


1 Introductlon S T L PR E Rt PR I

:f Nonlrnear algebralc equatrons arise in ‘many fundamental and applred problems The ‘
:}'analysrs and’ solvmg such- systems is one of -central d1rectrons of® computer algebra :

'f"_’,'-development [1]. The most universal and developed algorrthmrc method for analysis e
/" and solutron of systems of nonlrnear algebrarc equatrons is that based on Grébner basrs R

»constructlon (2, 3] The’ computatlon trme for Grobner basis strongly depends on
‘term’ ordermg to be chosen In practlce the ' pure lexrcographrcal orderrng and the

total degree then inverse. lex1cograph1cal (degree-reverse-lex1cograph1cal) one are used (o

v’»y,mo1e often. The correspondmg algorlthms and’ packages are 1mplemented n all modern
: 'i_computer algebra systems T e : R

[

o Unfortunately, in many practrcal cases in order to construct a Grobner basrs extremely L

"o tedious algebra.1c ‘computations should be performed which are caused by exponent1al
fkfcomplexrty of the. Buchberger algorithm (2} in a number of variables. In the cese =
fof ﬁmtely many solutions,i.e.: a zero- drmensronal ideal, the algorrthm complexrty is

: ‘W‘ZO(d" ) in polynomlals degree d and .a number of varlables n for the’ lexrcographrcal ;
_ordering and d" for the degree-reverse—lex1cograph1cal one, respectlvely (4] In this case -

".:fordermg and then to recompute it'to the lexrcographlcal one accordlng‘to algorithm
" [4],-which also has polynomial complex1ty in d”. As a result we obta1n a ”trrangular
</ Grébner ba51s with.’ separated” variables, :

# For p positive dimensional” 1deals i.e. for the systems with 1nﬁn1tely many solutlons, .

ff,O(d“‘z") That is why the most of computer algebra packages are desrgned mainly

- the optimal strategy is.to compute Grobner basis for the degree—reverse—lex1cograph1cal L

both theoretical analysis of algorithms and a Grébner basis construction become much™ .
. more difficult. In this case: ‘the complexity of Buchberger algorithm is estimated to be S

o for zero—dlmensronal ideals and have not the necessary built‘in facilities for' the case -

- of pos1t1ve-d1mens10nal ones. From the other hand, the systems of nonlinear algebra1c :

in analyzing integrability of nonlmear evolutlon equatlons [5 6 7] and 1somorph1sm =
. Venﬁcatlon of Lie algebras [8] T ey e
In. th1s paper we descrlbe an approach to s1mphfy1ng and often to solvmg polynom1al :
systems with infinitely many solutions 1mplemented in the form of’ REDUCE package '

it allows® to- -compute the 1ndependent sets of varlables which can be treated as free
,;"parameters and due to them to split an 1n1t1al polynomral 1nto a set of trlangular ones '
lover. ratlonal functron field.

k“‘-In the ca.se if a polynomlal system possesses nontnvral homogenelty propertles, 1t 1s‘

and therefore, necessary computatlonal time i is decreased dra.strcally Homogenelty is

,\ Yoy

B :'«

AEAACTERE,

equatlons with infinitely many solutions arise in practice qurte often,. for example, -

' /ASYS. In' contrast to many other’ packages based on the Grobner basis. techmque,r -

'transformed by another way into smaller subsystems with reduced number of vanables; S



i ‘/.

typrca.l in pa.rtrcular, for the problems consrdered in [5 6 8] Some examples [4 5, 7 9}, v
' mcludmg those with fihite many solutrons for completeness and results of oomparrson

~with other packages are grven

2 - Basic deﬁnltrons and notatlons

'2 1. Dlmensmn of polynomral 1deal and sets of 1ndependent_;

varlables

,'The dlmensron of the algebra.rc varlety defined by. a polynomlal system can be deter-

mined i m terms of the Hilbert polynomial, which, in its turn, can be computed via - ;
Grébner. basis. This method is used, for .example, in the GROEBNER package of the i

REDUCE computer algebra system. [10 11}.

\ However, the knowledge of dimension is unsuﬁicrent to analyze a structure ofa varrety :
for. a positive dimensional ideal that is often necessary to find solutions in'an algebralc :
~form. Oneé would like to find these solutions in the form of the explicit parametrrzatron s

"of different lrreducrble subvarieties of the whole variety for a given system.

