


Introduction. Computational experiment was undertaken in
order to analyze the asymptotic behaviour near the finite blow-up
tinme T0 of the soluticons of the initial value problem

(1) u, = L ¢

N-1
r u
t rN—l

)

ror F(u) for r e R, t>0,

(2) u(r,0) = uo(r)zo for r € R,

This work is a continuation of paper [3], where the case

(3)  F(u) = (14u)1n®(14u)

was considered. We were not perfectly =satisfied from the
numerical results for the case of a single point blow up (g>2).

8o we decided to improve cur algorithm, to test it for the
case (3) and to apply it to two other problems (1), (2) with

(A2 + u)B, B>1, Az0,

(5) F(u) = &Y,

(43 F{u)

when the single point blow-up takes place too.

There are some works [1],[7}.,(8]1,[10],[15] where the
asymptotic behaviour of the blow-up solutions of (1},(2), (4}, (5)
was analyzed numerically. We will mention here [1], where a
rescaling algorithm for the case F(u) = uB, N=1 was proposed and
realized. It is based on a scale invariance of equation (1). By
using the forward Euler finite difference scheme multiple grids,
rescaling and refining only where the seclution is large,
they rich amplitudes of the solution u of the order of 1012
without fatal loss of accuracy.

Our algorithm, as it is in [3], is based on the finite
element method (FEM) in space and on an explicit second order
accurate in time scheme. Here we propose and realize a special
mesh refinement, which is consistent with the space-time structure
of the approximate self-similar solution (a.s.-s.s.) of the
problems (1),(2),(3),(4),(5). More exactly, we refine the mesh
in r so, that the step-length in the similarity variable £ to be
uniform and not greater than a given value hE for every t>0.

Preliminaries. It is well known [12],[10] that the problenm
(1), (4) has not exact blowing-up self-similar solutions for N=1,2
and Bs(N+2)/(N-2), Nz3. The same fact takes place for the problem
(1),(5), N=1,2 [2],[10]. Herrero and Velazguez [1l4] have proved
that if u(r) blows up in finite time T, if uo(r) has a single
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maximum at r=0 and uo(r) = uo(—r) for r>0, there holds for N=1:
1¢ F(u) = u® with g>1, then

Lim u(e((T ~t)In(r —t) 1) 2 ) (r-0)Y B M= e ()
t =T, .

(6) 6_(€) = 81 + [(B-1)%/(48)]E" ye
uniformly on compact sets gl = E* with E*>O:
If F(u) = €', then

1im u(E((TO—t)lln(To—t)I)1/2,t) + In(Tt) = 6,(€)
t-#TO

(7) e (€) = In((1 + g2/4)t

uniformly on compact sets gl = E* with E*>0.
As we know this is the first exact result in this direction.
1t means that the parabolic equation (1), (4) degenerates as t—aTo
into the Hamilton-Jacobi eguation ([6),(71,0(81,091)

v, + rv, {2(T, ©)IIN(T, - eyt = VB,
which has an exact blow-up self-similar sclution

vir,t) = (r,- £ e (o),

2] (E) given by (6), where

(8) ¢ = r((T~ t)in(r,- €))7
The same is for the equation (1),(5) - it degenerates as t—T,
into the Hamilton-Jacobi equatiecn ({4],[81.,0161)
-1 v
ve + TV, {2(T - t HiIn(T - tll} - e,

with a blow-up self-similar solution
v(r,t) = - In(T - t) + 8, ().

where 8 (E) is given by (7} and £ is defined above.

There are many qualitative results [51, [91, [11], [iej,
[13] which predict such asymptotic behaviour in the many
dimensional case. We confirm this by numerical experiment.

The existence of effective localization of the process gives
us possibility of considering initial-boundary value problem with
pirichlet or Neumann boundary conditions 1in the numerical

solution. Sc the problem has the form:




1 N-1 .
(10) U, = _;N:T_(r ur)r + F(u) in (0,R)«(0,T 1},
{11} ur(o,t) =0 for t € [O,TOL
(12) u(R,t) = 0 or u/(Rt)=0 forte [0,T.),
(13) u{r,0}) = uO(r)zo in [O,R], ug € C({O.R]).

