
COOfilllBHM
Otib8AMH8HHOr

MHCTMTYT8
RABPHbiX

MCCIBAOB8HM

AYfiHa

E11 91-432

L. Kotulski* I W. Kaczorowski* I J. Rosek*

THE SEPARATE COMPILATION

OF THE COLNET LANGUAGE

*Institute of Computer Science,
Jagiellonian University, Cracow, Poland

1991

. '

;-~,

'•

ul ski t. a. o.
parate compila-
f the •••
-432·

_,.;

-C'l'IITyr RAePftbiX HCCJle.llOBaHHH Jly6Ha, 1991

..

!
i

1

I
l
l

1. In t reduction

A quick development of computer systems and networks,
' . . ~ ' f • '

plainly visible .. in the past ye~rs,. has increased both a

computation~i .power, and the seep~ of compute~s·· ~s~ge, which

caused intensifi~ation:~t' researches.for ~eth~d.s.of cre~ti~g
concurrent software in distributed··'network's.

. Owing to. the carried. researches, a number of concurrent
~ " ' -'>

programming· languages have appeared. Some of them got more

popularity consid-ering' either' ~n·' innovatory concept.' (for
· • ~,, . - r,,' ~ { ;~r · ·' ; , ._~ , · ~ :_' ',. .

.example CSPL. [1], DP [2]) or possibility to be used

p~actically (for' example· c~~current Pascal :[3l I Modula r4]',
Mesa [5j, Ada .[6] ·, ARGUS[13]) .

. The a~alys·~~ of 'the ~xicst:i.ng p~ogramming.\anguages carri~d
in [S, ~4] shows that most of them do not r,egard 'a ·s~e~·iii~ti ty'
of . c~mputer"'i~cal" n~~wo.~k~, ··~he~e · ti'ard~are configuration

' - - -~ ·- -'' ,.._: •. . . .:. -·~ .~ . " . . '

undergoes ·frequent changes. Particularly,· these ·.languages do.:
• • • • • ~.· .>< •· • •• ·, i, • .w;_,~;• , 1; .~ ".":) : ~- \ ~:

not support the (dynamical) modification of the distributed

system .. modules allocation without the . ne~·~ssi ty ·~·f
recompilation of the whole concurrent program .. The problem·of

multicompilation, -in the case .of heterogeneous· hardware
." . . -'; •. ! . . - . ',.; • ·.;,

architecture of particular nodes, is not con~id~~ed; too •.
\ ,.;:•/"' { -·

Inconvenience mentioned above is the reason for·undertaking_a

. work . on . a system for ,supporting __ a . concurrent software

· implementation for dt~~rlbut~d sy~t~~~-· cos~:io .ICOn~~r~ent
I .. . ~ :·

Software Implementation for Distributed systems) (9].

The basic idea of this system. is a two level .model of·
• ' ~ 7 _-•••

gene_ra t i OI} of concurrent software which includes:
• ~ H , ; '• •

compilation level, w~ich suppl_ ies ~ll,e C_~L~ET language

(COncurrent Language ·for cNETworks) [10], ·:appropriate for
• • • ~'' ~ o• - -· ~ < ~ .• -' • • •, - r•

creating concurrent programmli1g in networks, in the

compilation level

separately compiled,

software modules ·are defined and

~-?---·----~ . .
~ f~t··· .;.,. - '''l ... ,~! ~i u .. _!..·<~·- ·.~~.';·~t1Lt:, ft;:-..h"!•.):.
.~ «~-•!.;-~·':. ~ !! ... · ~:.r t\' ::- . •, .. ,-::u .• T. '''·' ,,, ;!.,SJi.!.l~ . ·
~· . '
"; ·-L:- 'I' ~'T'J::''fA $; ~ .· b~r!'~J,~··lu, ;;;;.rtrt y ..
. ..__, .. · ---

allocation level, .on which ASNET system •· performs

allocation in pointed computational nodes of software

modules generated from patterns compiled on the previous

level.

