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'INTRODUCTION 1·: ··~ ·- ! : ___ ; 

The domain decomposition method ( DD-inethod ) for solving elliptic bound
ary value problems' have been undedixed attention during the last few years, 
see e.g. '[1],[4),[5),[6),(9);(11),(16), (19H24)~(26}. This is explained by' the fact 
that DD-method has an intrinsic parallelism; a complex problem can· be 
represented a:s a number of:simple problems and in:iterations over·subdcr 
mains only: boundary unknownsr can be involved. In this ·way DD:method 
can be considered as one of the incarnations of the boundary element method-~ · 
(BEM). . - ... 

This paper concerns the.computational~pects of the DD-niethod for ~llip7 · 

tic problems in an unbounded domain. In the framework of the combined . 
method such problems are reduced to elliptic boundary value problem (lin
e~ or noriliriear) in an auxiliary bounded domain with an integra.! (nonloca.I) 
boundary condition,see e.g/' (8) ,{15) ,[19) ;[25} ~ ·In the' proceS& of· solving· the 
combined problem 'there are two main laborious steps: thesohition ofinte
rior Dirichlet problem in· an auxiliary domain and·the sohiiion: of:exterior 
Neumann problem outside this domain .. The' solution of the first problem 
can be effectively obtained by using the DD-method. ,The second•oiik call_ 
be solved in~ the framework of integra.! or differentia.!: approach. In the first 
case the exteri(wproblem is reduced:to the boundary-integral equation of the 
second kind defined on .the surface of the. auxiliary•domain';:This··boundary 
equation· can be effectively solved by using either·panel:clustering'techique 

· [12] or ·techique based on an application of spedal•siirfaces [28}. On. the 
. other hand in differential· approach a boundary ·val~e -elliptic problem :with ' 
an artificial boundary conditions approximating· the behavior ·or the uri known 
function at infinity have to be solved. . · · .· · -

'",_, 

Below' we consider the application of the. DD~method for •solving:twO: an<L 
three-dimensional exterior problems in the framework of differential approach. 

• . •,· ,·. ·, ,r 

We suggest a varia~t of the DO-algorithm foi: elliptic problems ih an un
bounded domain in ~hicli under the a'ppropriate choice of ;mesh:sizes,iri'dif-

.. 1This work has been partially supported by the German Research Foundation within 
the Priority Research Programme "Boundary Element Methods" while the first and the 
third authors had visiting positions at the University of Stuttg~rt. 
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ferent subregion~ based on the information available on the a.Symptoticdecay 
of the solution we can deal with a small number of the subdomains (Lemma 
1). Since only unknowns on the boundaries of subdomains take p~t injt~ 
erative processes effective methods' of a partial solution of the subproblems 
can be used [3]. ·Using effective. preconditioners in preconditioned conjugate 
gradient (PCG) method to solve arising interface problem the solution.can be 
obtained with_ toriiimtational work proportional to the number of unknowns 
on the boundary of auxiliary domain .with only a logarithmic factor (The
orem 2). In this way:the suggested_.DD-algorithm can be considered as an 
alternative· to using. boundary integral equations for solving exterior prob-
k~ . . 

This paper is organized as follows. In Part 1 we briefly discuss the boundary 
equations of the: DO-method and their fast solvers. We shall not go deep 
into.the.construction of preconditioners·{or the arising boundary operators 
which are well known, see e.g. [4],[5],[17],[20],[19],[21],[24},[26]; :We simply 
give the estimates of the numerical work to solve the boundary equations of 
the DD-inethod by using PCG method with corresponding.interfa~e precon
ditioners:. In· Part 2 w~ briefly describe the. known variant of the combined 
method 'to solve elliptic problems in. unbounded domains, earlier suggested in 
[19],[27], and corresponding computational expenditures. ~n Part 3 'we con~ . 