_In paper [12] the algorithm was proposed for finding a complete set of different max1mal . )
.. sets of variables, which are (algebralcally) independent modulo’ given polynomial ideal. ~ ..

.~ This algorithm is ba,sed on the knowledge of the Grobner basis and the followmg
- statement. SR

o For mmlmal or reduced [2] Grobner ba.sm G a set

N
[y

S —.{z;,,... z,} CX = {zl,...f z,}

(strongly) mdependent modulo I = - 1 deal(G’), if and only if-.,

IS)0IT@ =0, O
v where T(S ) means a set of all poss1ble monomrals (terms) dependmg only on vauables"‘ N
z; €8, and LT( ) a‘set of leadmg, w.r.t. chosen orderlng, monomlals ina Grobner

i _;basrs

“A ma.xrmal in number of )ts elements, set corresponds to the hrghest dlmensmnal o

“variety. Therefore this number gives the dimension of the ideal. All other maximal (in

" the sense. that the addition of any other variable violates condition (1)) independent o
" sets correspond [12] to the jsolated prime ideal a.ssoc1ated with I and a number of e

: elements in the set isa dlmensron of this prime ideal.

Therefore, if one cons1ders elements of : any maximal 1ndependent set as free parameters, L

* then in other variables the: original polynomial ideal is'a zero—dlmensronal one and its

lexicographical Grébner basis has a ”trlangular form with ’ separated” varrables The : o
-+ solving of such a’ trlangular system may be done step by step startmg wrth the: last -
- univariate" polynomial in the lowest variable w.r.t. the chosen ordermg At each; step.

~ the problem is eventually reduced to a univariate one. To.find the roots or to split

{ :thlS polynomlal into lower degree ones, one can try to factorize or to decompose it. In" " :

2
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V ‘Let us consrder a system of polynomlal equatlons e

~ of polynomial f the equality a®) = o) or Yop-, (i — - jk)ax = 0, where & =

i

-

addrtron to the REDUCE factorrzator a user of ASYS may use a srmple decomposrtlon

w algorlthm of paper [13]

2.2, Homogenelty

Za (.):v()—O m—12 M v’ (2)
6} : o e

T — (m) ) = gt oo gin, .
where (i) = (i1, 1.,,) Am ) = G4 s T i in, 7
Defi mt(zon The system of polynonfxal equatlons (2) possesses a property of homogenezty
if under the scale transformatlons s e . )

. :v’ — a.z.' (') — a(') ()

w0 @,
with at least one factor o # 1, each of monomlal of any glven polynomlal f,,l (z15-- :z:".)
in (2) takes the same scale factor. In other words, for two arbitrary monomrals (1 ) (N
og &k,
takes place. It should be noted, that in general case scale factors a(‘) correspondmg
to different polynomlals fn mrght be different. ‘ o

This definition is closely connected with the concept of r- homogenelty [14], which -

is very useful for computation of homogeneous Grobner bases, and already used, for -

 example, in [15]. We, however, assume &y to take any value.from the coefficient. field

‘of system (2) but _not only. integer one as. in [14], and use homogeneity not- for the
Grobner basis construction for system ( ) but . for splrttrng ‘the latter 1nto a set of
simpler subsystems (see section 3. 2). . e L
Equating the scale factors.arising from dllferent terms of each polynomlal we obtam o
‘a system of lmear equations w1th 1nteger coeflicients - ¥ D S o
Zmak g @k L 4

“Itis clear, that system ( ) always has the trlvral solutron ak = 0 or ag- —, 1, k -— ,

12 S, . : K ..,‘J x.,

" From the other hand, if there is a nontrrvral solutron, then (4) has 1nﬁn1tely manKF
solutions: In this case one can consider- a part'the variables (&) as free parameters o
" maximal set of such free variables is a maximal independent’one’ (sectlon 2.1) modulo -

ideal generated by the left hand sides of system 4).. ,
Definition. . Varrables :z:, correspondmg to.an, arbltrary scale factors a, are called ho- ,

- m0geneous . variables: for, system (2), and therr number is called its homogeneity degree.