The whole informati.on which serves a .contr'ol of mutual·

relations b~tw~~n modul'es being co.mpiled Is ma'i.ntained in a

structure called environment descri.ption. A special module·of
. . . • . . • •. .J•• ·__ • '·. :

the compilation level (called EDMM - Environment Description·

Module ·Manipulator) [11] is ~esponsible~ ·· f~~- maintaining

envi.ronment description info'rmation. The' EDMM ~llows' one also

to insert resultlng modules descriptions to'c software

environment description without ar{y need 't6 'r:~c'ompiie th.'efu;

Created this way, 'data base for the set of modules; which are

currently complied, is a b~idge'between th~~co~pilation lev~!'
and the ·allocation level of model of ·software generaticin

mentioned befo~e.
The. aJm of the paper is' .. the" 'presentation· of ·casic

mechanisnis introduced :in: COLNET' ·iab.guage in order to solve·

the problems with the . ~epa~at~ compilation ir{ such;·a· tw~;
level concept.

2: The· Elements of COLNET ·Which· Eilable .·· the' Separate

Comp i 1 a't i ~r{

A unit of ccinipilation in 'the COLNET language [iOJ' is one

of two modules:

module .. of manager 'type, ·. def in'ed as a certain ;data

structure and: S'et of 'operations on this structure, which

is a~ ext~~de~ c~nce'pt ion of Hoare moni t'or [12],

module ·oi process . type;· which can . call any: of entry'

procedures, generated 'from a'certain patterni

•2

l
I
I

i

j
·'

J
I

1
I .I

,. .
I

'1'
I
1

The call of.manager's entry procedurein a,given unit has the

following. syntax:
.'

,J

cal 1 <loc_na!lle>, <proc_name> [<1 ist_of_act_t'aram~ters>)]·: · · ·~

The loc_name.should be associated with the unit_pattern_name,·

from ~hi~h manager ~upplying the called ~ro~ed~re ·~dl 5 b~
' < ' • ' • ' , • ! - '~ ·~·

generated. It is made with. the. help of external modules ... '\
declar.at ion made in .the following form:

; ,nl •·:.'

\ ~' . .~ . '

,· ' . "'~~·:. : ,"
e.i:ternal. < loc_nal!le>: <uni.t_p~ttern_n'7me> [=<gl<?bal_name.> l,;

· .. .,
.· ~ 1 . '

.,.Referring to .the.manager by a local name allows one, among
• • • ' -. • - • -- <-· .: • • ,. • - • • • ••• ~- •• : ' • .•; • :·.. •

other things," to .cal:l procedures. of two different managers
,._ .- !< '' ' 4

' ' • • 1 • '· :' ·,,, 1

gener~ted from the same pattern of a pointed unii. It is also
"- ' ,,_, ', ~ ;:. . i . : _) ; - ·._: ~ ' . '

possible. to. ~pecify -~ 'global name associated with the
• • • • ~ .,_ • d ~ .. • • • • • ' • • ' ;;_ ~

generated manager.,~. used in the course ·of allocation

:·:As' a .geri~e~~l->rul~. ·:, i~ .pr~~ra~~ing lang~ages. it· is
' . . . -'. . .. •' ' " ~ . "~ ' '· ·. < • '' , . ; . l

obligatory that a unit of compilation. which ·supplies an
. ''" <,·'··· - -·-.,' ' . ,;'·

. information .for another unit :of compilation is translated
• ' • • I' . • :. -~ ·-. . :• ' ' ' ,: -~. "'·" .• '·' :: '-~ ~ •. _""! . :

before this information is used. This principle forces one to
- • ~ ', -,.. <~ ·• ~ ~ ;.