. sider the substructuring scheme for an unbounded domain adapted to .the 
given asymptotic decay of a harmonica} function at infinity. We also present 
the.estiinates of the computational work to solve exterior elliptic,problems 
using the DO-method with the suggested partitioning of an unbounded do- • 
. main. In ·Part 4 we. outline an' application of. the new method to solve a 
nonlinear. problem: .·We also present numerical experiments demonstrating 
the.effectiveness ofsuggested algorithm. . · 

!.BOUNDARY INTERFACE PROBLEMS OF DD-METHOD 
Let us consider a parallelepiped n.= {xk : 0$ Xk $ Aki k = 1 + 3} parti

· .. tioned by nk -17 k = 1 + 3, planes parallel to Cartesian systemplanes into 
M = n1n2n3 subdomains ni = {xk : ai1 -t < xk < ai1c• k = I+ 3} whe~e 

·· i ~(it, i2;i3), ik = 1 + nk, ao = 0,· an1 = Ak, k = 1 +3. We also denote by 
ri.= ani and byT. = (U~1 ri)\8n- the union of interior boundaries~ 

Let'the arbitrary positive constants J.ti :> 0 ~egiven for any·i. We consider 
.. • • • ' M ,·-, 0 •• 
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th~Jol~~!"ing' ;lliptic proble,in:_, ~ ,·,. . . ·. . ... . . . « , • 

~·Problem A:>Finc:Ithe· function 'w e'HJ(n) ~udi that · 

M '· .. .~ ., . ·~ '· :•.·.·· 

L J.ti .f '1~ ? ~dx ~- {~T}~s . 
i=I Jo, . . . lr 

frir all ~ e HJ(n). 

, < ".' ,· ... .. , . . . . . ,., ·, :· . . . •. .. '!. . : :· . ;·· ::: 

We suppose that for the given function t/J such that t/J lr;E B.-2(ri)·the equa-
tion (I) has the unique solution wE HJ(n). ·" '· ' ';• · 

We'denot{fthe space oftl:aces:.Uj =:7it.l.1 oriri: of functions w'e 'HJ(O)'by 
!.' . . .· .. · . . . . . . " . , . . • : ·. . .. ·• 

Yt c H 2 (ri) and the spa~e oLtraces u ~ 711} on r ofthose 'functions,by Y; 
The sp!l-ce Y is equipped with the. norm .,. · 
.·. ' '' ' ' ' ' ~ ' . ~ :- ~ \ : 

~""'' 

· !lull~:::;; Eill?iwll~~(r;)·;' 
> ···: " ' 

Further we use the Poincare-Steklov operators _ 

sj-.1 
: · n!(r.;)--.. n-:-!(r;),·. s,j-1.u =~, 

where v = (8zf8n) onTi and z is·a harmonic continuation ofu E ~into ni 
such.'ihat .. . . ·. ' . . . . . · -

fn.·\lz_V1Jd; =: o,. V:J e,.H~ff()?. . u ~.7;z. 
., ...... ~- , .. n ...... ,.. . .. • .. ·. · .. :::·-~.;:.·· - .... "~''' · . 

·Note that. tne operator Si.1 is continuous,. symmetric and positive, definite on . 
.~~KerSi~1 '[1]: ·. •·· : · I • . . ·· ."I.· ' · . .' ·· · · .·. · ·" 

·(s;-1
u, v)~cr;) ~ (u, si~ 1 vh2cr.), · (si-:iz,'z) ?i riu~·w i'' , '~-';·o···'· 

· : · , H1(~) . 
. :. :·: . , .1' ,: . . . 1.1 , ' .-: ,: : .• , •• ,.; 

fo~.aii,u, v E H2(ri), z E H 2 (r;)/J< erS;-1 • ~eside~ .. 
·,:-:j;c 

·KerS;-1 =·{u E }'i :' u = const~"x E ri}. 
, '•' ~ ·"' • - :. _! " • • ' •• ••••• :' 

:;According to [17] determine an operat~r A: Y -.·Y' suchthat· 

., M 

<.Au, v >=~EJ.t;(sj-lu;, v;)~cr~,~ vu·, v e. Y:\-· . .· .~. 

i=l 

.a 



Then a boundary equation of the DD-rriethod for the decomposition' deter
mined above and connectedwith thePr~blem Atakes the' follo~fngforxri · 

. [17]: . . . . . - ''; . ' ~- ' . ,-, '.· .· ' . : ' . . ··.' . . . 1 ·: 

Problem B. Find the function u E Y such that 

.< Au,71 >='(t/1,71), 'v'77 E Y. :(2) 

The operator A is symmetric and positive definite on the Hilbertspace_Y·. 
andthe equivalent norm in Y can be given as llull~ =< Au~u > [17].'Note 
that for the unique solution of the Problem.B we have u = w lr,_where·w is_ 
the solution of the Problem A. .' · · · · ·, ', .. . 

