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1 . Introduction. -

The usage of compµter algebra systems (CAS) for th~ automatization of doing bulky 
calculation; in theo;etical physics· has not already been a novelty for 11. long ti~e. In 
this paper we describ~ the usage.of the REDUCE system [1] for the calculati~ns with th~ 

il.o~-linear chiral Lagrangians including higher derivative_s which allow one·to describe 
11. wide region of the experim~ntal data. However, their usage in the physical pr~ble:ms 
i's connected with the .need to malri; a great amount _of calculations. -It is especially 

difficult to obtain the explicit form ~fthe Lagrangia~s in te~ms of ,the m~son fields and 

. to calculate the matrix elem~nts of ~oncrete processes: The latter operation i~ absent 

in the CAS ·we know, hence it is ~ecessary not only to use so.me CAS i>r ~ther, but also 
to exp·and its- capabilities as we!J. ' • _ . . 

We have applied the REDUCE syste'm for this problem, sin-ce it i~ available fo~ 
~ wide variety 9f computers, widely used by physicists, and ~an be ~asily e~tended. At 

the same ti~e it has 8 sufficient set of matheriiattcal operations and is conveni_ent in 
use. One can distinguish several levels of i~s ext:ension: . 

• by th~ substitutions and iets 6f c~mmands;:thislevel does not go out of the i-ange 
. ' . ' 

of the standard '\et of REDUCE_ op.erations; 

•·inclusion of several procedures jmplementing the missing 6perations. They can be 
written in the LISP language, which REDUCE is .. based on. However, this method 

does not extend the ava.i_lable data type~ and the standard operations with thC1;lli 

• creation of a "user package" extending the REDUCE ~yntax [2]. 

We have chosen the second' method of .extension as· the minim~ one. The described 
. package.of ~rocedures has been written for REDUCE versions 3.0 a~d 3:3. • Ih si~eis 
• . I • 

approximatdy 2000 lines of code, there are 80 procedures including the ~uxiliary ones. 

2 Physical model 

2.1 Strong interaction 
'\.. 

The notable achievements have been obtained in description of meson processes at en• 
"ergies E < ·1 GeV based on chiral La:grangfuns. For the first time they were obtained 
in 1960s-..70s as the group theory realization-of symmetries of strong and weak inter­
actions [3). The more contemporary treatment of chiral Lagrangians .as a low-energy 
limit of quantum chrom~dynamic& {QCD) has been developed in the approa~hes based 
on the _quar~ bosonization approa:~-~-'--). _______ _ 
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Direct calculation of quark determinant leads to effective mesonic Lagrangian 
of the following form in the pseudoscalar sector: 

.c<:,.cD = .Co+ .Cq + .Css 

.Co= -1 tr(L,,L") (kinetic term) 

.Cq = ~ tr {! [L,,, L,,]2 + (L,,L")2
} (p4-interaction) 

641r 2 
F,2 

.Css = -f tr ( MU + h.c.) ( chiral symmetry breaking), 

(1) 

(2) 

(3) 

(4) 

Here F0 = 93MeV is the bare constant of 1r -+ µv decay; L,, = (8,,U)U+; U = 
exp { i:f.-~}, c) = E!=o 72A,',O, is the meson matrix for the nonet of pseudoscalar fields 

',O; (i = 0, 1, ... ,8), 

h( ~+'5+73 
11"-

K-

,r+ 

-~+'9+'3 
R° 

K+ ) 
X° ' 

-~+'3 
(5) 

A; are U(3) group generators (Ao = ~ 1), Mis the mass matrix chosen in diagonal · 

form M = diag{µ~, µ3, µ!}. 
For correct description of pseudoscalar nonet masses the following effective La­

grangian is also introduced here 

aF.2 
.Ca= 

16
;

0 
[tr (1nu-1nu+)]2 (6) 

accounting for gluonic U(l) anomaly. Parameters µf and a ate fixed by the masses 
of 1r, K 0 , K+, 11, 11' mesons: a= 0.729GeV2

, µ~ = 0.0114GeV2
, µ3 = 0.025GeV2

, 

µ! = 0.47GeV2
• The corresponding value of the (11-11')-mixing angle is ',O = 19°: 