accept. certain order of compilation of particular units. This

pr.inciple \•arises .. from context relations ... o·f . their
• ' '' ·• ·,.•·!~ !"'< •. •· .. 1\- .,

specifications. For example, ,_in the Ada language the basic -
' ' ' - __ ., : . ' •• :;,.;:.. .. < "' '-·

instrucient,to,define.an order of~compilatibn\is.a.declaration
• ' -· ,., - • ~.' • . ~ ' .. - ' .. , , ;-". ·, : ,:_' ,.; ~) t ;,. ~"

"with". The· specification of each compilation unit, mentioned
in ··the ;,with" declar~tibn"·must ~e. com~i·l·~d bef~r~ ·'th~ ~~zit

• . c. ., ·-' , \ , • , ; i ,!~.; "1 :.~ "__> ::, .~ -- ••

including this declaration .[.7] .. , . .
. . ~ . . ' --· ~ .. · ,-~ ~: ;.:.,

In the COLNET language, the concep~_.of.a,;.~mit,superior to

a module of either the manager 'or· the proce~s ··type does not

exist ·• Any. instruments. imposing. :the.· order of compilation do

not eXist .either. Compilation of .-~nits rna~·. ~~ke c~~~s~ . .'in 'any.

.:order, b'utfif>a·unit,:.which~the unit, com~il~d a.t t-~e '~~~ent . . ' . - - . . ' ., . ~ .
refers to, has not.·been compiled yet, then; the compii.er

creates the. so~called 'pseudo-pattern, . which contains a·. 1 ist
• • • '!' '- .'. "<. _· •• '

of demands (a-list of .. procedures:and descript!or1s;~,of ._type·

3

declarations together wi'th their actual parameters). ·In the_

course of compilation of the unit, of ·which the 'pattern has

already been generated, a test of its· consistency with the

pattern b~ing currently constructed is

On the other hand, the fact,

performed.

that an environment

description contains a manager paitern, whi6h th~ u~it being

compiled ref~rs to, enables the 6ompiler to control f~lly the

c6nsisten~~ oi the correspondin~· lis~s'of actual and!f~rmal
parameters with ~egard 'to bo"i:h, their length and. type

declarations.

Every inconsistencies deliver some information. to a unit

which is compiled and according to system designer's

requirements, there takes place . rejection of' the already

generated pattern or forcing the· pattern of this module . . '

generation. If the prior. is the first case, 'then usually ·a

correct ion of detected mistakes and· repeated campi lat'ion of

the unit',is performed. Instead; if a description of a unit

pattern, ·which do~s noi comply with th~ exp~ctations impiied

~from already: compiled modules 'is forcefully added to' the

environment' descr.ipt ion, then this. disturbs the co~sistency

'in the base.

'"Consequently to secure the consistency of 'compiled modules

in 'the 'ba'se\. all module patterns' 'which. are ·not consistent

··~·ith the-;compiled module must be replac~d wi'th their pseudo-. .
patterns. For example the above situanoh takes places during

the repeated compilation'' of the module. which.' is to.' be

changed, if .for example. the 'number .:·of· paramet~rs .. of some

procedure has'changed. ;:-: ,-i ,,
~· ~ - . :·.

'
~r::

'All th.e·compilaticin ·units, ·which· invoke this. module are

going to be i~6on~istent with it ~nd(mus~ be -recompiled. If,

however, . changes; in· the unit had not'.inf 1 uenced the feedback,

the algorithm had·. ·been· changed .• but . procedure's
\

specifications (parameters and' result) ... had not,· ·then

recompilation would not have:•influenced the other units;

4

~ ! . .

I
I
'!'

I

)
1 r

')

1.)1 , I .,
l
I

"r

3. The Logical Structure of a Unit Pattern·

Beside import and export descriptions, which are essential

_for a control of invoking correctness, a description of the

compiled unit must include information, which allows. the

allocator to find, weather in the given node the allocation
. . \

of .. the module generate_d. from a given pattern is possible.

