


1 Introductlon

: 'The usage of computer algebra systems (CAS) for the autoratization of domg bulky

e ca.lculstxons in theoretxcal physrcs has not already been a novelty for a long time. In /v

this paper we describe the usage ‘of the REDUCE system (1] for the calculations with the

" non-linear chiral Lagrangians mcludxng higher derivatives which allow one'to descrrbe o

e wide region of the experlmental data, However, their usage in the physical problems
- s connected wrth the need to make a great smount of calculatlons -1t is especmlly

- difficult 1o obtain the exphcxt form of the Lngrangxans in terms of the meson fields and -
" to calculate the matrix elements of concrete processes. The latter operatlon is absent '
/in the CAS we know, hence it is necessary not only to use soine CAS or other but s.lso v

to expa.nd its capabllmes as well. L

We have applied the REDUCE system for thls problem, since 1t is avmlable for
a8 wrde va.rxety of computers w1dely used by physicists, and can be easnly extended At ‘ ‘
" the same time it has 5 ‘sufficient set of mnthemstlcal operatxons and is. convement in - RO

< .use. One ca.n dxstmgulsh several levels of 1ts extenslon

e by the substltutlons md sets of commands, th1s level does not go out of the range o

- o{ the standa,rd 'set of REDUCE operatrons, o

S ¢ inclusion of several procedures 1mplement1ng the mlssmg opera.txons They can be’.
~ written in the LISP language, which REDUCE is-based on. However, this method B
‘ does not extend the avmlable data types snd the stsndard operstxons wrth them, i

. creatxon of a “user packsge extendmg the REDUCE syntax [2]

" We hnve chosen the second method of extenslon as the mlnlmal one. The descrlbed‘ o
o - package of procedures has been written for REDUCE versions 3.0 sncl 3.3.:Its sxze is
npproxrmately 2000 lmes of code, there are 80 procedures mcludmg the aulemry ones -

2 Phy_sical rnodel

2.1 Strong interaction Sl ‘
The notable achievements have been obtained in description of meson processes at en-
'ergles E <1GeV based on chiral Lagrangfans. For the first time they were obtmned

in 1960s—\705 as the group theory realization of symmetries of strong and wenk inter-

actions [3]. The more contemporary treatment of chiral Lagrangians .as-a low-energyf e
limit of quantum chromodynsmrcs (QCD) has been developed in the approaches ba.sede Y

on the quark bosomzatlon npproach [4]
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Direct calculation of quark determinant leads to effective mesonic Lagrangian
of the {ollowmg form in the pseudoscalar sector:

LZS,"D =Lo+Lg+ Lsn ‘ (1)

. ,
Lo=— 2"_ tr(L,L*) (kineticr term) " (2)

_ 1 1 2 u :} 4 . .
Lg = e tr {2 (Lyy L) + (L.L*) (r ‘mteractlon) | 3)
2 . ‘ )
Lsg = ﬂ’—tr(MU +h.c.) - (chiral symmetry breaking). 4)"

Here Fp = 93MeV is the bare constant of # — uv decay; L, = (8, U)U; U =
exp {JCQ} e=Y%, 7-/\.<p, is the meson matrix for the nonet of pseudoscalar fields
Pi (' =0,1,. 8)1 ) ’

AR K
%= o -Zizam K|, (5)

K- K o

A; are U(3) group generators (Ao = \/_ 1), M is the mass matrix chosen in diagonal o

form M = dmg{pu, I“d) } '

For correct description of pseudoscalar nonet masses the following effective La-
grangian is also introduced here

Lg=

16N [t (U -1U*)]’ (6)

accounting for gluonic U(1) anomaly. Parameters u? and a are fixed by the masses
of x, K° K*, 5, o mesons: a = 0.729 GeV?, p2 = 0.0114 GeV?, pu} = 0.025GeV?,
p? = 0.47 GeV>. The corresponding value of the (7-1')-mixing angle is ¢ = 19°:

s | _ cosyp singp n
7o ~sing cosp } \ 7' /.