: \.i ~ ~ 

Let Yh C "y::be a family of a finite element spaceson f = U;f; determined by 
~ regular triangul,at~on of ev~ry f!l:cet of f!; and fOrresponding regular/amilies 
of finite element "spaces on f; in' sense of Babuska and Aziz [2). Let H be 
·a sub domain size, h be a mesh size and N ~ HI h be a maximum number ' 

.,. I ~ • 

of unknowns in one direction in 0;. Let· p = nk; k = 1, 2, 3. Then we have· · 
dim}h = O(p3 N 2), where p3 = M is· th~ total number of subdomains. 

. . 
We consider the Galerkin-type boundary element scheme: 
Problem C. Find the element uh· E Yh: such that · 

'I' ·-·· <Auh,77>=(1/1,71), .. <'v'77EYh. · . (3) 

Remark 1: Analogous constructions can be obt~ined if we de.fine the 
Poincare~Steklov: operat<>rs 8';1: by m~ans of "h~liar~onic" continuation.of 

. a boundary function for some fi~ite difference orfinite· elementschemes in 
Oi. Besides, the boundary reduction (3) can be also constructed for elliptic 
operators with varying coefficients in 'subdomains. In any case·one can n!p! 
resent (3)in a ;n_atrix form as .AhUh = t/J~ .. ,-. - : 

'·. ~ • ' ~ ~ ' .t • t ; ' ~· -~ < : ..,., i . . ~ ' ; '. l . ~ j; ; 

!-
r ~-' 

': 
· Recent developments .in pr~conditioning techniques for the effici~nt solution 
of elliptic. boundary value problems allow one to costruct a" farri.ily. of sym; 

·metric and easily invertible interface preconditioners Bo, '81 spectrally close 
to Ah such that for piecewise linear finite elements we have the following · 
eStimates for the condition'number·ofthe:preconditioned operator; s~ e.g·. 
[4],[5),[9],[19),[20],[21],[24] . . . 

te(B11Ah):::: 0{1 + ln2 (Hfh)),· -.-~(/301 Ah) ='0(1), 
J :;.- ~ 
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where the latter is .bounded indepe~dently o{ a substructur~ size H, a mesh· 
size h and. a number M of sub domains.:-· 

Remark 2. · In order to reduce the ~esidual Ahu~ - tPh in- (3) by. a fa:cto~ 
c = O(N-a), u > 0, using PCG method with the pniconditioners Bi or 80 ~ 
one needs ' , · , , 

Qc = O(p3Nzln4N) 

arithmetical operationsand 

QM ~ O(p3N2} 

space of computer memory. These estimates are based on the use of t~e al
gorithm with complexity O(N2ln2 N) proposed in [3] for solving the Dirichlet 
partial problems in sub domains. For easily invertible preconditioner 8 1 . we_, 
have 0( lnN lnc-1 ) global iterations of PCG method with Q(p~ N2~n2 N) 
arithmetical operations for evaluation of the residual Ahui! :-, tPh on any it-. 
era:tion ~tep~: For the spectrally equivalen~ op~rator of80-type we'have·only', 
O{l!lc..::.1) global iterations but' the inverting of 80 by means of PCG inethod: · . 
has the complexity of the order O(p3 N2/n2 Nlnc 1

); where.O(p3N2 lnN) is' 
the ~omputational ~ork for evalt1ationof B~tPh· ··· · 

2.BOUNDARY REDUCTION FOR ELLIPTIC PROBLEMS IN. 
COMBINED FOR.MULATION. ··-. . _ . . . . 
Let 0 0 _E IIf be a boun'ded-Lipschitz domain, f = BOo. We consider the 
foll~wing nonlinear problem of the combined method {19]: · 
Problem D. Firid the function wE H 1(00 ) such that 

. { tp(x,l \JW Daa~a871_dx + ,8(Se1ti,77)L;(ro) =. r t/J71ds, u = w lro, Joo i=t x, x, Jr1 · 
for all 71 E H 1 (00 ). 