Consequently regarding all . attributes, which any . module ·in

the COLNET language-· should have the description of •. its

pattern contains:

!a) module identification, which contains:

(b)

- pattern type (manager, proces~. pseudo)

-pattern name, i .. e. identifier of compiled module,

global names defined as objects of the process or

m~nager typ_e, which are. suggestions for modules names,

which. may be generat~d from the.· given pattern iri the

course of allocation, , ...

-·computer syst~ms names, corresponding to the comp,iled

_module in the sentence of version or of exclude, wher~

these names characterize nodes, in which allocation· of

the given module is (version) or is not (exclude)
possible,

- name of the file, which _contains result module,

- size of the result module,

- relative address of the initial point of the_ code,

list of the names of im~orters of 'the given module ..

imports

information:

description, containing the following

- local name of manager, whose entry procedures are called

by currently analyzed module,

name of pattern of mariag7r mentioned in the last point, . . . -
list of invoked entry procedures and description of the
actual parameters,

5

\

(c) exports. description, which contains:.

- list of entry procedures of the compiled manager,
. • ' . ' ' I .

together with each entry procedure

- list of pointers to definitions of types of the formal

parameters,

- file name containing interface module.

As have been· m"7ntioned in the case, whEm a currently

compiled ~nit· invokes modules which do not have their

patterns in the base, after compilation is' finished' their

pseudo-·patterns are inserted to the environment descri_ption.

The structure of the module's pseudo-pattern is alike, but·

contains only description of demands to call ·procedures,

which are defined in the calling unit.

In the presented model of the separate com~ilation 6f the

.COLNET language the EDMM module (Environment Description·

Module Manipulator) [11] is of an essimt ial importance. This

module. contains .a set of procedt.lr'es, which store in ·a; d!sk

file the ·descriptions of ·patterns and. pseudo'-patt"erns,

acquired· during previously performed compilations of modules

of th'e software envirorimerit which is to be designed ..

4; Co-Operation of the Compiler'with EDMM

The basic· 'operations. performed on a system . environment

description in the course of compilation are~
' ·.
(a) gettin~ of a module description to the operating store,

(b) maintaining (modification) of module description in .the

file,

(cl test of co~siste'ncy. of import procedures by' currently . - . . .
campi 1 ed module together with their formal definitions

maintained . in the description of· the module exporting

them, or ._generation a pseudo-description for those

proc0dures, based on. a description of types of actual

.P~ra~;~ters,

6

il
I~
l·

'),i.·
I •

.i

.·
(d) test of the consistency _for' procedures ex'ported by a

current 1 y · campi 1 ed· module· together . with . their pseudo

descriptions, generated during compilation of · the

importers of the given·module.

The file containing the system environment description has

a specific logical· structure and is proces~ed only· under·

control of the EDMM module. This file must be open before any

operations on t-he environment description are perform'ed.

Tnis is realized by the procedure openedmm:

int openedmm (xname)

char *xname;· I* name of 'the, file, which stores the

environment description*/

This procedure opens the already existing file; which

sto_res the environment description or :creates 'orie,· if it has

not- existed in the system yet. At the beginnin~ of this file,

parameters defining the eont~nts of•the file are pl~ced:

- pointer to the description of the first. module (they are

arranged lexicographically with regard to identifier~),

pointer to the module, which is currently compiled,

- pointer td ~global list of definitions'of the da~a types

- pointer· to· the ring of' free areas (released and taken' in

the co~rse of operations performed on the environment

description!.

The operation of closfng. of the file storing the system
. . '

environment description is realized by a non-parametrical

procedure: c 1 osedmm () . When this f i 1 e has been c 1 osed · no ·

operation dealing with the file containing· the environm~nt
description is permissible.

