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Intr·oduction. Computational experiment was undertaken in 

order to analyze the asymptotic behaviour near the finite blow-up 

time T
0 

of the solutions of the initial value problem 

(1) for r e IR, t>O~ 

( 2) for r e IR. 

This work is a continuation of paper [3], where the case 

(3) F(u) = (1+u)ln~(1+u) 

was considered. We were not perfectly satisfied from the 

numerical results for the case of a single point blow up ({3>2), 

So we decided to improve our algorithm, to test it for the 

case (3) and to apply it to two other problems (1),(2) with 

(4) F(u) (A+ u)~, ~>1, A~O, 

( 5) F(u) 

when the single point blow-up takes place too. 

There are some works [1],[7},[8},[10]..[15] where the 

asymptotic behaviour of the blow-up solutions of (1), (2), (4), (5) 

was analyzed numerically. We will mention here [1], where a 

rescaling algorithm for the case F(u) = u13 ~ N=1 was proposed and 
realized. rt· is based on a scale invariance of equation (1). By 

using the forward Euler finite difference scheme multiple grids, 

rescaling and refining only where the solution is large, 

they rich amplitudes of the solution u of the order of 1012 

without fatal loss of accuracy. 

Our algorithm, as it is in [3], is based on the finite 
element method (FEM) in space and on an explicit second order 

accurate in time scheme. Here we propose and realize a special 

mesh refinement, which is consistent with the space-time structure 

of the approximate self-similar solution (a.s.-s.s.) of the 

problems (1), (2), .(3), (4), (5). More exactly, we refine the mesh 

in r so, that the step-length in the similarity variable € to be 

uniform and not greater than a given value h€ for every t>O. 

Prel.imina.ries. It is well known [12], [10] that the problem 

(1), (4) has not exact blowing-up self-similar solutions for N=l,2 

and ~~(N+2)/(N-2)~ N~3. The same fact takes place for the problem 

(1), (5), N=1,2 [2], [10]. Herrero and Velazquez [14] have proved 
that if _u(r) blows up in finite time T

0
, if u

0
(r) has a single 
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maximum at r=O and u
0
(r) = u

0
(-r) for r>O, there holds for N=l: 

If F(u) = u~ with ~>1, then 

lim u(~((T -t)lln(T -t)1) 11 2 ,t) (T 0-t)l./(~-
1 )= ea(O 

t ___,T o o 
0 

( 6) 

uniformly on compact sets 

If F(u) = eu~ then 

• • • 
1~1 ~ ~ W>th ~ >0; 

lim u(~((T -t)lln(T -t)1)112 ,t) + ln(T
0
-t) 

t ~T o o 
0 

(7) 

uniformly on compact sets • • 
1~1 ~ ~ with ~ >0. 

As we know this is the first exact result in this direction. 

It means that the parabolic equation (1), (4) degenerates 

into the Hamilton-Jacobi equation ([6), (7],[8], (9]) 

vt + rv {2(T- t)lln(T - tJir 1 
= v~, 

r o o 

which has an exact blow-up self-similar solution 

v(r,t) = (T
0

- t)-l;(~-l) ea(~), 

given by (6), where 

~ r((T
0

- t)lln(T
0

- t)l)-
112 . 

as t----?T 
0 

The same is for the equation ( 1) , ( 5) - it degenerates as t->T 
0 

into the Hamilton-Jacobi equation ([4],[8],(16]) 

vt + rvr {2(T
0

- t)lln(T
0

- t)\}-l = ev, 

with a blow-up self-similar solution 

v(r,t) =- ln(T
0

- t) + ea(<), 

where Ba(~) is given by (7) and E is defined above. 

There are many qualitative results [5] 1 [9] 1 [11], [18), 

[13] which predict such asymptotic behaviour in the many 

dimensional case. We confirm this by numerical experiment. 

The existence of effective localization of the process gives 

us possibility of considering initial-boundary value problem with 

Dirichlet or Neumann boundary conditions in the numerical 

solution. So the problem has the form: 
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( 10) 

0 

tort E [O,T
0

), 

fort E {O,T
0

), 

(11) 

(12) 

( 13) 

u( R, t) 

u(r,O) 

o or ur(R,t) 

u
0

( r )~o 

We do a change of variables U 

the following equations: 

in [O,R], u
0 

e C([O,R] ). 