Tt is,clear; that, homogenerty degree is less or equal to drmensron of the correspondmg
polynomlal 1deal ' S L



- to the isolated prime-ideals associated with the initial ideal. -
solutlons due to denominators of rational functions as coefficients in the final Grébner
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3 Reductlon of polynomlal systems Wlth 1nﬁn1telys k

a

many solutlons

3.1. Reduction by maximal independent sets

Computation of a Grébner basis allows one to verify compatibility of the 1n1t1a1 system'

of polynomials and to determine whether it has finitely or infinitely many solutions

[2]. In the latter case one can apply the method of reduction to zero-dimensional -

polynomial subsystems over rational function field implemented in ASYS package in
the form of the following sequentlal steps

[ Computatlon of a Grébner basis for the original system accordmg to Buchbex ger

- algorithm [2, 3] for some chosen ordering, typically lexicographical one.
. If1 € Grébner basis, this means that the ideal generated by the input polynomials
~ is improper one, or equivalently; that the input polynomials have no-common
roots [2] and the computatlon process is termlnated :

. Computatxon of all the maximum 1ndependent sets usxng leadmg terms of Grobner ;

~ basis accordmg to (1) and paper [12].

° Sequentxal sortlng out all maximal 1ndependent sets obtained at the prev1ous’

. step and, treating the variables of each set as free parameters, then computmg a
1ex1cograph1cal Grobner bas1s in remalnlng ‘variables. .

Asan output of this algorithm a set of tr1angu1ar subsystems over rational function field -

_is obtained. Their solutions give the parametrization of the subvarieties corresponding

bases, all those cases should be carefully analyzed. It can be done properly in the
: framework of Grébner basis technlque as well.

3 2. Homogeneity Reduction

- Let us show, that if the system of polynomial equations under conslderatlon possesses

nontrivial homogenerty properties (section 2.2}, it can be transformed into an equiva- .
~ lent, in terms of generic zeros, “set of subsystems w1th a reduced number of variables -

- by another way than in previous sectlon

We describe such a reduction in the form of the followmg sequent1a1 steps recurs1ve1y o

: 1mplemented in the ASYS package - ‘ s ot S

1. Generation and solvmg system of lmear equatrons (4)

- For the system to be solved, one can use any suitable method, for example, Gauss-

~ elimination. - In the ASYS package we use the Grdbner basis technique on this
step too. ‘In this linear ¢ case both Buchberger algorithm and’ Gauss e11m1natlon
method are equivalent [2]. ~

- If this system has only tr1v1a1 solutlon a =0, 1e the orlglnal system is not :

.

To ‘overcome loss of

i S G i
\ .

“»—‘-"' A an e

+ From equations (5) taking into account that o; =
"+ scale factors ¢, j > ! of transformation (3)

B Reductlons by non-zero homogeneous variables:

e

:homogeneous one at all the reductxon process termmates, leavmg 1n1t1a1 polyno‘
- .mial system (2) unchangcd ‘
- Otherwise, at this step the set of 1 >0 arbltrary values a, is obtalned Let i
those arbltrary scale factors and ‘the corresponding homogeneous variables are '

' @&1,...,01 and Z1;- ,3:1, respectlvely A solutxon of system (2) is glven by ,,/ .
: a —ZQJkak, Q;JGQ, ]_l+l ' ' (5)V
k=1 ; \ R
. Transformation of variables. ,

one obtains expressions for

o = Hav.k :

in terms of arbitrary a1,..., a1 ~
Under transformation of non-homogeneous variables zj, j > [.

HI%*):;, S s ‘(’6’)_3 .

-~ each monomial in m-th ‘equation*of system (2) transfo‘rms mu]tiplicathely -

20 = Kmi(".) . R
with the sarne factor
K (Ilv ,-7-‘1) = Ha: H{:J l+x°:kh »
k_

depending only on the homogeneous variables.‘
transforms to the form o

ST | fm(:cl,..;

Corresponding'ly,‘ system (2) [

,:c,.) = K (:cl',

Let all z; #£ 0, i = 1,..., L. Then multiplicative factors Km in (7) can be omxtted .