Most .. of operations performed on the ei:wironnient

-description refer tc:i a specific module - created,. modified

or vel:-ified under control· of EDMM; · t_o reduce the number of

parameters . of procedures of the EDMM module and facilitate
">-

7

automatic process'ing of the environment aescript ion base·, an

obligation ·to define a work context (of the used module

de;cription) by programs using the environment description

has .been introduced. The definition of such a context

consists in giving module name, its type and a specification

of a way of access to its description - this operation is

realized by the procedure with:

int with (who, wtype, class, ·'6p)

char *who; I* module name*/

int wtype,. I* module type: process, manager*/

op; I* po: create or u~e*/

Procedure with - creates (create) or finds ·(use) in the

file the module description: who, and re~embers pointer to

it.· Hereafter the module. who is accessible for processing

(permissible) operations on it. The result. of the procedure

~pecifies the way, which the procedure has been realized,

where:

- result > 0 - means a correct termination of the procedure

and informs, that a description of module

which has the statute: normal {pattern) or

pseudo (pseud~-pattern)

result<= 0 - means an .erroneous performance of this

procedure (usu~lly lack of place. in the

system disk, preventing creation of the

module description)

Considering. the meaning of the full system environment.

description for the correcthess of all stages .of the

definitions built by the COSIO system, and particularly to

secure the correctness of an independent .compilation of

modules ·- as a principle foundation is, assumed, that. all

gescriptions stored.in each base cont~ining such descriptions

are fully consistent.

8

Because of this foundation - all operations performed _on

should not allow the environment. description any

inconsistency, in the base describing environment; to happen.
,. ~ r. ' '

This conce.rns, first of all, operations of adding new modules

descriptions and .canceling -the old ones. That i:=;,why while

such oper_ati.ons are performed, a verification of. the fu,ll ·

consistency o,f the environment description bas!'! should' be

done. Practically. such a veri fica t ion concerns only those

descriptions, which.~re somehow related to the module addin~

to th• base,orJcanceling.
,. ' ">

Verification of modules adding to the base is realized by
' I ,,

procedure ,v~ri fy .• which ,tests the. consistency of the pointed

module with _the other modules inserted in the environment

-description.

.This procedure .has .the follo.~ing heading:

int verify(op, who, pr)

jnt op~·-.. i* op

,pr;

char *.who;

I* pr

f* who

~oft, ,hard*/

print, rion~~int*/{

name of ve~ified.~odule*/ •.

Verification consists ~n: .

,,,-·J

J,\

(a) test the consistency of calls ~~ all p~ocedur~s imported

by the who module with their formal.definitions, placed
' • . ' '. ' ' ~ . . t ;. . ..

in the modules, which export them~.

{b) t~st the consist~ncy.o.f\he.definitions of procedures

expor.ted by .the who module with .. demands of modul'es,
~ ; •' ' "' ' ; :.. . ';.. .

which import them.

A new version of m~chile des~ript ion is usually added to the

global list 'of modules, replacing, in'case of. need, already

existing version of description or pseudo~descriptioni if any
' • ' > • ' ~

inconsistency of the· definitions of procedures exported or

imp~rt~d 'with the' a~t~ai def ini t i~ns •. placed in the base

happ~ns, .. then· EDMM · takes a decision, which depends 'on· the

val ue' .. of t,he op; p~~ameter of the verify procedure.·

9

If this parameter has a v<hue of:

soft - then 'the pattefri' description is not added to the
base,-- ._. ~ ~. - ~"'"" .;

hard - the patterri is added· to 'th~: hase t'he forceful way,

which means, that all patterns placed in the base as

we.ll as ·any ·ones inconsistent with demands of the

who' "module wi 11 be saved in an 'imxil i~uy 1 ist of

patterns, and 'repraced ·'by pseuda:..'patterris,

consistent with the other de'script ions'' remi:lining in

the base.

Beside the global verificati'on at the mo'ment of either

adding or canceling a possi bl.l i ty of performing 'a partial

verification of the elements of d~sc'r'iptlon. of the given

module (pointed by the with procedure) is accepted. This

concerns particularly the con~istenC'y 'of the formal

-definition of a procedure export eel' by. one module, with its

assumptive definition,' corist'rue'ted ~n: the base of the call in

a modul~·itdpartin.g this procedure.