An additional interaction to the symmetry-breaking term Lgp is involved for
an account of splitting of Fy, Fx constants: '

2
o= _31% tr(M 8 + h.c.), | R0
wnth parameter Az = 0.78 GeV?. R

Lagmngmns (2-4,6-7) accumulate all funda.mental properties of the pseudoscalar
meson nonet physics: spontanecus chiral symmetry breaking, quark condensate exis-
tence, Goldstone bosons and partial conservation of axial current (PCAC), and also
reproduce the p‘-contribution, which reflects the fine structure of the meson interaction.




_* This model can also be extended to include vector and axial-vector meson nonets
and also account for electromagnetic interactions. The details can be found elsewhere,
e.g. see [5].

2.2 Weak interaction

Weak mesonic interactions are described by Lagrangians of the type (current x current).
For example, leptonic decays of mesons are represented by the Lagrangian

G . )
L4 = 72 (cos 6. J, % +siné, J:+'5) ” (8)
where J ¥, J4+5 are the mesonic (V — A) currents, which preserve and break respec-
tively the strangeness, I* is leptonic current. Vainstein-Zakharov-Shifman Lagrangian
is used for non-leptonic meson decays with the strangeness change |AS =1

, 6
L85! = /2 Gp sin 6. cos . 3 O (9)

i=1

where O,g") are the 4-quark operators containing the products of left and/or right
operators; ¢;(p1) are Wilson coefficient functions. The bosonization procedure described
in [5] allows one to formulate the certain prescnptlon for quark currents j, entering
the operators O(")

(quarks) - (mesons)
O:5r5,) — OM™LJrJ:),  i=1,...,4 (10)
:(qrqr)(@Lqr): — :(8,4%)(8.V*):, i=5.

Here J, = V,, — A, are mesonic currents, and the symbol : ... : denotes the normal
ordering. The explicit expression for the corresponding mesonic Lagrangian describing
the non-leptonic K decays have been given in [5].

Current matrix J, can be obtained from strong interaction Lagrangian by means
of the procedure of variation on some external field: ;

§L,(Vy =V, — iny) .

Ju= Ak = = (1)
m

Let us present the formulae for mesonic (V — A) currents corresponding to
Lagrangians (2), (3):

Lo— Jk = -—tr (ML,) : (12)

Lo — Jf =~ tr (W {{Lu, L}, ). (13)

Direct emission of photons in the radiative decays of mesons is described by the
electroweak current which can be obtained from the Lagrangian accounting for strong
interaction with structural photons

k(v)
Ju('f)__

L {,\k 2 Fu(U[@.90%] 4 1)

1 1 ” "
+”—2,\,.[E(U (Fiul@, 8°0°U*] + 8 F,u [Q, 9°6°U*])
=8,F.a 0°U(Q,8U*] - F,. 8U[Q,8,8°U*))
lpw (08U QU +21{Q,8°8.U* &°U}) + h.c.] }
i e?

T15 47 32 s (Foa)' {’\"( 2V QU Q-U{Q" 8,0} ~he)},

Here F,, = 8,A, — 0,A,, A, is electromagnetic field, p = 1 77 m; ~ 380 MeV is the
mean constituent mass of the u, d, s quark triplet. In this formula we neglected the
terms depending on the current quark mass.

3 Calculation stages of process amplitudes

3.1 Transition to Lagrangians in terms of meson fields

Lagrangians introduced in the previous section are expressed in terms of matrix U,
what reflects the chiral invariance of the theory. For calculation of some concrete
process amplitude we need to express Lagrangians in terms of the real meson fields
with the help of substitution
_ iv/2 1\/_ 1.,
U—»exp{—Fo—Q}—1+ T —F-EQ’ +..
We should also have an opportunity to perform differentiation on space-time 4-vectors
z,, of product of non-commutative matrix-operator ®, which appears yet as symbol,
elements being not substituted. There is also necessity for a set of procedures to
carry out Hermitian conjugation of such products and cyclic permutations of non-
commutative operators under the trace operation.
The method of representation of required symbols in REDUCE is shown in Table
1. All transformation sequence:z shown in Table 1, can be realized by the substitutions
defined in file “utofi.red”. Kinetic Lagrangian calculation up to the 4th order on ¢
is given in Example 1.



