


Introduction

Recently we have shown {1,2] that the continuous analog of Newton's method [3] to-
gether with the continuation method [4] can be used successfully for the computational
investigation of dynamic properties of quarks in a hadron by means of the Swinger-
Dyson (SD) equation with the oscillator potential. The numerical scheme reduced the -
solution of the nonlinear differential equation to the solution of a sequence of boundary
value problems for linear ordinary differential equations by Newton iterative scheme
with special choices of iterative parameters and initial conditions for the iterations.

In this paper we apply a modification of Newtonian iterations [5] with the contin-
uation method for solving SD integro-differential equation describing the self-energy
of the quark with arbitrary values of both the current quark mass(m®) and coupling
constant (a) of the Coulomb potential that together with the oscillator potential con-
tribute to the integral kernel of the equation. As a result, we obtain the computational
scheme reducing the solution of the input problem to the solution of a sequence of
linear differential boundary value problems. This scheme has a convenient algorithm
for a assignment of initial conditions as a function of m®, a due to special choice of the
iterative parameter as a step of integrating the evolutionary equation of the continuous
analogy of Newton’s method. DY SON program for IBM PC/AT computer written
in FORTAN is presented. This program can be used for the study of the dynamics
of quarks forming a hadron as well as for solving the Bethe-Salpeter BS equation de-
scribing the spectra of the bound states of quarks (as mesons, baryons and exotics)

2.Schwinger-Dyson equation for a quark

In the potential quark models inspired by quantum chromodynamics the SD equa-
tion is used as an effective tool for study of the constituent quark dynamics [1,2],
[6]-[14). Usually this equation has the following easy-to-solve form

(Zm — 1)m°cosp(p) — (Z — 1)psing(p) =
1 &%

2/ @ryVip-a Dlsing(g)cosp(p) — %COJtp(q)sinw(p)] (1)

where Z,, and Z are the renormalization constants providing finiteness of the equation
in ultraviolet region (p,q — o00). An explicit form of the potential, V(| p—q |) ,
depends on the used model. For a massless (m® = 0) quark equation (1) has been
solved using the oscillator potential,

Voull K 1) = $%(2)28(0) @)

with the phenomenological parameter V; defined from light meson spectra 7). This
potential yields no ultraviolet divergency that is Z, = Z = 0. Equation (1) with
m® = 0 and (2) takes the form of sine-Gordon type differential equation, the numerical
solution of which has been obtained in ref [7]. This equation with nonzero bare quark
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mass, m® # 0, in the oscillator potential approximation has been solved in refs [2,13]
using the iterative scheme (with a continuation of the parameter m®) based on the
continuous analogy of Newton’s method CAMEN.

Application of potential (2), indeed, is restricted to only light quarks, m® < (:‘;Vo)}.
The ”physical” potential adequated for describing all quarks has an additional Coulomb
term,

V(I k)= Vel | k ) + Vear(| k ]), (3)
where
Veull k) = 355

Equation (1) with potential (3) is the integro-differential equation which can be
written as

Fro ol(p)] = Foit [0(p)] + F2 o[(P)] (4)

where

m2so(P)

moale(P)] = ¢"(p) + %w’(r) — 2psing(p) + ——=-— + 2m°cosyp(p) ,

7/

F3 le(p) = cow(v){ : qung(p,q)lsiw(q) = #]} -
sin(p(p){%% 7dQ%Q1(Py q)[cosp(q) — 1]}

+ 2+ 2
Qo=m 2], Q=L Qu(pq) -1
P—gq q

the prime means the derivative over p =| p |. Here the following renormalization
constants are used:

IR & R R
2/ (Zx) ol(lp Q|)\/——(—o)—2,
1 q
z = 2/(—%—),14.,,(|p~q|)pq
The corresponding boundary conditions are

p(0) = ()

T

p(c0) =0. (8)

In this paper we represented CAMEN scheme and DY SON program to solve prob-
lem (4)-(6) using the iteration scheme based on the continuous analogy of Newton’s
 method combined with the continuation method.

(1}

2.Computational scheme.