( 
'ls ) ( COS',O sini,o ) ( .,, ) 
'lo = -aini,o COS',O . .,,, • 

An additional interaction to the symmetry-breaking term .Css is involved for 

an account of splitting of F.,, FK constants: 

£~8 = -:f.2 tr(M 82U + h.c.), 
X 

(7) 

with parameter A!= 0.78GeV2
• 

Lagrangians (2-4,6-7) accumulate all fundamental properties of the pseudoscalar 

meson nonet physics: spontaneous chiral symmetry breaking, quark condensate exis­
tence, Goldstone bosons and partial conservation of axial current (PCAC), and also 
reproduce the p4-contrib~tion, which reflects the fine structure of the meson interaction. 

••v~-.••<'r:· .. • .. , ·3.,.,, .... -,;,.,_. f 
lY\l.e-!',-J~ ,.,,~_-· t,tl;.;... ;, i'\O:'vU,; \ ~' 

~ ~·:tE::;{ .~·: :_:".'~;!!.~r;•-~, ,! 
,, ,~A-;;b[)hl}_i,i~ 



This model ca.n a.lso be extended to include vector and a.xia.l-vector meson nonets 
and a.lso account for electromagnetic interactions. The details can be found elsewhere, 
e.g. see (5]. 

2.2 Weak interaction 

Wea.k mesonic interactions a.re described by La.grangians of the type ( current x current). 
For example, leptonic decays of mesons a.re represented by the La.gra.ngian 

c(lh) = .!!._ (cos 9 Jl+i2 + sin 9 J4+i&) l" 
W v'2 cµ Cµ (8) 

where J!+i2 , J!+i5 .a.re the mesonic (V -A) currents, which preserve a.nd brea.k respec­
tively the strangeness) [" is leptonic current. Vainstein-Za.kha.rov-Shifman La.gra.ngia.n 

is used for non-leptonic meson decays with the strangeness change l~SI = 1 

6 
,.1As1=1 . 1n2 G . 8 8 '°' o<q> ...,w = v .i: F sm c cos c L..J c; ; (9) 

i=l 

where Of9
> a.re the 4-qua.rk opera.tors containing the product_s of left and/or right 

opera.tors; c;(µ) a.re Wilson coefficient functions. The bosoniza.tion procedure described 
in (5] a.llows one to formulate the certain prescription for qua.rk currents j,, entering 
the opera.tors of 9>: 

(quarks) 

of9>[: f}; i,, :J -
: (iJML)(iiLqR): --+ 

(mesons) 

O(m)[, J+ J ·] i • µ µ.., 
: (8,.A"} (8vVv} :, 

i= 1, ... ,4; 
i = 5. 

(10} 

Here J,, = V,, - A,, a.re mesonic currents, a.nd the symbol : ... : denotes the normal 
ordering. The explicit expression for the corresponding mesonic La.gra.ngian describing 
the non-leptonic K decays have been given in (5). 

Current matrix J,, ca.n be obtained from strong interaction Lagrangian by means 
of the procedure of variation on some external field: 

J = .\lcJ'• = 5£,(V,,--+ V,, - i11,,) 
µ - µ 511,, (11) 

Let us present the formulae for mesonic (V - A} currents corresponding to 
La.grangians (2), (3): 

,. iFg 
Co--+ J,, = 4 tr (.\1cL,,) 

Cq --+ J! = -
64

\ 2 tr (.\le{ {L,,, Lv}, Lv}}. 
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(12} 

(13) 

Direct einission of photons in the ra.dia.tive decays of mesons is described by the 
electroweak current which can be obtained from the Lagrangian accounting for strong 
interaction with structural photons 

J;b> = -e
3
::2 tr { .\,. ~ F,,v(U [Q,8vu+] + h.c.) 

