A~ -7.\s + 2Us, a2 = 1A1 - 2>.1A4 + 3/7.\~, 

bi= A1(5A1 - 3-\2·+ A;), b2 = A1(2As - 4A4), b3 ~ AiAr/2,, 

Example·II [5] 
Ordering - t > x > y > z. 
Dimension of polynomial ideal - 2. 
Homogeneity degree - 1. 

-2z3t + (3z 2t - 2z2 - 6zyt + 6zy·+ 6y2t - 6y2)x _:_ ztx2 = 0, 

18z3t2 - 9z3t - 18z2yt2 + 18z2yt + 18zy2t2 - 18zy2t + 

· · ( ~ 27 z2t2 + 24z2t - 5z2 + 63zyt2 - 18zyt + 15zy - 63y2t2 + 

78y2t - 15y2)x + 9zt2x2 = 0, 

-8z4t + (6z3t - 6z3 -12z2yt + 12z2y +_12zy2t - 12zy2)x + 

(5z2t - 4z2 - 18zyt + 18zy + 18y2t --18y2)x2 
- 3ztx3 = 0, 

(3t.:... 5)z2y -15(t - l)zy2 + lO(t - l)y3 + 

(zy + 3y2t - 3y2 )x - ytx2 = 0. 

ExamJ>le m [7] 

Ordering - a2 > b2 > a4 > b4 > a1 > b1 > a3 > b3 >·ao > bo. 
Dimension of polynomial ideal - 6. . 
Homogeneity degree - 3. · 

ek = ek = 0, (k = 1 + 6), 

8 
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·1 

where ek = ek la;<c}b; and 

e1=a1 (a3-a4)-a4 (b3-b1), 
. . . I 2 

e2 = (2a3-:- a4) Y1 - b2Y2 , Yi = 6aoa3b2 + (ao - bo) (a1 + a4~) , 

e3 == a2Y1 - (2b3 - b4) Y2 , Y2 = 6aoa2b3 + (ao - bo) (a1a2 + a4b1) , 
e4 = 3ao (a2b2 + a3b3) + (ao.::. bo) (a1 + b3) a4 , . . 

es= 2 (2a~ + 8aobo - b~) a3b3 + 2 (ao - bo) (4a0 - bo) a3b4 -
. 2 . 

6ao (a0 + 2b0 ) a2b2 + (ao - bo) (5a1a3 - 5a1a4 + a4b4) -

(ao-bo) (7ao-bo) a4b3, 

e6 = 3ao [ (ao - bo)3 - 3ao (ao + 2bo)2 ] (a2b2 + a3b3) + 
(a0 -bo)

3 
[ 3aoa.1a3-2 (2ao+bo)a1a4 ]+9a~ (ao-bo) , 

[ (ao - bo) a4 - (ao + 2bo) a3] b4 - (ao - bo) (2a~ - 30a~bo + b~) a4b3; 

As a result of the computations with the ASYS pac½age in Lex+Scale mode with 
setdim switch_ on we obtain 76 subsystems. For instance, one of the subsystems is 
given by the following output 

Variables = (A2 B2 A4 B4 Al Bl AO) 
Parameters= (A3 B3 BO) % non-zero homogeneous variables 
Zeros= NIL . 

, GROEBNER BASIS 

DIMENSION 

G(l) = A2 - ! *AO* A32 - ~ * A32 
3 BO* B3 .. 3 B3 

G(2) ;, B2. . ! * AO ~ B32 ~ * B32 
+ 3 A3 * BO + 3 A3 

G(3) = A4 + ! * AO * A3 - ! * A3 . 
3 BO, 3 

1. AO* B3 . 8 
G(4) = B4- -*--- -*B3 

· 3 BO 3 

G(5) ;, Al + B3 

. G(6) =Bl+ A3 

G(7) =· A02 + 7 * AO * BO + B02 

M =: NIL % set of maximal independent sets 
_D = 0 % dimension of ideal generated by the subsystem 
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Example IV [4, 9] 

Ordering " x1 > X2 > X3 > X4 > X5. 

Dimension of polynomial ideal - 0 (number of solutions - 70). 

X1 + X2 + X3 + X4 + X5 = 0, 

X1X2 + XzX3 + X3x4 + x4x5 + X5X1 = O, 

x1x2x3 + x 2x3x4 + X3X4X5 + x4xsx1 + xsx1x2 = 0, 

X1X2X3X4 + XzX3X4X5 + X3X4X5X1 +x4X5X1X2 + X5X1X2X3 = 0, 

X1XzX3X4X5 - 1 = 0. 

Example V [4] 
Ordering-,x4 >xi> Xz > x 5 > X3. 
Dimension of polynomial ideal - 0 (number of solutions - 64). 

X1 + X2 + X3 + X4 + X~ = 0, 

X1X2 + X2X3 + X3X4 + X4X5 + X5X1 = 0, 

X1XzX3 + XzX3X4 + X3X4X5 + X4X5X1 + X5X1X2 = 0, 

X2X3X4 + XzX3X4X5 + X3X4X5X1 + X4X5X1X2+ X5X1XzX3 = 0, 

X1XzX3X4X5 - 1 = 0. 