Heret/1 E n-!(ft) on th~ closed curve f 1 C 0 0 ; {3 > 0 is a
1
given consta~·t; 

S'E1 = L...:1(l+ K) .. : Hl(f0 ) --. H;_~(f0) is the Poin~are-Steklov opera~or'' 
defined by the exterior boundary value problem for the Laplacian in nE = 

. JR3\0o and for.functions such that I w(x) I= 0(1 X 1-v), I X 1- oo, II~ 2. 
Here K and L are the integral operators of the theory of potential (for double-

' 
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and simple~layer potentials). Besides p(x,t) is.a given Lipschitz-continuous 
. and monotone function oft E [0, oo) for almost all x E 0 0 • 

· .Sinceu is atrace of an unknown function i.v on the.boundaryfo = 800.the ·. 
Problem D is.eq~ivalent to the nonlinear boundary operator equation on·.the' 
surface ro [19],[27]: . . . 

. Ru:: S[ 1u + Si/u = 0, x E fo, (4) 

"'"""~ 
. where S1 is.the nonlinear·Poincare-Steklov operator corresponding to a quasi-
linear elliptic operator on the domain 0 0 ; it E Ji~(f0 ) = {v E Ht(f0 ) : 

(v,go)L,(fo) = 0, K'go =go}. Here wehave 

2 .. -1 . ' .. 
!lull-! = (SE u,u)L2 (fo)· . 

H (fo} . . . . · 
, ' 

' ' - • ~ . . . '.j 

· The foll9wing · th_e<>rem holds tr~~ . . . . . . . . .. . .. 
THEOREM 1.[19] The,stati6nary Richardson method (with the, precondi~·· · 
tionerS.E/) for solving the boundary equatio-n (4) with the transi~ion.opera: 
tor ' · · · ··· · · · ., ' - · ·. · · ·. · 

un+t = ((i- r)i- rSESj1 )un, · 0 <--~ '$1, . n = 0,1, .... · 

converges· with the rate 
' ' • . .· :' i. ... 'l; • < ~. 

rqn. • . , 
ll~n- ul!~!(ro) $ 1 _ ~_IIRuo.IIH~!cro)' ·. 

where q =max (1...:.rm0 , 1--rM0)~~d the constants_m0 , M0 a~edefin~by. 
the following inequaliti~s: i · · · · · · · · · 

1 .• ' 
(Ru -. Rv, u- v) ~ m0(S£. (u-, v),u- v), . " 

' . 

I!Ru- Rvll~-!cro) $ M~(S£1 (u- v),u- v), 

for ali u,v E iH(f0 ). 

·One of the most laborious stages· of thi~ iterative 'process is the evaluation of 
the function 

,P =SE'I/J, x· E fo, , . '1/J ~ n-t(fo) (5f 

6 

J 
:7 

which is equivalent to the solution of the exterior Neumann problem for the 
Laplace operator. with '1/J.= (8wf8n) lro· ' 

Using the explicit representation S.B.=:(I-+ K)-1L one can iteratively solve_ 
by O(N2ln6 N) operations the equation ' i · 

(E + I<),P = J, 1 = Llj;, · 

by the panel clustering technique for multiplicatio~ of the stiffness tnatrix 
Kh on ve~:torwith accuracy O(N-1 ) [12] 'or by methods orientedon special 
surfaces [28] whiCh.need O(N3 ln2 N) arithmetical operations. Besides, there 
is another approach to the problem ( 5) which uses the hypersingular integral 
equations ofthefirst kif1d-[14],'[16] with rimltigrid solvers [13]. 

Now, we ·consider the new approach based on the boundary interface equa
tions of DD-method (see Part 1) defined on some artificial s~rfaces (coarse 
mesh) which contain as a part the boundary.f0 and form the decomposition 
of a space-extensive domain. 