+ 
1
~2 .\1c[¼( U (F,,v[Q,8v82U+] + 8aFµv[Q,8"8vu+J) 

-8,,Fva 8"U[Q,ffU+]-Fva ffU[Q,8,,8"U+J) 

-
9
1
0

F,,~(8v8aU+ Q 8"U + 2 {Q,8v8aU+ 8"U}) + h.c.]} 

i e
2 

Ne 2 { (1 + { 2 +} ) } -
15 

µ 2 32
,r2 (Fa,s) tr .\1c. 2UQ8,,U Q- U Q ,8,,U - h.c. • 

Here F,,v = 8,,Av - 8vAµ, A,, is electromagnetic field, µ = ½ ~f=l m; ~ 380 Me V is the 
mean constituent ma.ss of the u, d, s qua.rk triplet. In this formula. we neglected the 
terms depending on the current qua.rk ma.ss. 

3 Calculation stages of process amplitudes 

3.1 Transition to Lagrangians in terms of meson fields 

La.gra.ngians introduced in the previous section a.re expressed in terms of matrix U, 
wha.t reflects the cliira.l invariance of the theory. For ca.lcula.tion of some concrete 

process amplitude we need to express La.gra.ngians in terms of the rea.l meson fields 
with the help of substitution 

. {iv'2 } iv'2 1 2 U--+exp Foi_t; =1+ Foi_t;-FJi.i;+ ... 

We should a.lso ha.ve an opportunity to perform differentiation on space-time 4-vectors 
z,, of product of non-commutative matrix-opera.tor i_t;, which a.ppea.rs yet a.s symbol, 
elements being not substituted. There is a.lso necessity for a set of procedures to 

ca.rry out Herinitian conjugation of such products and cyclic permu~ations of non­
commuta.tive opera.tors under the trace operation. 

The method of representation of required symbols in REDUCE is shown in Ta.hie 
1. All transformation sequence~ shown in Table 1, can be realized by the substituti9ns 
defined in file "utofi .red". Kinetic Lagrangian calculation up to the 4th order on i_t; 
is given in Example 1. 
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Table 1 
Mathematical REDUCE representation, transformation sequence 

notation 

~ noncom fi; fi () 

U = exp { ~ 2~} u:=taylor(exp(i•sqrt(2)/fi0•fi()),fi(),<order>) 

8µ~ = ~" (fi() d mu)----+ fi(mu) 

8µ8v~ (fi () d mu d nu) ----+ fi (mu) d nu ----+ 

fi(mu•nu) 

8v8µ~ (fi() d nu d mu) ----+ fi(nu) d mu----+ 

fi(mu•nu) 

020µ~ =: QV0v0µ~ (fi() d mud nu d nu) ----+ (fi(mu) d nu d nu) 

----+ (fi(mu•nu) d nu)----+ fi(mu•nu••2) 

8µ(~2) ----+ ~~µ + (fi()••2 d mu)----+ fi()•fi(mu) + fi(mu)•fi() 

~µ~ 1 

matrix M mm() 

matrix Q qq() 

Example 12 

in "utofi.red"$ 
in "taylor.red"$ 
let ord••5=ord5, ord5=0; 

u := taylor(exp(i•sqrt(2)/f0•ord•fi()),fi(),4); 

4 4 3 3 2 22 
U := (FI() •ORD - 2•FI() •SQRT(2)•0RD •FO•I - 6•FI() *ORD •FO + 6 

3 4 4 
•FI()•SQRT(2)•0RD•FO •I + 6•FO )/(6•FO ) 

w := hermit u; 

4 4 3 3 2 22 
W := (FI()' •ORD + 2•FI() •SQRT(2)•0RD •FO•I - 6•FI() •ORD •FO - 6 

3 4 4 
•FI()•SQRT(2)•0RD•FO •I+ 6•FO )/(6•FO) 

lagr0 := f0••2/4•traceshift( (u d mu)* (w d mu) ); 

2 2 2 2 2 2 
LAGRO:= (ORD•( - FI(MU) •FI() •ORD + 3•FI(MU) •FO + FI(MU)•FI() 

2In this and the following examples lower case letters stand for REDUCE input and the upper case 
ones stand for REDUCE output. 