F(u) and get 

( 14) 
1 

ut ~ N-1 
r 

for F(u) ~ 

( 15) 

for F(u) 

(rN-lur )r ~-1 
u2 

r 
~ - -~- [] + 

(A + u)~. u > 0 when u 

u 
e ' U > 0 when u ~ o. 

ui2~-1J/~ 

' o, 

The function U satisfies the corresponding boundary and 

initial conditions: 

(16) Ur(O,t) ~ 0 for te[O,T
0

), 

(17) U( R, t) A or Ur(R,t) 0 for te[O,T
0
), F(u) (A+u)~ 

(18) U(R,t) 1 or Ur(R,t) 0 for te[O,T
0
), F(u) u 

e ' 

(19) U(R,O) U
0
(r) ( A+u (r ))~ for re[O,R], 

0 

(20) U(R,O) U
0

( r) euo( r) for re[O,R]. 

After the same transformation we find the corresponding 

Hamilton-Jacobi equations and their solutions for F( u) given by 

(4) and (5). 

(21) Vt + rVr{2(T
0

- t)lln(T
0

- tJif1 ~ ~v~ 2 ~- 1 J/~ 

V(r,t) ~ (T
0

- tJ-~,(~- 1 ) E!a(0, 

"'a(~)~ 1~-1 + [(~-1) 2 /(4~)]~ 2 r~/(~- 1 ) 

(22) Vt + rVr{2(T
0

- t)lln(T
0

- tJIJ-1 v2
, 

V(r,t) ~ (T- t)-
1 8 (<), 

o a 
2 -1 

E!a(~) ~ (1 + ~ /4) , where~ is defined above. 

We state a method of rescaling of the solutions U( r, t) in 

order to show convergence to a.s.-s.s. V(r,t) as t-+ T
0

. By usual 

approach the rescaled function has the form: 



(23) 

(24) 

e(C tJ 

8( i;, t) 

~ 

(T
0

- t)~- 1U(i;[(T0-t)\ln(T0-t)l]
112 ,t) 

(T - t)U(i;[(T -t)\ln(T -t)\]
112 ,t1 

0 0 0 

for F(u) given by (4), (5) respectively. This is defined by the 

space-time structure of a. s. -s. s. ( 21) , ( 22) . The asymptotic 

stability of a.s.-s.s. is equivalent to the condition 

For numerical calculations we also use another method of 

rescaling. Let r(t) =sup U/®
0

, where ® 0~ ®a(O). Then: 

r 

(26) e(<:,tJ U(i;[r(t)-(~- 1 l 1~\ln(r(t)-(~- 1 )/~)1] 11 2 ,t)/>(t) 

(27) ®((, t) U(i;[r(t)-
1 \ln(r(t)-

1 )1] 11 2 ,t)/>(t) 

In comparison with (23), (24) T
0 

important, since T 
0 

is defined 

calculations. one can see that (23) 

equivalent if (25) holds. 

doesn't occur here. It is 

after finishing numerical 

and (26), (24) and (27) are 

Numerical method. we solved numerically the original 

problems (10)-(13) and the reduced ones (14), (16), (17), (19) 

and (14), (16), (18), (20). In spite of the fact, that the first 

ones have a self-adjoint elliptic operator, and hence, they have 

many advantages in the algorithmic realization of the numerical 

method, we chose the second. In this way we can succeed better in 

approaching the blow-up time T
0

, and in exhibiting the degeneracy 

and the convergence to a.s.-s.s. Thus, we describe below the 

numerical method for solving the initial boundary value problem: 

( 2 8) 

( 29) 

(30) 

( 31) 

Ut ~ AU 

Ur(O,t) 

U(R,t) 

U(r,O) 

a = 1 

in 

~ 0 for 

a or Ur(R,t) 0 for 

U
0
(r) ~ F(u

0
) for 

for F(u) = eu. 
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t • [ 0, T 0
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t • [O,T
0
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r e [O,R], where 



We use the lumped mass finite element method (FEM) 
[19],[20] with interpolation of the nonlinear coefficients. 