We do a change of variables U = F(u) and get

the following eguations:

2
[#)
(14) v = —1—(1‘N—1U ) - B-1 r

(28-1)/8
t rN_l r'r B U Ry

for F(u) = (4 + u)B, U > 0 when u = 0,

_ 1 N-1 _ r 2
t A-1 (r Up)y U U

(15) U

for F(u) = eu, U > 0 when u = 0.

The function U satisfies the correspending boundary and
initial conditions:
(16) Ur(O,t) = 0 for te[O,ToL

(A+u)@

u
e,

(17) UfR.t)

{l
]
It

A or Ur(R,t) Q0 for te[O,TO), F(u)

(18) U(R,t) 1 or Ur(R,t) 0 for te[O,TO), F{u)

(19) U(R,0)

(A+u0(r))B for ref0,R],

euo(r)

u(rj

]

(20) U{R,0} Us(r) = for re{0,R].

After the same transformation we find the corresponding
Hamilton-Jacobi eguations and their solutions for F({u) given by
(4) and (5).

1 _ L (28-1)/8
(21) v, + rV_{2(T,- )IIn(Ty ~ t))7" = BV

vir,t) = (1~ ey B e e,
o_(£) = (81 + [(B-1)°/(ag)jg® y /BN
-1 2
(22) Ve + ¥V {2(T - t)IIn(T - t)l} = =V,
v(r.t) = (T~ t) e, (&),
B_(£) = (1 + 52/4)-1. where £ is defined abave.

We state a method of rescaling of the solutions U(r,t)} in
order to show convergence to a.s.-s.s. V(r,t) as t - To' By usual
appreach the rescaled function has the form:



B_
B-1

(23)  O(£,t) = (T, - t) UCE[(T )1 In(T -t )1 1Y 2 0)

(22)  O(£,t) = (Ty - UCEL(T,~t) In(T—e ) 1 2, e T

for F(u} given by (4). {5) respectively. This is defined by the
space-time structure of a.s.-s5.S. {21), (22}. The asymptotic
stability of a.s.-5.5. is equivalent to the conditicn

(25} @(g,t)—0_(€) as t—T, -

For numerical calculations we also use another method of

rescaling. Let 7(t}

(26) B(g,t)

oce,t) = ucely(ty N1in(y(t)

Il

(27)
(23}, T

is

(24)
defined
(23

In comparisen with

important, since T,

calculations. One can see that
equivalent if (25) holds,
Numerical method.
problems (10)-(13)
and (14), (18},
ones have a self-adjoint elli

We solve

algorithmic
In thi

many advantages in the
method, we chose the second.
approaching the blow-up time T , an

and the convergence to a.s8.-sS.5.

vcefree)” BT B ncr(e)

and the reduced ones
(18), (20}. In spite of the fact, that

ptic operator, and hence,

sup U/@O, where ®os @a(o). Then:
r

~(B=1)/By ;Y2 o) y(t)

1y Y2 st
It is

numerical

doesn’t occur here.

o]

after
(26),

finishing
} and (24) and (27) are

original
{(17), (19)
the first

they have

d numerically the

(14), (18},

realization of the nunerical

s way we can succeed better in
d in exhibiting the degeneracy
Thus, Wwe describe below the

itial boundary value problem:

numerical method for solving the in
(28} U, = 4 in (0,R)x(0,T, )
(29) Ur(O,t) =0 for t e [0,T,)
(30) U(R,t) = a ©or Ur(R,t) =90 for t € [O‘To)
(31) U(r,0) = UD(r) = F(uo) for r € (0,R], where
JURE WP L P Ur g y(28-1)/8
- rN—l r'r B U !
a =4 for F(u) = (4 + wh,
2
U
_ 1 N-1 _ r 2
AU = N1 (r Ur)r i + U° .,
r
a=1 for F(u) = eq_
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We wuse the lumped mass finite element method (FEM)
[192],[20] with interpolation of the nonlinear coefficients.