6 

2 2 
•FI(MU)•FI()•ORD ))/(6•FO) 

Here the following functions from "utofi.red" are used: 

taylor(X, Y ,N) - expands expression X into Taylor series on Yup to the I-th order; 

hermit (X) - calculates Hermitian conjugation of expression X; 

traceshift (X) - transforms expression to the unique form using the possibility to 

perform cyclic permutation of the products of matrix symbols under the trace 

operation, e.g. 

traceshift(fi(mi)•fi()•fi(nu))----+ fi(mu)•fi()•fi(nu) 

traceshift(fi(nu)•fi(mu)•fi())----+ fi(mu)•fi()•fi(nu). 

orderind(X) - transforms expression to the unique form using the possibility to re­

designate the dummy indices, e.g. 

orderind(fi(mu)•fi()•fi(mu)•fi())----+ fi(mu)•fi()•fi(mu)•fi() 

orderind(fi(nu)•fi()•fi(nu)•fi())----+ fi(mu)•fi()•fi(mu)•fi(). 

variate(E,X, I) -variates expression Eon non-commutative symbol X, which can op­

tionally have some indices.dices. The last argument is the list of dummy indices 

in X. The first example below is illustrated by the corresponding mathematical 

notation: 

«5(tr7711~ 11~) -~ ~ 
671µ " 

variate(eta(mu)•fi(mu)•fi(), eta(mu), '(mu))----+ fi(mu)•fi() 

variate(fi(mu)•eta(mu)•fi(), eta(mu), '(mu))----+ fi()•fi(mu) 

variate(eta(nu)•fi(nu)•fi(), eta(mu), •(~u))----+ fi(mu)•fi(). 

Since REDUCE does not allow argument specification for matrices, a special 

procedure fiprint is required to transform calculation results to the form suitable 

for substitution of elements of the matrices ~. M·, Q (see an example of its work in 
Example 2). 
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Example 2 

in "utofi.red"$ symbolic (filist:=nil); 

fiprint (3•ord••4•fi(mu)••2•fi(a1••2•mu•nu)•fi())$ 

DEFFI~MU); 
DEFFI NU,AL,AL,MU)·; 
DEFFI ); 

2· 4 
3•FIMU •FINUALALMU•FI•0RD 

Output of procedure fiprint is designated to be included into the program text for 

generating matrices such as <I>, 8µ<1>, 8,.8,.8µ8v<l>, etc. and their multiplication with some 
coefficients. 

3.2 Calculation of process amplitudes 

In order to obtain the explicit form of Lagrangians in terms of meson fields one should 

make substitution (5). While doing this, it is enough to retain only operators of 

particles taking part in the process specified, e.g. for the pion charge-exchange process 
1r+ 1r- -+ 1r01r0 it is enough to set <I> as 

72 7r 

( 

,..• + 0 ) 

<I>= 1ro- -f ~ · 
After definition of elements of <I> and its derivatives one can calculate Lagrangian 

using the standard REDUCE opportunities to evaluate products and traces of matrices. 

The obtained expression describes all processes with participation of specified mesons. 
For our example, these ones also will be ,r+,ro -+ 1r+1r0 , 1r+,r+ -+ 1r+1r+, etc. The 

concrete process is fixed by the procedure set state, having for its argument a product 

of particle operators, which were "transformed to the final state" with the usage of 

crossing symmetry (i.e. each particle in the process initial state is replaced by the 

corresponding antiparticle with the opposite momentum sign). Therefore, the above 

example can be written as follows: 1r-(-pi) · 1r+(-p2 ) • 1r0 (p3 ) • 1r0(p4 ). Since REDUCE 
requires operator argument to be a scalar one, each momentum has to be multiplied 
by a "unit" vector ee. Using particle names listed in Table 2 one should specify this 

process for REDUCE in the following way: 

setstate(pim(-p1.ee)•pip(-p2.ee)•piO(p3.ee)•piO(p4.ee));. 

After this, matrix <I> and its derivatives can be defined with procedure deffi. See 

example 3 for the listing. 