Table 1
Mathematical REDUCE representation, transformation sequence
notation
i) noncom fi; £i() .
U =exp {'—i.‘{’j—@} u:=taylor (exp(i*sqrt(2) /£i0*£i()) ,fi(),<order>)|;
9.2=9, (fi() d mu) — £i(mu)
8,0,% (fi() d m d nu) — £fi(mu) d nu —
£i (mu*nu) .
8,6,% (fi() d nu d mu) — fi(ou) d mu —
£i (mu*nu) .
8%0,% = 6~0,6,% (£fi() d mu d nu d nu) — (fi(mu) d nu d nu)
. — (fi(mu*nu) d nu) — £i{muknu**2)
8, (%%) — ¥, + | (£iO**2 d mu) — £i()*£ilmu) + £i(mu)*£i()
$,%!
matrix M mm()
matrix @ qq()

Example 1?

in "utofi.red"$
in "taylor.red"$
let ord»»*b=ordb, ordb=0;

u := taylor(exp(i*sqrt(2)/fO*ord*fi()),£i(),4);

4 4 3 3 ‘ 2 2 2
(FI() *ORD - 2*FI() *SQRT(2)*0RD *FO*I - 6+*FI() *ORD *FO + 6

U :=
3 4 4
*FI()*SQRT(2)*DRD*FO *I + 6%F0 )/(6*FO0 )
w := hermit u;
4 4 3 3 2 2 2
W := (FI() *ORD + 2+FI() *SQRT(2)*ORD *FO*I - 6+FI() *ORD *FO - 6

3 4 4
*FI()*SQRT(2)*ORD*FO *I + 6*F0 )/(6*F0 )
lagr0 := fO**2/4*traceshift( (u d mu) # (v d mu) );

2 2 2 2 2 2
LAGRO := (ORD *( - FI(MU) *FI() *ORD + 3*FI(MU) *FO0 + FI(MU)*FI()

. ?In this and the following examples lower case letters stand for REDUCE input and the upper case
ones stand for REDUCE output.

2 2
*FI(MU)*FI()*ORD ))/(6*F0 )

Here the following functions from “utofi.red” are used:
taylor(X,Y,N) - expands expression X into Taylor series on Y up to the N-th order;
hermit (X) — calculates Hermitian conjugation of expression X;

traceshift(X) - transforms expression to the unique form using the possibility to
perform cyclic permutation of the products of matrix symbols under the trace
operation, e.g.

traceshift (£i(mu)*£i()*fi(nu)) — £i(mu)*2i()*£i(nu)
traceshift (fi(nu)*fi(mu)*£i()) — £i(mu)*£i()*£i(nu).

orderind(X) - transforms expression to the unique form using the possibility to re-
designate the dummy indices, e.g.

orderind (£fi (mu)*£i()*£fi (mu)*£i()) — fi(mu)*fi()*fi(mu),*fi()
orderind (fi (nu)*£i()*fi(nu)*£i()) — £i(mu)*£i()*£i(mu)*£i().

variate(E,X,I) -variates expression E on non-commutative symbol X, which can op-
tionally have some indices.dices. The last argument is the list of dummy indices
in X. The first example below is illustrated by the corresponding mathematical
notation:

§(trn,2,9) _
“a T
variate(eta(mu)*£i(m)*£i(), eta(m), ’(m)) — £i(mu)=*£i()
variate (£i(mu)*eta(m)*£i(), eta(mu), ’(mu)) — £i()*£i(m)
variate(eta(nu)*fi(nu)*£i(), eta(m), '(mu)) — £i(mu)*£i().
Since REDUCE does not allow argument specification for matrices, a special

procedure fiprint is required to transform calculation results to the form suitable

for substitution of elements of the matrices &, M, Q (see an example of its work in
Example 2).



‘Exanuﬂe2

in "utofi.red"$ symbolic (filist:=nil);
fiprint (3*ord#**4*fi(mu)**2*fi(al**2+mu*nu)*£i())$
DEFFI(MU) ;

DEFFIZNU AL, AL ,MU);
DEFFI()

2 4
3*FIMU *FINUALALMU*FI*ORD

Output of procedure £iprint is designated to be included into the program text for
generating matrices such as ®, 0, %, 8,0,0,0, 9, etc. and their multiplication with some

coefficients.