The discretization is made on the basis; of the problem 
(28)-(31) in weak form: 

(32) 

(33) 

where 

(34) 

A(t;U,>;), O<t<T
0

, 

U(O, ·) U
0

, 

R 
(>;,¢) ~ J rN-lx(r)¢(r)dr, 

0 

A.(t;>;,¢) 
R Nl 
f(-xr¢r - a(x!xr¢ + b(X)>:¢)r- dr, 
0 

u~ for F(u) a(U) /3-1 ur 
b(U) ~ i3 u(/3-l)//3 -13- u-

u 
a(U) ~ r 

b(U) = u, u-for F(u) 

H !ro,RJ 
a o corresponds tO the condition U(R,t) =a, 

a 1- to the condition Ur(R,t) = 0. 

For the spatial discretization of (32), (33) we consider the 
standard piecewise polynomial Lagrangian fini1:e element spaces. 
Let ( 0 

interval 

·= r 1 <r 2 < ... <rm = R, 

[O,R} into elements 

S h the space of continuous ex, 

r i + 1 -r i s.h } be a partition of the 

e i = [ r i , r i + 1 ] . 'I'hus we denote by 
functions on [D,R] that reduce to 

polynomials of degrees. k-1 on each element ei,i = 1,2, ... ,rn-1: 

s h={fll(r) e C([O,R]); "'r 1e Pk_
1

; (l-ex)W(R)~o}. 
a, r i'r i+1 

The approximation properties of S hare well known [19]: ex, 

11IhW-IITIIL2(0,R) + hllnhW-OWIIL2(0,R) ' ChkiiiiTIIE(' , 

IIIhW-IITIILw(O,R) ' Chk1111111 1112(0,R). 
w 

Here Ih is the interpolation operator: 

Ih: C({O,R})~ S h' (IhiiT)(~ .) ~liT(~.) for each of the nodes~-. ex, J J J 
j = 1,2, ••• ,11, that define the degrees-of freedo:m of s h" 

ex, 
Let Uh(r,t) denote the approximate solution in sa,h' We pose 

the sernid:iscrete problem: 

To find u
1 

e s h for each t, such that 
' a, 

(35) 

(36) 
/ 

(!lh,t'IIT) ~ Ah(t;Uh,IIT) 

Uh(O) ~ uoh" 

5 
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M Let {~i}i=l be the standard Lagrangian nodal basis of 

Representing Uh(r~t) in the form 

M 

Uh(r,t) = L: U.(t)<p.(r) e sa,h' 
i=l ~ 1. 

and using the lumped mass method our semidiscrete problem 

(35),(36) can be written in matrix form: 

(37) MU=K(U)U, 

(38) U(O)=U
0

• 

Here U=U(t)=(U
1
(t),U

2
(t), .. :,UM(t))T, M is the lumped mass matrix, 

M = 

K (U) 

(39) 

(40) 

diag{ffiii}, 

L: ke = L: 
e e 

k~ ~) 
"J 

k~~) 
"J 

M 
m.;.; = L m .. , 

........ j=l l.) 

(k(l)+ k(2) + 
e e 

-J rN-l,,,, •'•' dr 
'~'i"'j I 

e 

R N-l .. 
f r q>.if> .dr, l.,J=l, ... ,M, 
0 " J 

k(3)) 
e , 

k (1)= (k(l)} 
e l.J , 1=1,2,3, 

N-l -J r a(U )¢ .¢'.dr, 
" J . e 

k 
a(U) = 

{3-l k ' k - 13 - 0: U .¢. )/([ U .¢. ), b(U) 
i=l 1 1 i=l 1 1 

{3([ U.¢.)({3-l)/{3 
i=l 1. l. 

for F(u) u~, and for F(u) 

k k 
a(U) = ([ U.¢~)/([ U.¢.), 

i=l 1. 1. i=l 1. l. 
b(U) 

k 
= L: u .¢. ' 
i=l 1. 

1 

wi' i=l, ... ,k are the shape functions of the element e. 

Let us note, that the matrix K is nonsymmetric one. When 

solving the system of ODE (37), (38) 1 we don't calculate matrix K 

in explicit form we calculate only the product K(U)U, 

accumulating it by means of the element matrices ke. 

To solve the system (37), (38) of ODE we use a modification 

of the explicit Runge-Kutta method, which has second order of 

accuracy and an extended region of stability [17]. Moreover, the 

time-step r is chosen automatically so as to guarantee relative 

stability and a desired accuracy c at the end of the 

time-interval. 