-and the system of equatlons (2) in n variables reduces to'the subsystem R

fm($l+la .y 2n) =0, (m = 1 M) i (8)

- inn=l var1ab1es Compatlblhty of this subsystem can be verified by construction -
. of its Grobner basis and, in the case of its compatibility, the further analysxs and -

" derivation of the solutions may be done within this technique. Return to ”old”
variables is performed by inverse. transformation to (6). Because homogeneous
variables are treated as 'free parameters, the spec1a1 analysxs of their zero -values b

o should be done accordmg to the next step » :

@y T 23
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7$I)fm(-‘£l+11 | ,5:,.) ; o N (7) R _7



4 Reductlon by vamshmg homogeneous varlables - ~
- In their turn all different sets of homogeneous variables when at least one va.rlable
" vanishes, are considered. All zero variables of each such a set are substituted in

.initial system (2) and the process of homogenelty reduction is performed again

as long as new systems in reduced number of variables are generated. ‘
~Allinconsistent sets with zero homogeneity variables are rejected at step 3. Those
© of sets for which all the polynomials of (2) vanish, are immediately added to the

solution list and subsequently the next set W1th zero homogeneous var1ables s -

con51dered

In general case, vanlshing some homogeneous variables may produce a new additional: - -

homogeneous variable that, in turn, provides additional homogeneity reduction. -

- It.is - worth noting that the reductlon by maximal independent sets may be performed "~
after the homogeneity reduction. It often gives the most approprlate ﬁnal set of sub- "

' systems to ﬁnd solutions (see ref.[§] for example)

4. Descrlptlon of the ASYS package .

4 1. General structure

The ASYS package is written in the symbollc mode language Rlisp of the computer“f
-algebra system REDUCE 3.4 [11] and consists of a number of modules providing a user - -

g thh the followmg facilities i in accordance with the methods described above.

~o Grébner. bas1s constructmg by Buchberger algorlthm [2 3],

e determma.tlon of the d1mens1on of a variety for a given polynomlal system com-,‘,. S

puta.tlon of all sets of 1ndependent va.rla.bles and reduction by these sets; -

verlﬁca.tlon of homogenelty propertles a.nd ca.rrylng out homogenelty reductlon

; polynomla.l decomposltlon

- Because the basic recursive polynomlal representa.tlon used in REDUCE does not pro— T
_ vide reasonable efficiency of a Grébner basis construction, the ASYS package much like- &
the REDUCE standa.rd pa.ckage GROEBNER [10 11] uses the d1str1but1ve represen— o

tation,

Let a po]ynomla.l be glven in the form f E,__l ciu; = E T,, where u, power products o
z,...,zi*, and ¢; are their coeflicients. Then, in the d1str1but1ve representatlon this -
A(T)), where Ty = (D; c,)— a dot pair,
z,,)— a list of exponents of power product u;, ¢; = =< 8¢ > — the coefﬁaent

polynomxa.l will ha.ve the form ((T3)(T3)..
D; = (iy1,...
, Va.t power product u, in 'the form of standard quotlent T S T

42 Spec1al sw1tches e o

. The pa.ckage conta.lns various sw1tches lexord setord setdlm, setgb scaletest
‘scale for control over the reductlon process and a Grébner ba51s constructlon, ‘where

T 6

B setord generates an heur1st1cally optlmal orderlng [16],

lexord selects a term ordermg (pure lex1cographlca.l one 1f the sw1tch lS on and degree-
*reverse- lex1cograph1cal ordering otherw1se), .

setdim computes a d1mens1on of a polynomial ideal and max1mal mdependent sets of

~variables;

‘\setgb performs reductlon by maximal mdependent sets w1th a Grobner bas1s construc—

tlon for each subsystem, ]

scaletest verifies of homogenelty propert1es w1thout domg the homogenexty reductlon,

s

~scale performs homogeneity reduction.

By default only lexord switch is on and the others are off. In this case the call to the

- main procedure of ASYS, which has the same syntax as standard REDUCE pa.ckage :
-GROEBNER, provides nothing-more than computatlon of a lex1cogra.ph1cal Grobner
'—ba.S1s for the system under cons1derat10n ‘

5 Examples and compar1son with other packages

In th1s sectlon a number of polynomlal systems are con51dered a.nd comparison of

; V\:ASYS with high efficient standard REDUCE 3.4 package GROEBNER a.nd the spec1al-
.. purpose systems for algebraists ALPI and FELIX [15] is given. :

- Examples I—III were taken from [5, 7]. These systems arise in 1ntegrab1hty ana.lys1s of

nonlinear evolution equations which play an important role in modern: mathematical

“physics and -applied mathematics. Well-known examples of zero-dimensional.ideals -

L

IV—V [4, 9] have now become classical benchmark for Grébner basis computa.tlon, are - :

added for completeness. Note that two last examples distinguish from ea.ch other in.