3.2 Calculation of process amplitudes

In order to obtain the explicit form of Lagrangians in terms of meson fields one should
make substitution (5). While doing this, it is enough to retain only operators of
particles taking part in the process specified, e.g. for the pion charge-exchange process
atr — x0x0 it is enough to set P as |

0

= ™t 0

z 0
b= r I 0
0 0 0

After definition of elements of & and its derivatives one can calculate Lagrangian
using the standard REDUCE opportunities to evaluate products and traces of matrices.
The obtained expression describes all processes with participation of specified mesons.
For our example, these ones also will be #¥x® — #x*x° x*xt — x+xt, etc. The
concrete process is fixed by the procedure setstate, having for its argument a product
of particle operators, which were “transformed to the final state” with the usage of
crossing symmetry (i.e. each particle in the process initial state is replaced by the
corresponding antiparticle with the opposite momentum sign). Therefore, the above
example can be written as follows: 7=(—p;1) - #*(—p2) - 7°(ps) - #°(pa). Since REDUCE
requires operator argument to be a scalar one, each momentum has to be multiplied
by a “unit” vector ee. Using particle names listed in Table 2 one should specify this
process for REDUCE in the following way: |

setstate(pim(~-pl.ee)*pip(-p2.ee)*pi0(p3.ee)*piO(p4.ee));

After this, matrix & and its derivatives can be defined with procedure deffi. See

example 3 for the listing.

=

- Table 2
Particle [ [ Kt K- (K |K | 97| 7
REDUCE name | pip | pim | piO | kap | kam | kaO | 2kO | eta | etp | pho

Example 3°

on nero; off nat; in "mepmec.red"$ in "order.red"$

setstate(pim(-pl.ee)*pip(-p2.ee)*pi0(p3.ee)*pi0O(ps.ee))$
def£i0()$ deffi()$ £fi;

MAT(1,1) := (PIO(1)*SQRT(2))/2%
MAT(1,2) := PIP(1)$ .
MAT(2,1) := PIM(1)$

MAT(2,2) := ( - PIO(1)*SQRT(2))/2%

deffi(mu)$ fimu;

MAT(1,1) := (PIO(EE nu)*san(z))/zs
MAT(1,2) := PIP(EE.MU)$

MAT(2,1) := PIM(EE.MU)$

MAT(2,2) := ( - PIO(EE. uu)*san(z))/zs

deffi(nu)$ finu;

MAT(1,1) := (PIO(EE NU)*SQRT(2))/23
MAT(1,2) := PIP(E

MAT(2,1) := PIM EE s

MAT(2.2) := ( - PIO(EE.NU)*SQRT(2))/2$

defti(mu.nu)$ fimunu;

MAT(1,1) := (PIO(EE. HU*EE NU)*SQRT(2))/2$
MAT(1,2) := PIPéEE .MU*EE.NU) $

MAT(2,1) := PIM(EE.MU*EE.NU)$

MAT(2,2) := ( - PIO(EE.MU+EE.NU)*SQRT(2))/2$

In order to obtain Lagrangian describing the given process, one should select the
Lagrangian terms with the particle operators in the required powers (in our example
it is (7= - @t - (1r°)z)). This operation is done in the procedure evalfilter. To
calculate the amplitude one should match each operator in the Lagrangian term by the
identical operator in the process state and feplace the differentiation of the former By
the momentum of the latter (with coefficient #). It is done by the procedure evalfinal
having Lagrangian as its first argument. The rest arguments (if any) are indices to be
contracted in the result. Hence, Lagrangian £ = n~(8,7%)(8,0,7°)(8,7°) will give the
amplitude M = 1-(—ipd)-(ip - ip})- (ip}) = —(p* p*)(p* p*) (see Example 4 for the
listing).

3pip(1) is equivalent to pip().



Example 4 (continuation of the previous one)

amp :=pim() *pip(mu.ee)*pil (m.ee*nu.ee)*pi0(nu.ee)$
ampl:=evalfinal (amp,m:,nu);

AMP1 := -~ P2.P3+%P3.P4$

amp2:=evalfinal (amp,m) ;

AMP2 := -~ NU.P3*NU.P4%P2.P3$
amp3:=evalfinal (amp) ;

AMP3 := - MU.P2+MU.P3*NU.P3*NU.P4$

If there are identical operators in the specified state, the obtained amplitude is to be
symmetrized on these operators’ momenta (see Example 5).