In order to solve the boundary value problem (4)-(6) in the region 0 < p < co by
means of a numerical method the asymptotical conditions (6) must be transferred to
the finit boundary Pp,.. of the interval 0 € p < Prog, Praz 3> 1. This task requires
redefinition of the asymptotic formula in the interval (0 < p < o0), and estimation
of accuracy of this approximation. In general, one can carry out such an estimation
only numerically using the results obtained for a range of values of the introduced
parameter, P, '

To redefine condition (6) in Prnsz, we can use a behavior of function (p) at p — co

m°

e(p— °°)~'—m . (7

So the modified for numerical calculations boundary conditions can be chosen as

(0= 3
Nyl = {«p(Pm)— ﬁ ‘ ®)

It is just these conditions that are used to solve the equation by using the Newton
iterative scheme, with three parameters which are m®, and a and P

2.1 Newton iteration scheme.

The Newton iterative scheme is based on the continuous analogy of Newton’s
method [3]. According to it, nonlinear equation (4) is replaced with the evaluation
process over continuous parameter (0 < ¢ < oo)

Fi lioo,tN 222D — o (0]
Niptn 22D = Nielp,Oes... 9)

with (p,0) = wo(p) (in the initial approximation) where F}, ,[¢(p)] , N'[¢]p=P... ate
Frechet derivative, given in Appendix A.

In ref. [3] it is proved that evalution process (9) in the limit of ¢ — oo converges,
from the successfully chosen initial function (o, to a solution of initial equation (4) if
the following conditions are provided: i) in a local region there exists any nontrivivial
solution of the initial equation ; ii) in a neighbourhood of this solution the function
Fro o[ip(p)] is "smooth” ; iii) there exists the bounded operator (F)~1. .

Using Euler’s method for discretizing process (9) fo, tay1 = tx + 7, (k= 0,1,2,...)
one gets the iteration scheme which is a generalization of classical Newton’s method

Fro olou(P)I9 = — Frno a[ioa(p)] e(p,ts) = px(p) »
.A/’19}, = —.A/[(ph] ' (10)
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Y41 = Pr + Tk

where 7y is the iteration parameters (the Euler method integration step) by choosing
which one can provide an optimal condition for a convergence of the iterative process
[3,14).

Thus, the Newtonian iteration for problem (4) and (8) consxsts in the solution of a
linear problem (10) at every k-step.

2.2 Difference scheme

Equation (10) is a boundary value problem for linear in homogeneous integro- dif-
ferential equation for 9. Straight application of a difference appraximation with a
quadrature formula of to this equation would lead to a linear algebraic equation witk
the completed matrix. However, such a way may require a large memory capacity ofa
computer and provide low speed of computations Mega flops. To avoid this defect we
rewrite equation (10) in the following form

Fl Jlox(p)0e + F3 L [oa(Pn = — Fono alton] — 'ZI,C.[‘Ph(P)l"h-l , (11)

N, = -N[pi] (k=0,1,2,..) (12)

where the notations of Apendix A are used. Sufficient difference of this equation from
equation (10) is that integral operator Fm., . is related to ¥4y (i.e. to the solution of
the previous step, k — 1) but no to 9. As a result, equation (11) at every fixed k-step
is a linear in homogeneous differential equation for Ji(p).

There are several methods which may be used for solving boundary problem (11)
and (12). One of the well known methods is the difference [15,16] Using in equation
(11) the tree-point difference approximation of second order accuracy O(h?), h is the
step of uniform grid: (p, = (r —1)h,n = 1,2,..., N + 1,h = F=sz) we get the following
coupled algebraic equations with a three-diogona.l matrix:

1 Vi(nt1) — Vi(n1
W (”lz(n+l) - 20y + 1’1.(..—1)) +— o (—wz—h—(—)) —2pncospa(pn)Vi(n) +
2 . r
+ ?cosngl,(p,.)ﬂ;,(,,) — 2m®singy(pn)a(n) + F,,E:.?[‘Ph(l’n)]”h(n) =
— Froalon(pa) Bl = Flraa o[0a(pn), ]9t (13)
N, = ‘N(‘Ph) (14)

where Fipo o[0i(pn), ] and F'3 . [0x(pn), B] are the discrete quantities obtained from
the operators F and F(21), respectevely (given in Apendix A) by using the the Simpson
formula. Whereas the problem (13) and (14) can be solved by means off the alternating
direction implicit method.

Thus, to solve problem (4)-(6) with the physical parameters m® and a we arrived at
the following procedure: by some manner one has to choose the initial approximation

{po(pn),n = 1,2,..., N} (which will be discussed in next Subsection), and solve coupled
equations (13) with (14) to obtain the first step solutions which will be used as initial
approximation in order to obtain the next step solutions {(pl(p,,), n=12,..,N}. Then
these solutions will be used as initial approximation in order to obtmn the next step
solutions {pa(ps),n =1,2,..., N}, and so on.

Such an iteration process is continued to achive either the given total number of
iterations (in the case of convergence process) or a required accuracy, for example,
controlled by the discrepancy condition

8 =|| Fono,a[ioan(pn)) ”< € ' (15) .

where gy is the difference scheme solution of problem (13) and (14) corresponding to
k - iteration step, € > 0 is the given norm of operator F.