8 
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Table 2. 
Particle 1r+ I 1r- I 1r0 I K+ I K- I K0 K 11111'1, 
REDUCE name I pip I pim I pi0 I kap I kam I kaO eta I etp I pho 

Example 33 

on nero; off nat; in "mepmec.red"$ in "order.red"$ 

setstate(pim(-p1.ee)•pip(-p2.ee)•piO(p3.ee)•piO(p4.ee))$ 
deffi0()$ deffi()$ fi; 

MAT!1,1! := (PI0(1)•SQRT(2))/2$ 
MAT 1,2 := PIP(1)$ . 
MAT 2,1 := PIM(1)$ 
MAT 2,2 := ( - PI0(1)•SQRT(2))/2$ 

deffi(mu)$ fimu; 

MAT!1,1! := (PI0(EE.MU)•SQRT(2))/2$ 
MAT 1,2 := PIP(EE.MU)$ 
MAT 2,1 := PIM(EE.MU)$ 
MAT 2,2 := ( - PI0(EE.MU)•SQRT(2))/2$ 

b 

deffi(nu)$ finu; 

MAT!1,1! := (PI0(EE.NU)•SQRT(2))/2$ 
MAT 1,2 := PIP(EE.NU)$ 
MAT 2,1 := PIM(EE.NU)$ 
MAT 2,2 := ( - PI0(EE.NU)•SQRT(2))/2$ 

deffi(mu,nu)$ fimunu; 

MAT!1,1! = (PI0(EE.MU•EE.NU)•SQRT(2))/2$ 
MAT 1,2 = PIP(EE.MU•EE.NU)$ . 
MAT 2,1 = PIM(EE.MU•EE.NU)$ 
MAT 2,2 = ( - PI0(EE.MU•EE.NU)•SQRT(2))/2$ 

In order to obtain Lagrangian describing the given process, one should select the 

Lagrangian terms with the particle operators in the required powers (in our example 

it is (1r- • 1r+ • (1r0 )
2
)). This operation is done in the procedure eval:filter. To 

calculate the amplitude one should match -each operator in the Lagrangian term by the 

identical operator in the process state and replace the differentiation of the former by 
the momentum of the latter (with coefficient i). It is done by the procedure eval:final 
having Lagrangian as its first argument. The rest arguments (if any) are indices to be 
contracted in the result. Hence, Lagrangian£= 1r-(8µ1r+)(8.,8µ1r0 )(8v1r0

) will give the 

amplitude M = l · (-i P!) • (i P! · i P!) • (i Pt) = -(p2 p3)(p3 p4
) (see Example 4 for the 

listing). 

3pip ( 1) is equivalent to pip(). 
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Example 4 ( continuation of the previous one) 

amp:=pim()•pip(mu.ee)•piO(mu.ee•nu.ee)•piO(nu.ee)$ 

amp1:=evalfinal(amp,mu,nu); 

AMP1 := - P2.P3•P3.P4$ 

amp2:=evalfinal(amp,mu); 

AMP2 := - NU.P3•NU.P4•P2.P3$ 

amp3:=evalfinal(amp); 

AMP3 := - MU.P2•MU.P3•NU.P3•NU.P4$ 

If there are identical operators in the specified state, the obtained amplitude is to be 

symmetrized on these operators' momenta (see Example 5). 

Example 5 ( continuation of the previous one) 

amp4:=symmetrize amp1; 

AMP4 := - P3.P4•(P2.P3 + P2.P4)$ 

The procedures used above are defined in files "ltome.red" (Lagrangian TO 

Matrix Element) where general procedures are defined, and "deffi. red", where there 

are procedures for the work with matrix ~ of our particular model. Both files can be 

loaded by loading single file "mepmec . red" . 
Let us also mention other useful procedures in these files. 

diffind(E,I) - differentiates expression Eon index I: 

8., ( 11"+ • 8,, 11"-) 

diffind(pip()•pim(mu),nu) 
--+ 8.,11"+ • 8,,11"- + 11"+ • 8,,8.,11"-
--+ pip(nu)•pip(mu) + pip()•pim(mu•nu). 

evalwithindices(E,I1 ,I2, ... ) - returns expression E with indices (I1, I2, ... ) con­

tracted (any number of indices can be specified). This procedure allows one to 

satisfy the REDUCE requirement, that at any calculated expression all declared 

indices should be contracted: indices can be initially declared vectors, and then 

this procedure can be used, as it is shown in Example 6. 

matrixdefine() - defines the explicit form of SU(3) generators.\;, and also the mass 

and charge matrices of quarks. 