3.MlJLTI-DOMAIN DECOMPOSITION FOR UNBOUNDED 
REGION 
We introduce an auxiliary domain nA, no E nA, nA = {xA.· :lx.~: I$ p, k == 
1 + 3}, decomposed into p3 =(2m+ 1)3 subdom~ins and put homogeneous 
Dirichlet or Neumann conditions on the poundary 80A: In par~itioning of 
{}A we choose the following imbedding domains: . . . . 

~j-1 c ~;; ~i = {x.~: :1 Xk I< a;, k = 1:, 3};· . r= 1 +m, 

~~ :: flA; ai-l <:::: aj, am. = p, 

and define the layers D; of the subdom~ins .as D; ~ Li; \~i-h . j =:: 1 ': m. 
The numbers a; describe the coordinates of the boundaries of the subdo
mains. So, the number of subdomains in each k-th direction, which define 

. ., •. ,.· ' ""'·3 ·' ' . : ·-' "·-''' ' 

the box decomposition of t~e whole domai~ flA = Uf=t fli as, desc~i])c;:<{ in 
Part 1, is equal top .7' 2m+ 1, see Fig.1a.· Then in each .subdomaill;\Ve intra:
duce a rectangular uniform mesh with "displacement by;h/2ji relatively the 
boundaries of subdomains [19] and assume that the number of mesh nodes 
in each subdomain.in each of the three directions is N. , 

'7 
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Because of the behavior of the unknown function· w at infinity I w(x) I= 
.. 0(1 x 1:~), I x 1-+ oo, we choose . 

.• :.:..:..'CNq . _ {. 2/v for Dirichlet condit_io_ns on anA . . (
6

) 
p- ' q- 2/(v +1) for Nuemann conditions on anA 

So, the computational work necessary for the evaluation of (5) based on the 
DD-method. (solving the finite. difference analogue of the problem (2) where 
the Poincare-Steklov operators are approxim~ted by using the standard seven 
point stencil on the introduced mesh (19]) is estimated by O(p3 N 2 ln4 N) (see 
Remark2)., · - · · .· · · ·. ··· · ' · · 

..,-,j 

. -N~w:·w~'~hoose the coordinates ai of the subdomain bo-undaries so that the 
n\linb~r p is minimaL For this purpose ~e require that average errors of the 
appr~ximate solutions in each subdomain are ahnost the same and equal to 
that in' the initia.I ;doinain no. . . 

.. .. •,; . ~ . 

Here we must do necessary explanations) First of all we suppose that for the 
solution w0 of the linear (or nonlinear) elliptic problem in no We have a finite 

8 
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element or a finite difference approximate solution·~~ such that 

llw
0

- w~llccn~) ~ Coh2
, h = 0(1/N) .·.• (7} 

\> •. 

holds. Then, since in the domain !1.4 \00 we solve the Laplace equation and 
know a priori that the solution is smooth then in each subdomain 0; the 
estimate 

llw- whllccn,) ~ llu- uhllqr,)! u = w lr,, 

holds. Using standard seven point stencil for ~pproximation ofthe Laplacian 
on the mesh with "displacement by h/2" we have the estimate [10] 

llu- uhllccr,) ~ Cih2 
(8) 

for the trace uh of the solution of a discrete Neumann problem in 0;. The 
constants C0 and C; in (7) arid (8) depend linearly on the second partial 
derivatives of the solution in the corresponding sub domains.· Here we suppose 
that the estimate (8) holds for the solution of the finite difference analogue of 
the problem (2) with J.li = 1 on the whole boundary f = (U;f;)\anA which 
is confi~med in numerical experiments (see Appendix 1). : · ·· · . · 

Since we require at infinity 

/]2 . . ... 
I w(x) I= 0(1 X 1-"), I ax~ I~ 0(1 X r.,·_2

), k = 1 + 3, I X 1-+ 00 (9) 
. k . . . • .• 

we define a mesh size in each of the three directions as' a function of e =I X I .. 
~ . 

~2 Co= h
2
({)[t5(0t"-2

, h({) = Co[h'({)jl+~ ~' (10) 

where the function S(e), e E (0, am} is defined by 

a(e) = ai, if e E (ai-t.ai], j = 1+ m .. 