Example 5 (continuation of the previous one)

amp4 :=symmetrize ampl;
AMP4 := - P3.P4*(P2.P3 + P2.P4)$

The procedures used above are defined in files “ltome.red” (Lagrangian TO
Matrix Element) where general procedures are defined, and “deffi.red”, where there
are procedures for the work with matrix & of our particular model. Both files can be
loaded by loading single file “mepmec.red”.

Let us also mention other useful procedures in these files.

diffind(E,I) - differentiates expression E on index I:

8, (nt -8,77) — Gt Gm + wt-8,0,n

diffind(pip()*pim(mu) ,nu) — pip(nu)*pip(mu) + pip() *pim(mu*ﬁu) .

evalwithindices(E,I1,I2,...) - returns expression E with indices (I1, I2,...)con-
tracted (any number of indices can be specified). This procedure allows one to
satisfy the REDUCE requirement, that at any calculated expression all declared
indices should be contracted: indices can be initially declared vectors, and then
this procedure can be used, as it is shown in Example 6.

matrixdefine() - defines the explicit form of SU(3) generators J;, and also the mass
and charge matrices of quarks. )

10

Example 6

in "ltome.red"$ vector pl,p2,mu;
parti:=pi.mu$ part2:=p2.mu$
evalwithindices(parti*part2,m);

P1.P2

3.3 Photon inclusion to the calculation scheme

To expand the calculation scheme for the work with photons one should provide a
place in REDUCE particle operator notation for specification of photon polarization (see
Table 3). The Lorentz condition for photon (8,4, = 0) and its masslessness (8*A,=0)

Table 3

Mathematical notation | REDUCE representation
A, pho (zmu)
8,0, A, pho(mu,al*nu)
F,. £ (mu,nu)

can easily be defined by the corresponding substitutions. A small enhancement of
procedures setstate, evalfinal and symmetrize is also required.
There is also a new procedure to determine the number of mesons and photons.

Let us consider the process K+ — «+x%yy in Example 7.

Example 7

in "mepmec.red"$ ‘
setstate (kam(-ka.ee)*pip(pl.ee)*pi0(p2.ee)*pho(p3.ee)*pho(ps.ee))$
setogerclass()S

NFI=3 NPHO=2

Expansion of the calculation scheme by vector and axial-vector mesons is also

a straightforward one.

11



4 Conclusion

Summing up, we can recall the following features implemented for REDUCE:

o means for representation of the particle operators (with derivatives and polariza-
tion) and matrices of them;

¢ means for variation on some tensor structure, Hermitian conjugation, cyclic per-
mutation of non-commutative symbols under the trace operation, Taylor series
expansion, etc.;

o means for operating with matrices which depend on some arguments;

¢ means for selecting the terms responsible for some concrete process from Largrangian,
consisting of various boson operators;

o means for calculation of amplitude from Lagrangian (with amplitude symmetriza-
tion on identical particles);

o our model specific definitions (matrices, particle properties, physical constants,
decay kinematics, etc.);

o some other utilities (for calculations with 4-vectors, sorting procedures, etc.);

o using all this, we provide the procedures for calculation of amplitudes from strong,
weak and electromagnetic Lagrangians in chiral QCD model and also of bosonized
currents and Lagrangians.

The described package of procedures allows to calculate the amplitudes of var-
jous processes by simple specifying the particles involved and their momenta. The
simplified version of procedure strong implementing the strong Lagrangian (1) for
4-meson processes is shown in Example 8. After the procedure definition one can
calculate the amplitude of, say, #*x~ — x%2° scattering by command

strong(pim(-p1.ee)*pip(-p2.ee)*pi0(p3.ee)*piO(p4.ee));

The similar procedure can also be written for the weak and electromagnetic interaction.