IO 

[ 

l 

Example 6 

in "ltome .red"$ vector p1 ,p2 ,mu; 
part1:=p1.mu$ part2:=p2.mu$ 
evalwithindices(part1•part2,mu); 

P1.P2 

3.3 Photon inclusion to the calculation scheme 

To expand the calculation scheme for the work with photons one should provide a 

place in REDUCE particle operator notation for specification of photon polarization (see 

Table 3). The Lorentz condition for photon (8,,A,, = 0) and its masslessness (82A,, = 0) 

Table 3 
Mathematical notation REDUCE representation 

A,, pho(mu) 

8a8.,A,, pho(mu,al•nu) 

F,,., f(mu,nu) 

can easily be defined by the corresponding substitutions. A small enhancement of 

procedures set state, evalfinal and symmetrize is also required. 
There is also a new procedure to determine the number of mesons and photons. 

Let us consider the process [(+ -+ 11"+11"011 in Example 7. 

Example 7 

in "mepmec.red"$ 
setstate(kam(-ka.ee)•pip(p1.ee)•piO(p2.ee)•pho(p3.ee)•pho(p4.ee))$ 
setoperclass () $ 
NFI=3 NPH0=2 

Expansion of the calculation scheme by vector and axial-vector mesons is also 

a straightforward one. 
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4 Conclusion 

Summing up, we can recall the following features implemented for REDUCE: 

• means for representation of the particle operators (with derivatives and polariza­
tion) and matrices of them; 

• means for variation on some tensor structure, Hermitian conjugation, cyclic per­
mutation of non-commutative symbols under the trace operation, Taylor series 
expansion, etc.; 

• means for operating with matrices which depend on some arguments; 

• means for selecting the terms responsible for some concrete process from Largrangian, 
consisting of various boson operators; 

• means for calculation of amplitude from Lagrangian (with amplitude symmetriza­
tion on identical particles); 

• our model specific definitions (matrices, particle properties, physical constants, 
decay kinematics, etc.); 

• some other utilities (for calculations with 4-vectors, sorting procedures, etc.); 

• using all this, we provide the procedures for calculation of amplitudes from strong, 
weak and electromagnetic Lagrangians in chiral QCD model and also of bosonized 
currents and Lagrangians. 

The described package of procedure~ allows to calculate the amplitudes of var­

ious processes by simple specifying the particles involved and their momenta. The 

simplified version of procedure strong implementing the strong Lagrangian (1) for 

4-meson processes is shown in Example 8. After the procedure definition one can 
calculate the amplitude of, say, 1r+1r- -+ 1r

0
1r

0 scattering by command 

strong(pim(-p1.ee)•pip(-p2.ee)•piO(p3.ee)•piO(p4.ee)); 

The similar procedure can also be written for the weak and electromagnetic interaction. 

Example 8 

in "mepmec.red"$ linelength 79$ 
procedure strong arg; 

12 

Y. 
Y. Evaluates matrix element of the strong transition. 
Y. Included Lagrangians are: Co, Cq, CsB 
Y. • I Y. Not included: CTach11,,.., Cwzw, CsB, Ca 
Y. 
begin scalar amp; 

setstate arg; 
deffiO (); deffi (); deffi (mu); deffi (nu); 
amp:= 1/(6•f0••2)•trace(+(fimu•fi-fi•fimu)•fimu•fi 

+1/2•mm•fi**4 
+3/(8•(pi•f0)••2)•(fimu•finu)••2); 

return symmetrize evalfinal(amp,mu,nu); 
end$ Y. Procedure STRONG is now defined. Let us use it. 

factor fO; on time; 

strong(pim(-p1.ee)•pip(-p2.ee)•piO(p3.ee)•piO(p4.ee)); 

2 2 
(2•FO •PI •(4•P1.P2 + 2•P1.P3 + 2•P1.P4 + 2•P2.P3 + 2•P2.P4 + 4•P3.P4 + 

MUU2 + MUD2) + 3•( - P1.P2•P3.P4 + P1.P3•P2.P4 + P1.P4•P2.P3)) 

4 2 
/ ( 12•FO •PI ) 

