

1. Introductlon;f

’ A qu1ck development of computer systems -and: networks,
p1a1n1y v1s1ble 1n the, past years, has 41ncreased both a .
'computational power and the scope of‘computers usage,'which
"caused 1ntensification of researches for methods of creating
. concurrent software in distributed networks i

ii 0w1ng to the carr1ed researches, a number of concurrent
»programm1ng languages have appeared Some of them got more
,popularity cons1dering e1 her, an ;1nnovatory 'concept (for
. example . CSPL [1]'~,. 210 aff possibility to " be iused
lpract1ca11y (for example Concurrent Pascal [3]. Modula’[412“
Mesa [5], Ada [6], ARGUS[13]). r ‘ g
: The analysis of the existing programm1ng languages carried
4:in s, 14] shows that most of them do not regard a specific1ty

f,of computerA local networks, where hardware configuration
undergoes frequent changes Particularly, these languages do»
;notvsupport the ' (dynamical) modification of theifistributed

: systemj -modules allocation . without rthe;‘/necessity B of\‘

recompilation of: the whole»concurrent program. The problem of.
multicompilation, . in the .case of. heterogeneous hardware.,~

too,

‘architecture of. particular nodes, is not considered\

Inconvenience ‘mentioned above is the reason: for undertaking a.
°/work con;-a: system -for...supporting alconcurrent)software
"‘1mp1ementation for= distributed systems COSID (COncurrent
‘Software . Inplementation for Distributed systems) [9]

' The basic ddea of this system is.a two level model of*

generation of . concurrent. software wh1ch includes..b,'A 2
7, compilation level,. which supplies the COLNET language.
,:(COncurrent Language for .. NETworks)[lO],' appropriate for™
. creating concurrent“ programming An ;networks,’,in _the.

compilation: . level . software .. modules..‘a defined and

:d_separately_compiled, ’*ih‘ o s ,glx,l-.‘

: wlnkat RESTETYY kv ,
WUTERLMEL UCCARYnREuEY

= allocationrélevel .on ASNET*:éystemﬂfpéfféfméf;afi

‘nodes ‘6f‘

'kwhich;

computational

'allocation in- p01nted

software «
modules generated from patterns compiled on the previousf‘f

“level.

The whole information wh1ch serves a control of mutual%

relations between modules being comp11ed 1s maintained 1n

-structure called environment description A spec1al module of‘

_the compilation level (called EDMM - Env1ronment Description
'Module Manipulator) [11] is

‘env1ronment description 1nformat10n

respons1ble for
The' EDMM allows one also,

nsoftware,

AN ST

ma1nta1n1ng‘,;"

to,,insert resulting modules* descr1ptions"to

env1ronment descr1pt10n w1thout any ‘need’ to recompile them
Created th1s way, data base for the set of modules, which’ are
currently complled is a br1dge between the compilation 1eve

and the allocation leyel

of model

of’tsoftware: generat i

: mentioned before 4
" ‘of fthe
introduced in COLNET language in order to solv

paper fisﬁrthe\'presentation ,df:*ﬁés

o separate compilation “in’ such “a’two’

~level concept.

2. The Elements of COLNET Which' Enable ' the ' Separate.

o A unit of compilation in the COLNET language LiOT“

is ‘one
Of two modules."‘ s

PN

= 'module;1 £ ftype,“"defined ‘as a certain“*dataygf}

’d set of operations on’ this:structure, whichfvgg

manager‘

structure

"is an extended conception of Hoare mon1tor (121

ll' module “of proceSS “type, which can “call any “of” entryﬁf‘f

procedures, generated ‘from a‘certain pattern

.

udeclaration made in the follow1ng form.

,other th1ngs,g

ipossible’, o

fgenerated manager,‘used in the course of allocation

wobligatory ‘that a unit of

;1nformation for another un1t of ‘compilation

i princ1ple
’mspecificationsb .For. .example, .
a1nstrument toidefine an. ;order- of : compilation i:“
Mwith".
, in ~the:
- including this. declaration.:[7].

'fex1st

.refers to,

of demands. (a-

1,The call of manager s entry procedure in a given unit has the,
. following. syntax:. : : .