In computations we use linear finite elements on uniform and 

nonuniform grids. To approximate the integrals in (39), (40) we 

use the trapezoidal rule (N = 1) or the two-points Gauss rule 

(N = 2,3). 
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We make a special mesh refinement in consistency with the 
space-time structure of the 

value 

tends 

of 

to 

the self-similar 

we 

a.s.-s.s. 

variable 

choose the 

It is seen, as t ~T0 the 
r[ (T

0 
-t) lln(T

0 
-t) I ]-1/Z 

step-length in r such 
that the 

infinity. 

step-length 

So 

in ~ to be uniform. We compute the values 
of the solution in the new included mesh-points using 
linear interpolation between 
points. It is clear that 

the values in two old neighbouring 

the number of the mesh-points 
so the computation process goes slowly and 
error increases. To avoid this, after 

increases as t ~T 
0

, 

the computational 

every change of the mesh we proceed the computations only in 
the 

the 

interval {O~Rk], where the solution grows. 
solution is established in the interval 

We suppose that 

[Rk' R) if the 
difference between 

at the point Rk is 

the solution's values for t==t. and t=t. 1=t .+-c: 
1 -7 1+ 1 

less than a given constant (=10 ). Us1ng this 
mesh refinement and rmin 
exactly the solution U(r,t) 

1015 , since without mesh 

U(r,t) to amplitude of order 

10-16 we may compute 

when its amplitude is on 

refinement 

10 5 . 

we compute 

sufficiently 

the order of 

the solution 

4. Numerical results and interpretation. As it was said, the 
aim of the numerical experiments was: 

- to analyze the space-time structure of the unbounded 
solutions of the problem (28)-(31); 

to confirm the degeneracy of the parabolic equation 
when t -~ T

0 
by showing convergence of its solution U(r,t) to the 

a.s.-s.s. V(r,t) in the sense of (23), (24), (25): 

( 41) IIU(t)IIC; sup U(r,t)-7-oo. 
r r 

The graph of ®a(~) is signed with • on 
other symbols are used for the graphs of 
®(E,t) for different values oft. 

J?igures lb-Bb. 

the solution 

The 

and 

First we show two results for the case F(u) = (l+u)ln~(l+u), 
~>2 (single point blow-up,[3]).Figures 1 a,b show the solution of 
the parabolic equation and the rescaled function G(t;,t) for N=l 

":1 and ~=4, figures 2 a,b - for N=3 and (3=2.5. It: is seen that the 
last two profiles of 8(~,t) and ®a(() coincide to within plotting 

* resolution on 
• and ~ = 3 for 

compact sets 

the second. 

of length t; =14 for the first case 
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Figures 3-5 concern the case F(u) = (A + u)~ , A = 1. The 

evolution of the a. s. -s. s., which corresponds to blow-up time 

T
0
=0.01, N=1 and ~=1.5 is shown on figure 3a. One can find out a 

very good reconstruction of T
0 

- in the computational process we 

get T
0

= 0.01004. The rescaled function El(t;',t) and the a.s.-s.s. 

coincide on the set of length 2.5 (figure 3b). The initial mesh 

has 121 points, the final one - 961 points; the minimal time-step 

is 't'=1o-16 . Figures 4 a, b show the evolution of nonself-similar 

initial data for N=1, ~=1.5. The initial mesh has 121 points, the 

last one - 1921 points.The amplitude of the solution U is on the 

order of 1015 . The profiles of El((,t) and Ela(() coincide on a set 

of length 2.5. The case N=3, fi=1.5 is shown on figures 5 a,b. 

Figures 6-8 are for the case F(u) eu. The evolution of 

self-similar initial data, corresponding to T
0

= 0.01, N=1, and 

the rescaled function are shown on Figures 6 a,b. The evolution 

of nonself-sirnilar initial data, given in the interval [0, 1), 

for N=1 and N=2 are shown on figures 7a,b and 8a,b respectively. 

The results are unexpected even for us - the profiles of El((,t) 

and Ela(E) coincide on a set of length 3. 

Note all computations are made with PC-AT, using 

double-precision arithmetic and memory not greater than 570K. So 

we think our results may compete with those of M.Berger and 

J.Kohn [1], done with cray XMP. 

conclusions. Many other experiments, we have made, give us 

assurance, that the degeneracy of the semilinear heat equations 

(1), (4), (5) into corresponding equations of Hamilton-Jacobi type 

takes place in the many-dimensional case as well, when the first 

ones have not exact blow-up self-similar solutions. But this 

remains an open question. 
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