,This purpose serves a procedure compatible:
r· ·.< . ·-· ·~ . . - ,. :.;

jnt compatlbility (px: t,ename, impnamel'

jnt t; !* tn:ie of the struct~;~· b~ing compared*/
... - "· < ,.

char.*ename, !*'procedure name*/

impname; ·I name of the modul~, which exports the

prcicedure*/

address of the structure, which describes
·. ' .

. , s~ruct mem .~PX; I"'
1. • •

the call*/

The task of the compatibile procedure 'is to test the

consiste'ncy of type:s. o.f all actual pa~ameters with . their

formal .definitions; ~p~~ifieid' in th~ mod~1le, 'which exports

them. Consideri~g this th~ :6~mpatlbh~ pr(;beciure fin.ds t~e
description of the importer. patt'ern. im~~a~e ··. (if such .,a

/

10

I

description does·nat exist - its
1

pse~do-pattern is created)

finds the .~escription of the·· ename procedure (if such a

·'description does· not exist then crf7ates a pseudo-description

based o'ri the description of the call of this procedure in the

currently copied module) and afterwards tests the consistency

Of • the.: formal description. (or pseudo,....description) ·with the.

description based on the ~escriptian'af. the call of ,the ename

procedure in the currently copied module~

5. Summary

One of the principle foundations' considering-a'~ystem of

generation o(· the· concurr-ent software · for local n~tworks
' . . ·-· ' .

COSIO, was to separate a stage of generat io~ of particular

software modules , of generati~n the concurren~ system as a . . .
~hoie. This 'idea has led td a desigd and implementation of

the separate compiler of the COLNET language, which·uses a

set of procedures for sOftware -eri~ironment service and

con1:'ains descriptions of patterns .·of compiled units .. ·

Moreover; the set of . descripti~ns ·of pat~erns of the

compiled modules> composes·. a base the allocation. system .to

work, allowing the generation of the concurrent• .system ..

Independent compilation of separate modules of the.~urrently

designed concurrent. system, as well as the_ 'possibility'· of

verifying the whole·system repeatedly without any nee_d ·for

ful f recompi lat'ion, allows one• to· increase the eft"icie.ncy' of

the .process of·~designing and implementing -the concurrent

software· .. Pa~ticularly valuable is the . possibility -of

verifying incomplete concurrent system, · including the

possibility of getting information concerning ~demands of

imported procedures of lacking., modules.·,

6. References
. . .

[1] <Roper. T. J.: A Communicating Sequential· Process Language

and Im~ 1 em en tat i qn, ~a f tware P;~ct i c~ and Expe:d ence, ,.. . . . ,_. .·

val 11, (1981) , 1215-1234.

[2] Brinch Hansen P.: Distributed· Processes:. a concurrent
·'

programming concept, Comm of ACM, 21, (1978),. 934-941.

11

\'

[3l._Brinch:Hansen. P .. : _The Progr'amming ,Language .Concurrent

.:Pascal~ IEEE Trans, on Soft,. Eng. 1, 2, (1975)

[4] Wirth N.:·· Modula ·- A Programming Language For Modular

Mul t !programming, Software· Practice And· . ·Experience, .

·val 7, (197(1 , 37-52. ·: ;

[5] !Utchell J;G. :: I1es:;a Language Man)-lal, .. Report

.... <Xerox Corporation, .. Palo Alto Research Center,

/#CSL-_79-3,

California 1979.

[6]· Reference Manual for Ada Programming Language,

ANSI/MIL-STD-1815A-1983.

[7] Ian c. Pyle.: The ADA Programming Language- A Guide for

. Programmers, Prentice_Hall International, Hemel

Hempstead, Hertfordshire, England.