Example 8

in “mepmec.red"$ linelength 79$
procedure strong arg;
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% Evaluates matrix element of the strong transition.
% Included Lagrangians are: Lo, Lg, LsB

;: Not included: Lrachyon, Lwzw, Lsp, Lc

begin scalar amp;
setstate arg;
def£i0 (); deffi (); deffi (mu); deffi (nu);
amp:= 1/(6%f0**2)*trace(+(fimusfi-fisfim)*fimu*fi
+1/2%mm*£i%*4q
+3/ (8% (pi®£0) *»2) »(fimusfinu)**2) ;
return symmetrize evalfinal(amp,mu,nu); )
end$ % Procedure STRONG is now defined. Let us use it.

factor £0; on time;

strong(pim(-pl.ee)*pip(-p2.ee)*pi0(p3.ce)*piO(ps.ee));

2 2
(2*F0 »PI »(4*P1.P2 + 2*P1.P3 + 2*P1.P4 + 2+P2.P3 + 2+#P2.P4 + 4*P3.P4 +

MUU2 + MUD2) + 3%( - P1.P2%P3.P4 + P1.P3*P2.P4 + P1.P4*P2.P3))

4 2
/(12%FQ *PI )
TIME: 18721 MS

The described technique have been used for calculations of amplitudes of K —
27, K — 37 decays {5). The results describe branchings and slope parameters of these
decays, and also predict the parameters of direct CP violation — asymmetries for
charged kaon decays, and the modification of Li-Wolfenstein relation for €, _, parameter
for K° — xtx~xn° decay. The direct CP violation has been fixed here by the results of
NA31 experiment [7]

’ Re(€'/€) = (3.3 £ 1.5)- 107,

The usage of computer algebra has enabled us to take into account the following effects:

o p' contribution to strong interaction Lagrangian and the corresponding contri-
butions to weak currents (utilization of the results of bosonization of quark La-
grangians);

o renormalization of Weinberg-Salam weak interaction by hard gluons leading to
Shifman-Vainstein-Zakharov type Lagrangian;

¢ pole diagrams;
® violation of isotopic symmetry leading to (r—-7')-mixing;

® meson rescattering by the method of superpropagator regularization of one-loop
- diagrams.

13
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Ucnonb3oBaHue  cucTembl REDUCE anA BbwucneHuH

"Huakoauepremueckux npoueccoB aMNANTYA
B Kupaanou MOAEHM KBaHTOBOM xpOMonMHaMMKu' .

\

Onucusae‘rcn pacLuupeHMe BO3MO)KHOCTEM REDUCE AnA Bbwucneku

paanwmblx CUNBHBLIX 1 cnabbixX - NPOUECCOB ANA  HOHeTa nCEBAOCKaanHbIXU'
' MEe30HOB, ONUCbIBAEMBbIX KNPanbHbIMM narpaHxuaHamu ¢ BbICLINMN NPON3BOA- - |
" HbIMM. rnaBHbIMM HeTpMBMaan&bIMM TpYAHOCTAMM ABNAIOTCA NONy4YeHue amnnu-

TyAbI npouecca o narpaHXuany, onucsIBalollemy CMhbele n cnaGble npoueccsl,

a Tak>+<e npeononeHMe HeKOTOple HEAOCTaTKOB REDUCE TaKnx Kak oTcyT- "
VCTBMe aprymeHToB 'y Tna AaHHBIX mMatrix u HEKOTOpbIX dmauqeckux onepauuu "
*'c onepatopamu qacmu “OnucbiBaemblii -naKert npoueayp nossonAet BBIYUCNATH

f'amnnmym,l CManbIX ¥ cnabbix npoueccoB rlpOCTblM yKasaHnem yqacTByroumx ‘
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P
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: :Bel kov A A Lanyov A V , St
~ REDUCE Usage for Calculation of Low Energy
4'Process Amplltudes |n Chlral Qaco Model

i "~"Phy5|cs J|NR

We descrlbe the extensuon of REDUCE capabllmes for the caIculatrons

1 of varlous strong and weak processes-in- the pseudoscalar meson ropet” reglon, .
governed by ‘the chiral ‘Lagrangians wrth higher derlvatlves The main non-trivial -
- difficulties are to.obtain the process’ amplltude from the Lagrangian, describing -
~the strong. and weak interactions, and also to .overcome some REDUCE deficien-
_cres such as the lack of arguments in the matrix data type ‘and of some physrcal )
‘ ,operatlons with - the partlcle ‘operators. This package of. procedures aIIows one.
: :‘, -to calculate the amphtudes of the strong and weak processes by s1mple spemfylng :

' ~the partlcles mvolved and therr mornenta : : :
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