Here the constant C0 ~ 1 characterizes the average value of the ~econd partial 
derivatives of the solution in 0 0 . We define the subdomain size Hi, j = O+m, 
for the layers D; and the numbers ai , (see Fig.1b) according to 

,...,. 1 

't+" a0 = 1, H0 = 1, Hi= Nh(ai-d = Coai_f 
a; = ai-l +Hi, j = 1 + m. . -. 

9 
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.·Then the followirig leinniaholds true · 
LEMMA 1. Let the sequence {a;}, ,j = 0-:- m, be defined by (11). If in 
addition · · ' 

am = O(Nq); q > 0, 

theri :we· have the estimate 

m < .G\lnlnN, 

where C1 depe:ids onlyon q, v an~ C0 • ·"' 

Proof: According to ( 11) we have the following recursion relation for the 
numbers a;: · ' · 

i .. 

. rr 9 : v 
. a;= aj-1 + voaj-11 e = 1 + 2' ao = 1, 

fromwhichit follows that a; ~ C0a~_ 1 , j = 1 + m. 
Because C0 ~ 1 then the following sequence of inequalities holds true 

C
···N· ·. q • ' rr " · rr1.f.9 92 . Cp(ml em-1 ( rr )sm-1 

= am ~ voam-:-1 ~ vo, . am-2 ~ .•. ~ o . a1 ~· 1 + vo 

where p(m) = !(8"'-1 - 1), and so 

m < C1lnlnN 1 

' 

In the above lemma the parameter v ~ 2 characterizes the behavior of the 
unknown function .at infinity, Co -.the average value of the second partial 
derivatives of solution in no and q - the type of boundary conditions on the 
surface anA of the auxiliary domain nA. 

From this lemma follows 
THEOREM 2: Let the parameters q, C0 , v defined in (6),(7),(9) be given. Then 
the solution of the discrete analogue of the problem {5) by the DD-method 
With decomposition of nA described in (10),(11) can be obtained using 

1-· ..• . -; : 

O(N2ln4 N( lnlnN)3
) 

arithmetical operations and 

O(N2(lnlnN)3
) 

10 

' 

1 

t 
I 

space of computer''memory. 

Of course all these ~timates are asymptotic ones and the real cost-effe~tiveness 
for not too large N depends on the concrete problem. S~~e numerical ex~ 
periments· for the exterior Dirichlet problem· which confirm the estimates of 
Theorem 2 are gi~en in App~ndi~ 2. .. · · · · 

4.SOLUTION OF NONLINEAR PROBLEM . 
Let us consider the incomplete~ nonlinear (IN) formulation • [18) for the ap
proximation of nonlinearity which is well suited for efficient _evaluation of the 
vector t/J = S'[1uh in the iterative processes f6r~solving.(4). This problem 
is equivalent to the solution of the interior nonlinear Dirichlet problem in 
no = n,.. u n1 for the same box-type, decomposition no ~. u~ln,. of the 
domain no, see Fig.2. . , . 

r: 

Q~ 
J' • ii' 

Fig.2 
') ~-

Let us suppose 

·. p(~,l Vw D= { P(t V~ 1\ x; ~·n, ... i,: 

li 



where Jl(t) > 0, t E (0, oo) is a given function with the properties 

Jl(t)t- Jl(r)r ~ m(t- r), t ~ r, m > 0 
I Jl(t)t- Jl(r)r I~ M It- r I,· M < oo 

The IN foimulati~n for the Problem D (for f3 = 0) reads as follows 
Problem IN. Find the function wE HJ(fl0 ) such that 

Ll'.k f Vw,VTJdX.-' f 1/J(s)TJ(s)ds = 0, VTJ e'H~(flo). 
k hi kl . ~ . 

Here the constants Jlk are defined in flo~: according to the formulas: 

Jlk = Jl(r.~:(Vw)), r,~:(Vw) = ((mesfl.~:)- 1 f I Vw 12 dx)l, lo,. 

(12) 

where Tk is the average value of the module of the gradient I Vw I m 
fl.~:, k = 1 + M0• If flo~: c fl1 then J.Lk = 1. 