Table 1 

Computing time for examples.I-III of positive dimensional polynomial ideals . " ' . ,,. 

Package Mode I II III 
ASYS Lex. - 2' 35" 35" unsufficient memory 

ASYS Lex+Scale 0 '25" 2.5" 2' 45" 

GROEBNER Lex 11" 7" unsufficient memory 

FELIX Lex 22", 18" unsufficient memory 

FELIX ·Lex+Scale 20" 7" unsufficient memory 

AlPI Lex 72" 22" -

Table 2 

Computing time for examples IV-V of zero-dimensional polynomial ideals 

Package • Mode IV : .. • V 
ASYS DegRevLex 42" 14' 

GROEBNER DegRevLex 10" 19' 40" 

FELIX DegRevLex . 2e , 6' 48" 

AlP/ DegRevLex l' 36." . -

10 

6. Conclusion 

. · Different ;ed~ction methods and taking into account the special properties of the poly-· 
nomial system in, the framework of the Grobner basis technique appears to hav~ con
siderable prnmise to increasing its practical importance. Besides the reductions de
scribed in this paper, factorization of interrriediate multivariate polynomials built~in 
the GROEBNER package of'REDUCE [10] and discrete symmetry analysis of polyno-
mi~l systems [17] are veryfruitful. ' 

'In addition to drasti~ decrease i1_1 computing time, such reductions often lead to niuch 
more readable output. For example, the computation of the complete Grobner basis 
for the polynomial system of example III (section 5) with the fast and effective FELIX 
system t~ok more than 70 hours on a 33 Mhz 80486 DOS computer with 64 Mb RAM 
and pr~duced 3 Mb output.

1 
As a result of homogeneity reduction ASYS took less than 

3. minutes on a ~rrialler machine (Table 1) with 22 Kb output involving 76 subsystems, 
. one of them is shown above. . 

It .should be al~o noted, that among output subsystems might he identical ones or 
those which describe eventually the.same subvariety. The selection of a minimal set of 
these suhsyste~s giving the same generic zeros as original system is important practical 
problem, which is not solved yet. , 

After reduction of the original system to a set of triangular subsystems the problem 
of finding common zeros :of the original system reduces to subsequent finding zeros of 
·univariate polynomials. In examples i-III the final subsystems have ,a very simple 
structure, so one can find an explicit form of solution in the analytical form .. This 
remarkable property of these sys~ems is probably a consequence of integrability 'of 
underlying nonlinear evolution equations [5, 6]. 
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fepAT BJJ., XyTopHOH H.B., >KapKOB A.IO. 
TeXHl1Ka 6a311COB fpe6Hepa, OAHopOAHOCTb 

11 peweH11e non11HoM11anbHblX ypaBHeH1111 

, .. 

Ell-92-157. 

On11caH noAXOA K aHan113y 11 peweH11io c11creM Hen11He11HbtX anre6pa1111ec

Kl1X ypasHeH1111, 11Me1011411x 6ecKoHe•moe •rncno o611411x KopHei-i, 1-1 ero pean11- , 

3au11A B B11Ae naKeTa nporpaMM ASYS, Han11caHHblX Ha A3b1Ke aHari11T1111ec

K11x Bbt•11•cneH1111 REDUCE. noKa3aHo; KaK TaK11e c11creMbl MOryT 6btTb, B 

paMKaX TeXHl1Kl1 6a311COB fpe6Hepa, aBTOMaT11'1eCKl1 peAyu11poBaHbl 3KB11Ba

neHTHOMY H86opy. nOAC11CTeM C MeHbWl1M '111CnOM.nepeMeHHblX. 3TOT MeTOA 

ABnAeTCA ~Cofit?HHO 3cj)cj)eKTl1BHblM AnA 'Cl1CTeM, 06naAa10U4l1X tteTpl1B11anb• . 

!'lb;~l1 CBOHCTBaMl1 OAH0POAHOCTl1 .. PaccMoTpeHbl HeKoTopble np11Mepbt 11. 
cpasHeH11e ASYS c Apyr11M11 naKeTaM11. 

Pa6oTa BbtnonHeHa B fla6opaTop1,111 Bbl'111cn11rnnbH011 TexHl1Kl1 11 asToMa• 
T11Jau1111 01,1Rl,1. 

' . '· 
IlpenpHHT OObel1HHe1moro HHCTHTyra lilllepHbl.X HCCJie,'.I0B8HHH • .lly6Ha 1992 . 

Gerdt V.P., Khutornoy N.v.; Zharkov A.Yu.' 
Grcfbner Basis Technique, Homogeneity 

· and Solving Polynomial Equations 

El 1-92-157 · 

An a'pporach to Investigating and_ solving 'systems-of nonlinear algeb~aic 
equations with infinitely many solutions and based on it the REDUCE package
ASYS are described ... It is shown that in th'e framework of Grabner basis tech
nique such systems can be transformed into an equivalent set of subsystems 
with a _reduced number of variables in a completely automatic way. This 
method appears to be particularly effective for the systems possessing nontri· · 
vial properties of homogeneity. Some examples and resuits of comparison 
between ASYS and other packages ~re given. 

The investigaiton has been performed at the Laboratory of Computing 
Techniques a~d Automation, JINA. 
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