3

T = oot ok s

,The loc _nhame: should be assoc1ated w1th the unit pattern name{

:from “which manager supplying the,called procedure w1ll be
generated. It

is made w1th the help of external modules

*ﬂegrezuajjgloc_name>:gunit_pattern~name>[=§g19bai;namé§l;7”

“(
B R I

Referring to the manager by a local name allows one, among
to.. call procedures of - two different managers

generated from the same pattern of a: p01nted un1t uIt is also

spec1fy global _name" assoc1ated the

v‘AS general rule,f programming languages it‘:is

compilatlon wh1ch ‘supplies ,an‘

is;translated

_before’ ‘this ‘information is used ‘This principle forces one . to

accept ‘certain‘order of ‘compilation of particular un1ts This
‘ of ,their
in: the Ada language the ba51c,

arisesrrifrom;h,context ,relations,

' audeclaration
The specification of .each. comp1lation unit. mentioned

"with" declaration :must -‘be. compiled bef r'”the unit

T

In the COLNET language, the concept of a unit superiorkto

‘a module ‘of either ‘the manager ‘or‘ the process type does: not

Any instruments. imposing>the order of compilation do

’.’not exist either. Compilation of units may take course 1n any<
»1order, but Fif~a- unit, which the ;unit, compiled at the moment

has not been compiled .yet;: “then 5theiicompiler

“creates the"so- called pseudOfpattern,;which'containsgaglistw

1fistiofmprocedureScand,descriptionsﬁof:typel

' declaratlons together with” their actual parameters)
course of comp11ation of the unit
already been generated, a test of its~consistency with the
pattern be1ng currently constructed “is 'performed.

On the hand, the that an

descr1ption conta1ns a manager pattern[

other fact, :
which the unit being

'comp11ed refers to, enables the compiler to control fu11y the

consistency of the correspond1ng lists ‘of ‘actual and: formal-

with regard “to both, their’ and.

declarat1ons.

parameters length type

Every inconsistencies deliver some. information to a- unit

which is compiled and according to system-

requirements, there takes place “rejection ‘of ‘the ~already

'generated pattern “or forcing the’ pattern of th1s module

'generation. If the prior 'is the first ‘case, ‘then’ usually a

correctlon of detected m1stakes and” repeated’ compilation:of
’the un1t is performed Instead
pattern, wh1ch does not comply w1th the expectatlons
) from already compiled ‘modules
aenv1ronment descript1on,

3in the base.

"""“Consequentiy to secure the consistency of ‘compiled modules

fﬁihffhé”bdéél*é1i module patterns;

fywith the comp11ed module ‘must be replaced with their: pseudo—'

ﬁ’patterns.

For example ‘the above situat1on ‘takes places during
:the repeated comp11ation of’ the ‘module’’ which. ' is’ be
changed, -

if :for example the 'number ‘of - parameters .0of some
Cprocedure has changed - i TS ‘

v

ELae

‘which "
'4going to be inconsistent with it and:must-be -recompiled. If,
“however, changes’ in the ‘unit had.not.influencedrthe ‘feedback,
‘the algorithm . ‘had- but
specificat1ons o3 (parameters “result) - 'aduﬁ

“All‘the"compilation"unitsf

been .changed .

and’f not,: -
recompilation would not have 1nf1uenced the: other units;

~

In the
of which the 'pattern has

environment

g

designer's's

1mp1ied
‘i's ‘forcefully' added’ to fther'

then«this disturbs*theiconsistencyh

which “are “not! consistent-

invoke - thiS‘module'are;'

. procedure's
then

T if a descript1on -of ‘a unit,\f

DR
e

~allocator to find,

‘0of, the module generated . from a given. pattern

pattern contains:

(b} limports

3. The Logical Structure of a Unit‘Pattern~

Beside import and export descriptions, which are essential”

for a contrcl of invoking correctness, a descr1pt1on of the”

compiled unit must include

1nformation, which allows the

weather in the given node the allocat1on
is. p0551b1e

Consequently regard1ngvall,attr1butes,
the COLNET the

which anywmodule in:

language;'should have ~description of.:.its.

fa) module 1dent1f1catlon wh1ch contains
..~ bpattern type (manager, process, pseudo))
1dent1f1er of comp11ed module,

defined as obJects of

r,pattern name, i.,ep

= global names

the« process,tor,

pmanager type, which are.. suggest1ons for modules names,‘

—,wh1ch may be generated from the g1ven pattern in the:

,‘course of,allocation,

correspondlng to the compiledg
1n the sentence of version or of exclude,

—~computer systems names.
:ﬁmodule where
,.these names characterize nodes,
 the

poss1ble,

in wh1ch allocat1on‘of

g1ven module is (vers1on)» or. isp'not iexclude)