The discretization is made on the basis of the problen
{28)-(31) in weak form:

(32)  (U,,x) = A(t;U,%), VxeHL(O,R), O0<t<T,,
(33)  U(0,-) = U,
R w1
where (x,9¢) =T r x(r)¢(r)dr,
0
R N-1
(34) Altin, @) = I(-x.8, - a(x)xrqb + b(x)xe¢)r” ~dr,
0
U
for F(u) = B ;o oa(u) = J%;L T;L’ b(U) = g U(B-l)/B
u U
for F({u) = e : a(u) = T;; , b(U) = U,

r(N~1)/2

H G(0.R) = {x:x, x'e L%(0,R), (1-a)x(R)=0},

o = 0 corresponds to the condition U{(R,t) = a,
a =1 - to the condition Ur(R,t) = 0,

For the spatial discretization of (32), (233) we consider the
standard piecewise polynomial Lagrangian finite element spaces.
Let { 0 = r1<rz<...<rm = R, ri+1+rish ) be a partition of the
interval [0,R] into elements e; = [ri,ri+1]. Thus we denote by

Sa h the space of continuous functions on [0,F] that reduce to
s

polynomials of degree = k-1 on each element ei’i =1,2,...,m-1:

S, n~{¥W(r) € C([O,R]); W € P

) ko1? (l-a)W(R}=0}.

(rypliem
The approximation properties of Sa p are well known [19]:
r

kK
I, w-wi hivI W-vIWii = Ch IIWIIH]{ .

W Wi 2eo,py * ROVIN-TWI; 206 g)
- Kk
"IhW_W"L"’(o,R) = Ch "W"Wz(O,R)'
Here I, is the interpolation operator:

I, C{[O,R])— Sa,h' (Ihw)(nj) = W(nj) for each of the nodes "j’

J=1,2,...,M, that define the degrees of freedom of Sd h

Let Uh(r,t) denote the approximate solution in Sa h*
¥

We pose
the semidiscrete problem:

To find U] € Sa for each t, such that

I Lh
(35) (Uh,t,W) = Ah(t;Uh,W) for all ¥ < Sa,h'
}36) ‘ Uh(O) = Ubh'



Let {@i}¥=l be the standard Lagrangian nodal basis of Sa,h'
Representing Uh(r,t) in the form
M
Up(r,t) = L U;(2)9;(r) & 5, p,

and wusing the lumped mass method our semidiscrete problem
(35),(36) can be written in matrix form:

(37) MU=K (U)U,
(38) U(0)=u_.
Here U=U(t)=(Ul(t),U2(t),..;,UM(t))T, W is_the lumped mass matrizx,
~ - ~ ~ i Ry
M= dlag{mii}, m; =j£1mij, mij = é r wi¢jdr, i,j=1,...,M,

K(v) =Lk, = ¢ (kP x4 x(37), k(- (kﬁ.)}, 1-1,2,3,
[ = e

(l) _ N'l ’ r (2) = — N-1 ’
(32) kij = i r wiwjdr, kij i r a(U)wiqur{
(3) _ N-1
(40) kij = é r b(U)wiwjdr,
K Kk k
_ B-1 . ~ (B-13/8
a(U) = S (L Ui )/(E Ugdy), BUY = BT Uy )t
for F(u) = uB, and for F(u)} = e"
k k k
a(V) = (L UW3)/(T U, b(U) = § Uy

wi’ i=1,...,k are the shape functions of the element e.

Let us note, that the matrix K is neonsymmetric one. When
solving the system of ODE (37), (38), we don’t calculate matrix K
in explicit form - we calculate only the product XK(U)U,
accumulating it by means of the element matrices ke'

To solve the system (37),(38) of ODE we use a modification
of the explicit Runge-Kutta method, which has second order of
accuracy and an extended region of stability [17]. Moreover, the
time-sfep T is chosen automatically so as to guarantee relative
stability and a desired accuracy € at the end of the
time-interval.