: _",only one term and this leads to drastic distinction in computing time.

et All computatlons using ASYS and GROEBNER as well as FELIX hadve been performed
~on an 25-MHz MS-DOS based AT/386 computer with 8-Mb.RAM. The results of -
<*-.comparison a.re given in Tables 1 and 2. Data for AIPI were taken from paper 9]
~~and reduced i 1n factor 16/25 takmg into account‘a difference in computer performance. -

- The comparison was done using two different orderings and the results are collected i in

Tables 1 and 2 with the followmg notations

V _Lex means lex1cogra.ph1cal Grobner basis computatlon for 1n1t1al polynomlal system

computa.tlon for all the subsystems

For system FELIX (Table 1) it means ta.kmg advantage of homogenelty to opt1- o

" mize the procedure of Grobner bas1s construction [14 15]

DegRevLex mea.ns Grobner basls computa.tlon in the degree—reverse-lex1cogra.phlca.l
o orderlng

: ,iLex+Scale means homogenelty reductlon and- then lexwogra.phlca.l Grobner basxs o



Fach example is. supphed w1th the chosen ordermg and dxmenswn of the polynomlal
‘ideal. In addition, in examples I— III their homogenelty degree and in exarnples IV -V

a number of their solutions are mdlcated kS / - ' e

s Example 1{5]

Ordermg A > e >As > A > /\3 > A > AL
. Dimension of polynomial ideal - 3.

' 3 Homogenelty degree 1.

A(Ae = As/2 + he) = (2722 — A.,)( 10) + 5% — )\;) =0,
(2/7A2 - /\4)(3/\4 nd /\5 + /\6)

ax(—3X; + 2X;) + 21a; = a1(2)\4 —225) + az(—450 + 150, =3X) =0,

2ay A7 + az(1204 — 3Xs + 2X6) = b1(2h2 — Ay) + Tby = biAs + 7b2 =0,
bi(—2Xs —2)5) + b2(2X2 — 8X1) + 84b3 = 0, ,

b1(8/3Xs + 6)¢) + ba(11Ay — 17/3)2 + 5/3/\3) — 16863 = 0;

1517 + bi(5Aq — 24s) + bs(—120A; + 303, — 635) =0,

_.3b1)\7 + ba(—=Xa/2+ As/4 — Xe/2) + b3(24Ms — 6X;) =0, | :
3byAr + b(40)s — 8Xs +4)6) = 0, - i
where"' , .: . ' IR
g = —2A + Al)‘g + 2A1A3 - A’ - 7A5 +21), az=Thy = 2A1A4 + 3/7A
bl-—/\ (5)‘1—3/\2+)\3), =2 (2)\6—4)‘4),'b3—)\ /\7/2 S
Example II (5] -

.. Ordering - t>:c>y>z

"+ Dimension of polynomial ideal -.2.
' Homogenelty degree - 1.

—22:3t + (32:2t —22% — Gzyt +6zy + 6y*t — 6y%)z — zt:z: = 0 ‘

18232 = 92% — 182 yt2 + 1822 yt +182y%% — 182y%t +
(-272% + 242:2t — 52% 4 632yt® — 782yt + 152y 63y2t2
78yt — 15y2)z + 9zt%2% = 0, -

—824t + (62:3t —62% = 12z yt+ 1222 ¥+ 12zy2t - 12zy2):z: +
(5% — 4z ~ 182yt + 18zy + 18y%t — 18y2)z — 32tz =0,

(3t — 5)z%y —15(t — 1)zy* + 10(t -y +
(2y + 3y*t — 3y*)z — yt:z: =0.