- name of the file, wh1ch conta1ns result module.
- size of the result module,

—‘relat1ve address of the 1n1t1a1 point of the code,

- l1st of the names. of importers of the given module

description, containing the f61idﬁihg_

' ,1nformat1on E 7 _ R ﬂ; , “7)“ :

- local name of manager, whose entry procedures are called
>kh by currently analyzed module,k ’

~— name of pattern of manager mentioned in the last point

2 11st of invoked entry procedures and description of the

actual parameters,

(c) exports descr1pt1on, wh1ch conta1ns.;
/',-‘list ‘of entry procedures of the compiled manager.‘
A—;together with each entry procedure oo

- list ‘of po1nters to def1nit1ons of types of the formal

parameters,

- file name containing interface module.

when a currentlyi
which 'do not’ “their
is finished® their

As have been mentioned in the case,

compiled unit - invokes modules, have

patterns-'in the base, after compilation

pseudo-patterns are inserted to the environment description.’

The structure of the module's pseudo-pattern is alike, but' .

- contains only description of demands to call procedures,
which are defined in the calling unit. RS

In the presented model of the separate compilation of the
: COLNET language the EDMM ‘module
Module Manipulator) [111
module\contains-a set’of'procedures.
file'{th

(Env1ronment
-This
in-a disk

‘i's of an essential importance.
‘which. store’

‘'descriptions = of ° patterns

acquired during previously performed comp1lations of modules;

of the software env1ronment wh1ch is to be designedv

T

4. Co-Operation of the Compiler with EDMM

The basic"bperations vperformed on a- system env1ronment
description in the course: of compilation are. ,
Wa) getting of a module descr1ption to the operating store,
(b)‘maintaining”
L file,
(c) test
' Acompiled module together with their formal definitions

(modification)

of consistency. of

maintained . in the description of'the module exporting

~them generation ra pseudo—description for those

'\Iprosedures,, based on. a description of types of actual-
: parsnaters,. .)

Description -

and . pseudo—patterns,_

‘of module description in .the

limport procedures byicurrently\ .

Y SRR e LR SR f;ivj“f"ﬂg;'3“?‘~“f'
“{d) -test ‘of the conSistency ‘for’ procedures ‘exported by'°a
currently complled module " together with their: pseudo-

'descriptions, generated:” during" compllation - of " the

1mporters of the given' module.: ;
The file containing the system environment descr1ption has
a specific 'logical- structure and-
control of the EDMM module.

operat1ons

is processed only- under’
This file must be open before anyd
. on the env1ronment descrlptlon are performed
R. This is realized by the procedure openedmm ot

| .

‘J‘ “ int openedmm (xname)

i
name of "the, file,

environment descriptionx*/

char *xname: ‘~/* which stores the’

which
‘if it has .
not. existed in the system yet. At' the beginning of this file,:

. This procedure ' opens the already ‘existing file;

stores the environment description or ‘creates ‘one;.

o parameters defining the contents' of ‘the file are placed:

S Npaae

- pointer'to the description of the first. module (theylare
arranged'lexicographically’with regard to identifiers).

- pointer ‘to the module, which ‘is ‘currently: compiled

‘é -‘pointer to' a' global list of definitions ‘of the data types

- p01nter to- the ring of free areas- (released and taken in

the course of operations performed on the environment‘

A

descript1on)
The operation of closing of the file storing the system
environment description isfirealized by ‘al non—parametrical

‘ procedure. closedmm() When this file has been closed no:‘
operation ‘dealing: w1th the f1le containing the env1ronmentd
description is permissible. ’

‘Most " of

7description refer to a specif1c

'operations' performed 5'on"”the' environment

module - created.‘modified}

or verified under control of EDMM,‘to reduce the ‘number off

a3

parameters of procedures of the - EDMM module and facilitateE

automatic .processing of .the .environment description- base;, an

obligation “to ‘define a . work context :(of the ‘used module

description) by programs using. the ‘environment descriptionr
"has. ‘been " introduced. The . definition:- of . such a context

consists in giving module name, its type and a specification
of a way of access:to its description - ‘this operation:is
realized by the procedure with:
-int with (who,‘wtype, class, -bp)
char *who; /* module namex/
‘jht wtype,. /* module type: process, manager*/

op; - ../* po: create or usex/

e,Procedure with - creates (create) or.-finds . (use) in the

'file‘the module description: who, and remembers. pointer to

it. Hereafter the module. who is accessible for processing:

Ipermissible))operations,on,it. The result of the procedure.

specifies the way, which the procedure has been realized,

where:
—,result > 0. - means.a. correct. termination of the procedure
| and informs, . that a description of module
which has. the. statute: normal . {pattern} or
R - pseudo (pseudo-pattern), . :
- ‘result<= 0 - means an .erroneous performance; of‘ithis

-procedure (usually lack of place. in the

system . disk,: preventing creation .of the-

module description) .