TIME: 18721 MS 

The described technique have been used for calculations of amplitudes of K -+ 

21r, K-+ 31r decays [5]. The results describe oranchings and slope parameters of these 
decays, and also predict the parameters of direct CP violation - asymmetries for 

charged kaon decays, and the modification of Li-Wolfenstein relation for E'+-o parameter 
for K 0 -+ 1r+1r-1r0 decay. The direct CP violation has been fixed here by the results of 

NA31 experiment [7] 
Re(E'/e) = (3.3 ± 1.5) • 10-3

_ 

The usage of computer algebra has enabled us to take into account the following effects: 

• p4 contribution to strong interaction Lagrangian and the corresponding contri­
butions to weak currents (utilization of the results of bosonization of q~ark La­
grangians ); 

• renormalization of Weinberg-Salam weak interaction by hard gluons leading to 
Shifman-Vainstein-Zakharov type Lagrangian; 

• pole diagrams; 

• violation of isotopic symmetry leading to ( 1r-,,-,7')-mixing; 

• meson rescattering by the method of superpropagator regularization of one-loop 
diagrams. 
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6enbKOB A.A., flaHee A.B •. El 1-91-162 
lrlcnQnb30BaH11e c11cTeMbl REDUCE AnA Bbltt11cneH11A 

H_H3K,03Hepremttec1<11x· npoueccoe aMnn11TyA 

B Kl1panbHOH MOAen11 KBaHTOBOH xpOMOA11HaMl1Kl1 

On11cb1eaeTcA pacw11peH11e B03MO>KH<?CTeH_ REDUCE. AflA Bb1tt11cneH11i1 

pa3nl1'1HblX Cl1flbHblX 11 cna6blX . npoueccoe AflA HOHeTa riceBAOCKanApHblX 

Me30HOB, on11CblBaeMbfX Kl1panbHblMl1 narpaH>Kl1aHaM11 C BblCWl1M11 npol1_3BOA· 

HblMl1. !'"naBHblMl1 HeTpl1B11aflbljblMl1 TPYAHOCTAMl1 ABflAIOTCA nony'leH11e aMni111~ 

TYAbl npouecca no narpaH>t<11aHy, on11cb1eat01UeMy c11hbHb1e 11 cna6b1e npoueccb1, 

a TaK>Ke npeoAoneH11e HeKOTOPblX HeAOCTaTKOB REDUCE, T8Kl1X KaK OTCyT­

CTBl1e apryMeHTOB y mna AaHHblX matrix 11 HeKO;OpblX- (pl1311'1eCKl1°X onepau11i1 . 

· c onepaTopaM11 ttacrnu. On11cb1eaeMblH naKeT npoueAYP no3eonAeT e1;,1'111cnATb 

. aMnnl1TYAbl Cl1flbHblX 11 cna6bix 'npoueccoe npoCTbll'y'I yKa3aH11eM yttacTByt01Ul1X 

ttaCT11U 11 11X 11MnynbCOB. . 

Pa6oTa BbmonHeHa e. fla6oparnp1111 rnopenitt~CKOH cpl1311Kl1 OIIIAVI. 

·. Coo6ll.lEHHe 061,e.11HHeHHoro ~CTHTyTa 11.11epHblX HCcn~OBaHHii: lly6Ha 1991 

Bel'kov A.A., Lanyov A.V. 

REDUC_E Usage for C~lculation of Low-Energy 

Process Amplitudes in Chiral OCD Model 
' '·. - \ 

El 1-91-162 

We describe the extension of REDUCE capabilities for the calc!Jlations 

of various 'strong arid weak processes in the pseudoscalar meson nonet region, ~ 

governed by the chiral Lagrangians with higher dei:ivatives. Th_e main non-trivial 
I • . • 

difficulties are to. obtain the process amplitude .from the Lagrangian, describing 

- the strong and weak interactior:is, and also to.overcome some REDUCE deficien­

cies such as the lack of arguments in the matrix data type and of some physical 

_ operations with· the particle ,operators. This package of procedures allows one 

_ to calculate the amplitudes of the s~rong and weak processes by simple specifying 

the particles involved a_nd their mofTlenta. 

The investigation has been performed at the' .Laboratory of Theoretical 

Physics, JINA. 
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