Example I [7]

—.Ordermg- az>b2>(l4>b4>(l1>b1>a3>b3>a0>b0
- Dimension of polynomla.l 1dea.l 6.
Homogenelty degree 3. :

= (k=1—246)v:

er = € =0,

8 :

i
-

" where

& = ex la;eob; and
e =a (03—a4)—a4 (b3 — ba) .
= (2a3 ~ ayq) Y1 - bayz 5 - y1 = 6agasbs + (ao - bo) (al + a4b2) N
€3 = azyr — (2bs — by) ¥, Y2 = 6aoazb; + (a ao — bo) (ayaz + a4bl) ’
“eq = 3ag (azbz + asbs) + (ao - bo) (a1 +b3) a4, k col :
e = 2 (242 + 8dobo — B2) asbs + 2 (a0 — bo) (4a0 —bo) asby —
- 6ag (ao + 2bo) azbz + (ao — bo)? (5a1a3 - 5a1a4 +aghy) -
(a0 — bo) (Tao — bo) ashs _
eg'=3ag | (ag— bo) — 3ag (ao + 2b0) ] (agbz + a3b3) +
(ag— bo) [ 3acaias — 2 (24, + bo)a1a4 ] + 9a2 (ap — bo) ‘
[ (a0 — bo) @~ (ao + 2bo) a3 ] bs — (ag — bo) (2a0 - 30a0bo + By a4b3
As a result of the computatlons with the ASYS package in Lex+Scale mode thh

setdim switch on we obtain 76 subsystems. For mstance one of the subsystems is
glven by the followmg output : : :

Variables = (A2 B2 Ad B4 Al Bl AO)

Parameters = (A3 B3.B0) % non-zero homogeneous vanables

Zeros NIL
",‘GROEBNER’BASIS“ T
. ) ag L, AVXAT 5 A
G(l)ﬁ.A?*ﬁ* B0xB3 3" B3
'(2) L1, AO;B3’+_2_ B3
T3* B0 t3 »A3_
= 1 A0 A3 '1
—aq4 L ~Loa
G(‘3)> ;A4+ S i A 3
g 1. A0xB3 8
OF B4—§ B
G(5) = A1+ B3
G(6) = B1+ A3
G(7) = A0® +7 + A0 x BO + B0?
DIMENSION ‘

‘M = NIL % set of maximal independent sets

D = 0 % dimension of ideal generated by the subsystem



. o '
Example IV [4, 9] ¢ o
Ordering”—zl‘>' T3> T3> T4> Ts. ’ e e
* Dimension of polynomial ideal - 0 (numbgr,of ‘solutlons,- 70).
1+ T2+ 23+ T4 + 75 =0,
L zzg+ :z:}."z:s + T3z4 + T4iTs + T52, = 0, |
- T129T3 + ToT3Ty + T3T4Ts + TaTsTy + TsT122 =0, o
111121‘31«.4‘4- 12531415 + T324T5T1 + T4T5T1T2 + 15111213 =0,

. T1T2T324Ts — 1 = 0.

Example V [4] . &
Ordering -.¢y > 1> 2> Ts > T3. . . . . : . »
" Dimension of polynomial ideal - 0 (number Of‘S(’)lylv.l‘tlonSA-‘ 64) ST
| | '»:'V-IV1+;""2+3?3'+$4+355‘='0,;  L
2125 + T2T3 + T3Ty + 2475 + 7571 = 0,
SRR + £223%4 + T3T4Ts + TaT5T1 + TsT1T3 = 0, L .
ZaT3T4 + T2T3T4Ts + T3T4T5T1 + T4T5T132 + TsT122T3 = 0, o

LB T2T3T4Ts — 1= 0

Table 1

' Cortn‘plr.lt:in'gv’fime'for examples I-III of positive dimensional polynomia.l(ideals '

TMode | T [ il

iaé(ill(;ge + | Lex. 2’ 35”. | 357 | unsufficient memory

ASYS - |-Lex+Scale | - 25".{.2.5":| . " 2.’ 457 .

GROEBNER. | Lex 117 7" | unsufficient memory

FELIX Lex: . }+:22" | 18” | unsufficient memory

FELIX Lex+Scale |- 207 ] 7" | unsufficient memory
AIPI - Lex ™ 27| 227 -

Table 2 o

Computing time foi examples V-V of zero-dimensional polyngmlal ideals

Package > - | Mode .- IV . o v :
ASYS- - DegRevLex 42 14

GROEBNER | DegRevLex 107 | 19 40:
FELIX .| DegRevLex | .. 217 |- 6’48
AIPI - .. | DegRevLex [.1736.” |: —

10

<. 6. Conclusion . -

v

 Different reduction methods and taking into account the speciz'i‘l, properties of the.y poly- .