- Considering, the . meaning of the full system environment

description for the correcthess of all stages..of the
definitions built by the COSID system, and particularly -to

secure thel correctness of an independent‘,compilation of .

modules ‘= as. a. principle foundation is | assumed, that. all
descr1pt10ns stored .in. each base contaxnlng such descriptions
-are fully consistent

e

,This procedure has the following heading.hi

\value of the op parameter of the verify procedure.“ ;

Because of thlS foundation 'jall operations performed on .
the, environment descr1ption - should . not, allow n.any’:

;1ncons1stency,.in the base describing environment to happen.
' This concerns, first of all operations of . adding new modules

descriptions and canceling the old ones. That is why while

such operatxons are performed a verification . of the full'

:cons1stency of the envxronment descriptxon base should’ be

done : Practically such -a :verificatlon concerns only those

descriptions, which _ are somehow related to the nodule adding

to the base, or’canceling

. Ver1fication of modules add1ng to the base is realized by'

procedure ver1fy 'y which tests the consistency of the pointed
module with the other modules inserted in the environment
,description o ’ o

1ntiverify(op. whd;hpr)

,Jnt oP,.. . /* op 3,soft hard*/ :
- pr.; /* pr : print nonprint*/
'war *who, A who : name of verified module*/

6 P’

Verification cons1sts in.‘: » .

(a) test the consistency of calls of all procedures imported o

by the who module with their formal definitions, placed
‘Jin the modules, which export them,, o S

‘k(b) test the consistency of the definitions of procedures

‘,exported by the .who module with demands of modules,
which 1mport them._ i
A new version of module description is usually added to the

global list of modules. replacing, in case of. need, already

y exxsting version of description or pseudo description, if any-

inconsistency of the definitions of procedures exported ‘or
imported with the» actual definitions 'placed in the base

’ happens,‘then EDMM takes a decision,'which depends ‘on thel

If this parameter has a value of: '~

'soft‘" then the pattern descript1on is not added to- the

“base,' :
ihardxsvthe pattern is added to the ‘base" the forceful way,
o wh1ch»means, that all patterns placed’in the‘base‘as

- well:as”any“ones'inconsistént with demands of the
who' module will‘be'savedﬂin an %uxiliary list of
wrepfaced “?by’

‘patterns, and"" pseudo patterns,

consistent w1th the” other descr1ptions rema1n1ng ‘in

e

ﬁthe base

:beside -the global verificationh at 'the mgment} of ‘either
adding or cancel1ng a possib111ty of performing a partial
verification of the elements “of description of the given
module {pointed by ‘the with procedure) ‘is accepted.‘ This
concerns - particularly the ‘ cons1stency “of ““the formal

definition of a procedure exported by ‘one module,”with its

assumptive def1nition, constructed on the base of ‘the call in

a module import1ng this procedure."”

'at"-\[ll'!k!.,s’.}?urp‘?se ,servésl,a’ procedure compatible: "7

» Jnt compatibility (px,:t ename,:impname) s
Jnt t' i ,,/* type of the structure being compared*/
fcﬁar *ename, 'J/* procedure name*/ ¢, i -
‘ >*1mpname.vﬁy\/* name of the module, whjéﬁ‘éxé;Ets the

procedure*/

,i,struct mem *px /* address of the structure, wh1ch descr1bes

A(the call*/
.They,task _ofi the fcompatibile procedure 1s’ to test ‘the
consistency of types of all actual parameters with the1r
formal definit1ons, specif:ed in‘Jhehmodule, which exports
them. Cons1dering this the compatibile p'ocedure finds the

description of. “the ‘importer pattern impname (if such ’a

10

its pseudo pattern is™ created).,f

*idescript1on does not ex1st
[f1nds ‘the descr1pt1on of the 'ename procedure -(if such’ a‘;
‘descr1ption ‘does” not exist then creates a.: pseudo description
based on the descr1pt1on of: the call. of this: procedure 1n “the
,currently cop1ed module) and afterwards tests the con51stencyf
of the® formal+ descrxption (or pseudo descr1ptlon) w1th thek
1descr1ption based on ‘the: description of ‘the" call of ‘the enamer