In computations we use linear finite elements on uniform and

nonuniferm grids. To approximate the integrals in (39), (40) we
use the trapezoidal rule (N = 1) or the two-points Gauss rule

(N = 2,3).



We make a special mesh refinement in consistency with the
space-time structure of the a.s.-s.s. It is seen, as t =T  the
value of the self-similar variable & = r[(T,~t)iIn(T t)1] /2
tends to infinity. So we choose the step-length in r such
that the step-length in £ to be uniform. We compute the values
of the sclution in the new included mesh-points using
linear interpolation between the values in two old neighbouring
points. It is clear that the number of the mesh-points
increases as t-aTO, so the computation process goes slowly and
the computational error increases. To avoid this, after
every change of the mesh we proceed the computations only in
the interval [O,Rk], where the solution grows. We suppose that
the solution 1is established in the interval [RK,R} if the
difference between the solution’s yalues for t:ti and t=t, =ti+t

7 i+rl

at the point R, is less than a given constant (=10"'). Using this

mesh refinement and Tnin 10_16 we may compute sufficiently
exactly the solution U(r,t) when its amplitude is on the order of
1015, since without mesh refinement we compute the sclution
U(r,t) to amplitude of order 105.

4. Numerical results and interpretation. As it was said, the
aim of the numerical experiments was:

- to analyze the space-time structure of the unbounded
solutions of the problem (28)-(31);

- to confirm the degeneracy of the parabolic equation
when t — To by showing convergence of its soluticon U(r,t) to the
a.s.-s.s. V(r,t} in the sense of (23}, (24), {25}):

(41) @(E,t)—e@a(g) as HU(t)HC = sup Ufr,t }—w
r r

The graph of ®a(€) is signed with g on Figures 1b-8k. The
other symbels are used for the graphs of the solution and
@(g,t) for different values of t.

First we show two results for the case F(u) = (1+u)lnﬁ(1+u),
5>2 (single point blow-up,[3]}.Figures 1 a,b show the solution of
the parabolic eguation and the rescaled function a(g,t) for N=1
and p=4, figures 2 a,b - for WN=3 and g=2.5. It is seen that the
last two profiles of ©®(£,t} and @a(E) coﬁpcide to within plotting
resolution on compact sets of length £ =14 for the first case

*
and £ = 3 for the second.
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Figures 3-5 concern the case F(u) = (4 + u)B , 4 = 1. The
evolution of the a.s.-s.s., which corresponds to blow-up time
T =0.01, N=1 and B=1.5 is shown on figure 3a. One can find cut a
very good reconstruction of T, - in the computaticonal process we
get TD= 0.01004, The rescaled function ©(£,t} and the a.s.-s.s.
coincide on the set of length 2.5 (figure 3b). The initial mesh
has 121 points, the final one - 961 points; the minimal time-step

_16. Figures 4 a,b show the evolution of nonself-similar

is =10
initial data for N=1, f=1.5. The initial mesh has 121 points, the
last one - 1921 points.The amplitude of the solution U is on the
order of 1015
of length 2.5. The case N=3, g=1.5 is shown on figures 5 a,b.

Figures 6-8 are for the case F(u}) = e¥. The evolution of

. The profiles of @(£,t) and @a(E) coincide on a set

self-similar initial data, correspending to To= 0.01, N=1, and
the rescaled function are shown on Figures 6 a,b. The evolution
of nonself-similar initial data, given in the interval [0,1],
for N=1 and N=2 are shown on figures 7a,b and 8a,b respectively.
The results are unexpected even for us - the profiles of &(f£,t)
and @a(ﬁ) coincide on a set of length 3.

Note , all computations are made with PC-AT, using
double-precision arithmetic and memory not greater than 570X. So
we think our results may compete with those of M.Berger and
J.Kohn [1], done with Cray XMP.

Conclusions. Many other experiments, we have made, give us
assurance, that the degeneracy of the semilinear heat equations
(1), (4),(5) into corresponding equations of Hamilton-Jacobi type
takes place in the many-dimensional case as well, when the first
ones have not exact blow-up self-similar solutions. But this
remains an open question.
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