nomial system in the framework of 4t\he Grébner basis technique appears.to have con- - e
siderable promise to increasing its practical importance. Besides the reductions de-

scribed in this paper, factorization of intermediate multivariate polynomials built-in -

the GROEBNER package of REDUCE [10] ghd discrete symmetry ana.lyéis of polyno-
miql systems[17] a.re,very_fruitful, o i : o

T ‘In addition to d;astié decrease in computing ﬁime, such rédurction‘é..often‘lead to much
. “more readable output: .For example, the computation of the complete Grobner basis

.

for the polynomial system of example I (section 5) with the fast and effective FELIX .

_one of them is shown above. AR

-t should be also noted, that é.“rr;i(")hg.(k)ut;‘)ut subsystems inight be identical ones or .,
- those which describe eventually the same subvariety. The selection of a minimal set of ..
* these subsystems giving the same generic zeros as original system is important practical -

- problem, which is not solved yet. ..

 remarkable property of these systems is probably a consequence of integrability ‘of

“underlying nonlinear evolution equations [5, 6].
‘,"VACkn‘oWlédgéryrﬁlents.' el .

Wéf‘drle érarte;funl to W.L(a‘ssnéfj‘fo:r'pfodhctivé discussions, J.Apel and U.K‘laus“;‘fc;,r"im'-_:
‘portant comments and for the data on computation of examples I-V with FELIX. |
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- Fepar B.f_l:, Xyropnoﬁ H.B., Xapkos A.I0.
TexHuka 6asucos MpeGHepa, 0AHOPOAHOCTL - -

S EN1192487
U peweHue nOﬂMHOMMaanHX ypaBHeHMM ‘

OI'IMCBH I'IOJJ.XOA K aHanusy ] peLl.IeHMIO CUCTEM HeﬂMHeMHbIX anre6pamec-
Kux ypaBHEeHWUH, nMerounx GECKOHE‘IHOG YHucno 06U1MX KOPHEM uero peanu-

3auMFl 8 Buae nakera nporpamm ASYS, Hal'lVlcaHHle Ha F|3bIKe aHanuruuec-i 1

Kux Bblyucnennii REDUCE. MokasaHo, Kak Takue CUCTEMBb! MOI'YT 6blTb B

PamMKaX TeXHUKHW Gasucos IpeGHepa, aBTOMaTNYECKU PEAYUVIPOBaHb) 3KBUBA-

HEHTHOMY Ha60py nogcnucTemM ¢ MeHbLI.IMM YUCNOM. HGPEMBHHBIX ATor MeTOAV N

‘ABpRARETCA ocoGeHHo 3 dexTMBHBIM AnA oncrem, o6nagaowwmx Herpuauanb-f
- HbiMu CBOMCTBaMM OAHOPOAHOCTH. PachOTpeHbl HEKOTOpre anlMepbl n
: cpaBHeHue ASYS canrMMu naKeraMu : : :

Paﬁora BblnonHeHa B ﬂaﬁoparopuu abwucnmenbuou TEXHUKUA U aBmMa-

" 'maauuu OMHM

N npenpnnr,OGVr,ennHermoro MHCTHTYT3 S1€PHBIX rlvcmeAOnavnuﬁ.:}lySH; 1§92 P

‘ Gerdt V.P., Khutornoy N V Zharkov A. Yu
1 Grbbner Basis Technique, Homogenelty :
¢+ ‘and Solvmg Polynomlal Equatlons

" An apporach to investlgating and soIvrng systems of nonllnear algebralc' la

- equatlons with |nf|n|tely many solutlons and based on it the REDUCE package-
s ASYS are desciibed. It i s shown that in the framework of Grbner basis tech-
-~ nique such’ systems: can be transformed lnto an equwalent set. of subsystems "

with ‘a reduced number of vanables in.a completely automatic way This'. ;

) k:method appears to’ be partlcularly effective for the systems possessing nontri-~ .
5 vial propemes of homogenerty Some examples and results of comparlson :
‘ between ASYS and other’ packages are glven : '

The mvestlgalton “has been performed at’ the Laboratory of Computlng

'Techmques and Automat|on JINR

- Preprint of the Joint Institute ,fo,ru.’\:;uclear Research. bubna l992 r S .
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