The equation (12) has the ~nique solution and can be transformed to the 
equivalent uniquely solvable nonlinear boundary eq~ation of the type (2),(3) 
with nonlinear strongly monotonous and Lipschitz continuous operator AIN 
defined on the union of the internal boundaries r [18): •' 

<AINut.,TJ>=(1/I,TJ),. u,.eY,. .VTJEYt.~ (13) 

In order to reduce the residual by a factor E: = O(N-u) using the stationary 
Richardson method with the linear operators At. or 8 0 as preconditioners 
(which are defined in Part 1) for solving th~ problem (13)one needs O(lnN) 
iterations [18). Here N is the total number of unknowns in one direction in fl0 • 

Consequently the above approach needs O(p0 N 2ln4 (N/Po)lnN) arithmetical 
operations, where p~ = M0 is the total number of subdomains, provided we 
use the implicit finite difference representation for the Poincare-Steklov op

·erator in parallelepiped-type subdomains flo~: [19). 

Remark 3. Here we have considered the two-domain reduction (4) for 
the combined formulation (Problem D) where (for_ the decomposition m;1 = 
flo u nE) evaluation of the element SE1/I, X E ro is performed using the 
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approach described in Part 3. Besides· one can solve the Problem Din fram~ 
work of box dom'ain decomp~sition method for the auxiliary space-extensive 
domain flA :) flo, .Le. i the interior (i~ fl~) and exfef.ior (in' flA \flo) prob
lems can be solved "simultaneously" by using the global iterative process for 
solving the boundary equation analogous to ( 13) and defined on all interior 
boundaries oqubstructures in flA. . . . .. ;-

T~ conclude this 'paper we ~ote that the described above approach for solving . 
exterior elliptic problems with 'a gh:en behavior of the unknown 'function at, 
i~finity ·can be treated as s?me.pr,ocedu~e inverse to the gri~ ~.efinement ~n. 
the coarse mesh level. So for the appropriate choice of the ",grid enlar.ge-

• , ' ' ' • 'c " ·- ~ 

ment" for an adequate approximation of the solution at infinity we can deal 
with the uniformly bounded (with respect to the fixed parame.ters q, Co and 
v) number of subdomains, independent of mesh sizeh. 

Acknowledgement. Authors are grateful to Professor W.L.Wendland for 
helpful suggestions and discussions. 

APPENDIX 1. 
Here we present the numerical expe~iments ·demonstrating the estimate (8) 
for the solution of the finit~. diff.E!!c::nce analogue of. the' problem (2) on the ' 
whole interior boun~ary.r =:= (U;f;)\8fl .. For ~the simplicity .. we C()nsider.,, 
the Dirichlet problem for the Laplace equation in the unit square fl c m2

, 

decomposed into 9. substructuresH =Ui iflii .with the subdc:>main,size H.= 
1/3. In each s~bdomain· ;;e introd~ce a u~ifor~ mesh with the mesh size-~ .. :;=, 
H /Nand" displacement by h/2", i.e. the edges of each subdomain are located. 
in the middle of two layers of the.corresponding boundary .nodes. Using the 
standard five-point stencil for the approximation of the Laplacian in O;j and 
approximating boundary values and boundary conormal derivatives'on 80;j' 
by the midpoint sums and differences, respectively, we have the:e5timate; 
(8) for sufficiently smooth functions on Oij· Table 1 presents the results of 
numerical experiments for the test function 

w(x,y)::::: ezsin(y);. x,y E 0, 
,·:· 

where u = w(x, y) lr is the trace of the test function on r, u,. is the vector 
approximating u on the int~oduced mesh. 
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APPENIHX 2. I~ this append.ix we demonstrate the technique for solving 
the exterior problem (5) described in Part 3. Since the expressions (10);(11) 
have quasi-one-dimensional form, i.e. the asymptotic behavior of the param
eter m uiide~ the' increase' of the number of grid unknowns N is independent 
of the; dimension of the problem, we consider the two-dimensional case in 

< -~ 

order to use as much sequences of grids a5 possible to observe the behavior 
of the parameter m. 

As a test,function we take 

which has the asymptotics 

.2xy 
w(x,y) = (x2 + y2)2' 

w(x,y) = 0(1 r l-2
), I r I= .Jx2 + y2-+ oo. 

(14) 

at ·infinity, and consider the evaluation of the trace</>== w(x,y), x,y E f 0 , 

by_ the given conormal derivatives t/J = ~~(x, y), x,y E fo. 