[8] Kotulski ~ L.: A .Too Level Aproach To .The Imple!llentation

LANs Software, in preparation.

:[9] COSIO - COncurrent Sof,tware Implementation_ For~-

distributed Systems, Rep?rts of the In•tit~te ot Computer

Science, Jagiellonian University, Cracow 1989.

. [10] Kotulski L. Rosek J.: COLNET - The Languag~ Descrip.t ion,

~Reports • .. of~ . the .. Institute. of Computer: :Science,

Jagiellonian University, .Cracow.1989.

[11]Kaczorowski W.:. Project of the EDMM modul~ ma~ntaining a

::: ·-
""'-"-'

Software

··Institute

Environment:

of. Computer

Cracow 1988.

Description,. Repor.ts .. , '!f the

Science, Jagiellonian ,,Univer~ity,

[12] Hoare · C A. R.: Monitors an operating systems

structuring_ concept,

Comm of ACM;· .17' 10,

[13]Liscov B.: ARGUS

.(1974) , 549-.?5.7.

Reference Manual. Programming

Methodology Group. memo· 54, MIT Laboratory for Cc:>mputer

Science, Cambridge, MA, Marth 1987.

[14]1(aplan s:M:, ·. Goe~i.ng SLK.-: Vfsual Con~urrent. Object

Based ·:Pr~gramming in GARP; · icNs:, pp. l65.:..i8a·.

Received by Publishing Department
-.on October 1, 1991.. ·

12

KorynbCKH Jl., Ka•opoecKI1 B., Poc3K A.
Pa:i.nenbHbiK KOMnHnATOP RlbiKa COLNET

Pa6ora ocHooaHa Ha peJynbrarax. nony'leHHblx.aorop;
cBAlaHHOH c co3.naHHeM KoMmmRropa RJbiKa COLNEl
npe.neneHHoro nporpaMMHpoaaHHR ,a cetR~ 38M. RJbll

A3b1K3 nacKanb cpeACTB3Mlof nporpaMMHpo63HHR C HCI

pacnpe.neneHHoro nporpaMMVIpoeaHHR. a TaK>t<e o6ecne'll-1
LV1" MOAyneH. He06xOAHMOCTb OpHMeHCHHR A3b.IKOBI

HCnOnb30B3HHR KOHI..lent,ud1 a6crp3KTHb1X THnOB A3HHbiX

~no cyutecrav. He pacw~pAtOT o6nacn1 npHMeHeHHR AJbl

Cpetlcrsa nporpaMMHposaHHR pacnpeAeneHH&tx npol..lec

Ul~1H CTpOllllb pa.cnpeAeneHHble CHCTeMbl o6pa6otKH AC

Kl-t:X 0AHOBpeMeHHO BbiOOflHRIOUll-t:XCR H3 paJflVI'IHbD(M31

c ApyroM •epeJ ceri. CBRJI1 3BM. B pa6ore on~<caHa pean
10~ero MOAY"" Ha RJbtKe COLNET 11 o6ecne•11ea10~e'
BbiX npoueccoa.

Pa6ora BbtnOnHeHa s Jla6oparop111< Hei1rpoHHoi1 <jJHJI1

Coo6meHHe 06oenHHeHHoro HHCTHTyTa nnE

Kotulski L., Kaczorowski W., Rosek J.
The Separaie Compilation of the COLNET Language

This paper comes out as a result 'at the work, perforn
the separate compiler for the COLNET language. The
NETworks) is an extension of the Pascal language and
program'ming in networks and specifing abstract data typt
defined and separately compiled. The whole informatio
between modules being compiled is maintained in a StrL
module of the compilation level- EDMM is responsible ft
tion. This idea has led to a design and implementation of
which uses a sei of procedures for software environmen
compiled units. The aim of this paper is the presentatic
language in order to solve the problems with the separate t

The investigation has been performed at the Laborator•

Communication of the Joint Institute for