o procedure 1n the currently cop1ed module

5{ Summarv , ,
= One of’ the pr1nc1ple foundations con51der1ng a system of‘
?‘generatxon of ‘the’ concurrent software for ’local networks‘f
i\COSID was to separate a’ stage of generat1on of particular‘
“software’ modules , of" generat1on the concurrent system as a’:;
J;whole. ThlS 1dea has led tor ‘a de51gn and 1mplementat1on of}i
the separate compxler of the " COLNET language,fwh1chfuses‘a,*

ffset of procedures for‘ software - env1ronment serv1ce and‘

COntains descriptions of patterns of compxled units.: e
o Moreover,' fthe set “of descr1ptxons “of: patterns of " the
fcompiled modules composes a- base the allocat1on system to?l
work’, allow1ng ‘the- generation‘ of the concurrent system :f
4;Independent compilatxon ‘of “'separate modules of the; currentlyF'

¥?des1gned concurrent system,f as‘ well as the possibil1ty of -

i

i3ver1fy1ng the whole system repeatedly w1thout any: need for;j

foull recompilation, allows one! to increase . the’ eff1ciency of

fjthe process of des1gn1ng ~and 1mplement1ng,=the;,concurrent‘f
'“software Particularly Valuable is'fthe:'poSSibility iof

“,verifyxng V1ncomplete N concurrent ‘ system,; includ1ng the,i

'¢7:p0551b111ty of getting information concern1ng demands f f

"r1mported procedures of lack1ng modules

6 Referencesil

7,{[1] Roper T J : A Communicating Sequent1al Process Language_
B :and Implementation, Software Pract1ce and Experience,;“
: ﬂvolbll, (1981), 1215 1234. - L :

‘1,[2]: Brinch 3393?9,;97 Distributed Processes.~ a concurrent,

_ programming concept, Comm of ACM, 21, (1978), 934-941.

1 ;

(5]

Brinch Hansen P.. The Programming Language Concurrent

e f':'tPascal IEEE Trans, on. Soft, Eng. 1, 2, (1975).
{417

Multiprogramming, Software Practice And- Experience,’

‘f?ﬂvol 7, (1977) 37 -52.:

Hitchell J: G Messa Language Manual, Report #CSL 79 3

<t Xerox Corporation, Palo Alto Research Center, . .-

-

';Programmers,, Prentice Hall) International,‘; ?Hemell;

(61

California 1979.,~,m:'“’, . : L

Reference Manual for Ada Programming Language,/wx
ANSI/MIL STD 1815A—1983..74 i - = P
Ian C. Pyle. The ADA. Programming LanguageA— A Guide for

... Hempstead, Hertfordshire, England

(8]

Kotulski,L,, A Too. Level Aproach To. The Implementation,
« LANs' Software, in preparation

(91

‘ distributed Systems, Reports of _the Institute of Computer

cScience, Jagiellonian University, Cracow, 1989

[10]Kotu1sL1 L Rosek J.: COLNET - The Language Description,

[12

(13

J*Reports ysofv ,the. Institute -0f 4Computer:vacience,f

Jagiellonian Univer51ty, .Cracow. 1989.

Software Environment Description,@,,Reports ., 0f . .the

R

“Institute. of Computer Science,:Jagiellonian\pniversity,

i

- Cracow 1988 4tiw~ﬁ,f;n,;,ﬁ(,_4;\a¢”“;, e e
]Hoare C Y W | P Monitors ,¢an;ﬁoperating1,systemsv
structuring concept . ,}y;);“g{;?s’ ' ‘
Comm. of ACM; 17,1 (1974), 549-557. - s S S TRt

]Liscov y,B.:“, ARGUS Reference ::Manual. } Programming

Methodology Group. memo-54, MIT Laboratory for Computer
Science, Cambridge, MA, o Marth 1987. L N

1[14]Kaplan S M., Goering S1. K.. Visual Concurrent Object

Based Programming in GARP LCNS pp. 165 180.~P'.””

- Recelved by Publlshlng Department ;
R ".on.October" 1, 1991.v : o

12

Wirth N.. Modula e A Programming Language. For Modula.f1

COSID Rt COncurrent . Software : Implementation For-

[11]Kaczorowski Wt Project of the EDMM module maintaining a :

4