I , 

Using formulas (11) we calculate the locations of the boundaries of the sub-
domains: · 

ao = 1, a1 = 1.7, a2 = 3.7, a3 = 13.3, a4 = 137.1, ... · 
,1' 

(the constant Co f~r the test function can· be easily calculated) and choose 
the number in according to the criterion 

am-1 < p 5: am, 

where p describes the location of the exterior boundary anA. It is calculated 
according to ( 6) by 

1 
p=-N 

Co 
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< < ' 

forth~ homogeneous Dirichletb~undary conditionson anA. Notethatac~. 
tually _for the location of th'e boundary _anA holds · 

I 1 2 

P = (CoN)'S '' \ .(15): 

since the component ofthe error of the solution on r 0 which ·depends on the · 
approximate boundarY condition on anA decreases as . : ' I ' ·• ' 

0{~(8~~-,ro)); r(a~A.~o) = inf I X- y,l, ' X E anA, y 'ETo/ 
. ,, ' ,, ., ' ,_,,. ;k 

Table 2 presents·the ~e8ults ·of numerical ~xperiments, for the· test fuhcti~n 
{14): Here N is the number of rriesh nodes in one dire~tiori in each subdoinain;·. 
p is tlie location of the exterior bouridaryOO,.l evaluated by (15), IT is the 
number of iterations ofthe PCG method with· the preconditioner from [19] 
to decrease the initial residual 10-s times. 

m .p N II</>-:- <f>hiiL,(rol IT AR 
2 3.1 . 4 0.18 X 10-l 4 1.4 
3 5.0. 8 0.56 x-Io-2 5 2 
'3 8.0 '16 0;16 x 10-2· 5 '4.3'• 
: . I , 

0.39 X IQ-3 3 12.7, 32 6 9 
4; 2<U -~64~' • 0.95 x 10-'4 • 7 :10 

'.: 

.. 4 -32.0 i28 
' ' ' -4 

.8 l9 .,0.24 X 10 · .. 
~ 

i: 

N~t~ tb'~t ~ po~sible. di~advantage bf the meth~d des~~ibediri .Part 3 i~ the 
existence of the subdomainswith a large aspect ratio which, in'gen.eral: can 
decelerate the convergence oC the· DD~algorithm.•. Here we do not analyse 
the 'effect· of this ·geometrical factor on convergence properties of-iterative 
processes. Somedisc1J,ssions'of that problem can be found .in(?], [22]. The· 
last column ( AR) in Table; 2 'show that· we have no _crucial deterioration of 
convergence propeiies'ofthe DO-algorithm from (19] with the growth of the 
maximum aspect- ratio (AR) of the stibdoinains.' . . 

APPENDIX 3. We calculated the magnetic field 'distribution ofthe dipole 
spectrometric magnet [29) usi~g the incomple,te~~onlimiar formulation [18). 
The domain of nonlinearity. has a step-type form. The. basic' de~omposition 
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of thedomain·of non~riearity n,.. i~to 12 elements is'presented in Fig.2. 
. -· . ' .. . ;, 

We present the computing times tk, k = 0, 1, 2, 3, on the computer with 5 
mln.opfs. for the solution of the nonlinear problem on a sequence of four grids 
with a difference of two consecutive approximate solutions e = IQ-4 • For 
grids (N:s:i.,Nilk,N~k)with N:s:k = 12x2k; Nyk ~Nzk = 14x2k, k = 0,1',2,3, 
the finest grid has the dimension (96,112,112) and the corresponding comput
ing times turned out to bee to = 1min, t1 = 2min, t2 =. 8min, t3 = 34min~ 
Note that with .each step the computing time raises only hy thefactor 4 (and 
not 8) because we solve the boundary equation defined on the interior bound
aries ofsubdomains. :To achieve th~ accuracy_of the solution ,in aperture .of 
the magnet to be .10-4 we have partitioned the domain nA into150 sub do
mains. ni such that only 48 of them.· contained _the domain· of. nonlinearity. 
Thus ~e hav~.only 48 "nonlinearyariables'; Ti· · · · ·. · • · 
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