Iteration parameter 7, can be given optionally or chosen according to a definite
rulle. Here we represent some algorithms for choosing 7 which are successfully used in
practice [17] 1)A simple algorithi is a choice of 7 = 7o that corresponds to a constant
step of the integration by Euler’s method. This algorithm with a small enough 7o is
usually used when one can not define the good initial approximation, for the purpose
of obtaining a convergence from this approximation. Nevertheless, the expected con-
vergence is too slow. Notice, when 7 = 1 we have classical Newton’s method. ii)The
parameter 7, can be chosen as )

o min(1,2n) if & <8
k= maz(ty, 25L) if & 2> e

where & is the discrepancy with respect to a uniform grid metric. This algorithm is
convenient for the sucessfully chosen initial approximations. It provides speed conver-
gence, however, may be unstable far from the solution. iii) A more stable algorithm
[17] which we used in DY SON program is a choice of 7

| min(1,ub=y if g < b (16
e = ma:t:(-ro,—;“-‘l) if b2 bk-1, )

Such an algorithm provides a convergence for a large class of initial approximations.

2.3 Method of extrapolation over a parameter

The Newtonian scheme provides a convergence to the solution of equation (4) if
only the initial approximations are close to the solution. Therefore, one ha.s to define
a successful initial approximation.

In solving the problems depending on physical parameters (like mqo, ) the choice of
the initial approximation can be simplified at the asymptotical values of the parameters.
Such a continual transition [4] from a simple task to complicate one is allowed in the
methods of extropolation over parametery [15,18]. An application of these method
can be considered as a possibility of extension of a convergence region of the iteration
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method [18], that is as a manner of obtaning more success initial approximations by
going over the parameters [1,2].

In more simple realization of a extrapolation method [1,2,18] one uses a natural
dependence of the equations on the parameters of the investegated model. In our case,
equation (4) contains two such parameters,m® and a (V; is fixed).

The solutions to problem (4)-(6) for the given values of the parameters, m® = M
a.nd a = A, in DY SON program we used the following way. The investigated intervals

of the parameters, 0 < m® < M and 0 < a < A, are divided by nodes:

{md%i=1,2,...,I,m} =0,m} = M}, amn

{a;;i=1,2,..,J,01 = 0,a; = A}. (18)
First, in integro-differential equation (4) with boundary conditions (5) and (6) one puts
a = 0 and solves the reduced differential equations for the range of parameters, (17),
using difference scheme ((13),(14)). It is known that nodes m? one can by chosen so that
for a given m® = mJ the iterations converge to a solution from the initial approximation
which is solution to problem ((13),(14)) in m® = m?_, [18]. The calculations end up
when the corresponding subroutine of program DY SON obtains the solution 4, in
m® = M and a = 0 with the required accuracy (15). Then, using the solution i, as
the initial approximation, one repeats such a procedure over a set of the parameter a
to achieve the required accuracy.

2.4 Analisis of the calculation procedure and numerical results

In DY SON program the system controlling the calculation procedure is provided.
The numerical solution of problem (4)-(6) involves the following parameters:

m?® and a is the physical parameters included in the equation.

P,a: is the parameter reducing a singular.boundary problem to a finite region
problem;

h is the step of the difference scheme

k is the number of the Newtonian iterations.

For estimation of an accuracy of the numerical solution the following notations are
used:

#"(p) is the exact solution to boundary problem (4)-(6);

#(p, Pmaz) is the solution to the problem representing a finite region approximation
to (4)-(8);

(P, Prmazy h) is the exact solutlon to difference problem ((13),(14));

©(p, Pmaz, b, k) is the approximation solution of problem ((13),(14)) obtained by
means of k Newtonian iterations.

Then, for the grid metric the following estimations are valid

Il #(p) = (P, Prmaz, b, k) ||

6

| °(p) — @(p, Pmaz) [| + || ¢(P, Prmaz) — ¢(P, Praz, B) || +
" ‘P(P; Pma:, h) - 'P(P) Pma:y h) k) " . (19)

a

1

From ref. [3] it follows that

Il ¢(p, Pmaz) — (P, Pmuyh),lls Gk, C > 0 >
| #(P Prazs b) — (P, Pmaz; b, k) [[< Cabic C2 >0 - (20

with
mnh=0

where 8 is the discrepancy resulting from the substitution of the approximated solution
@(P, Pmaz, I, k) into the grid boundary problem. Concerning the first term on the right

side of estimation (19) it is natural to suggest that

plim [[9°(p) = @(ps Prec) lI= 0

However, it is hard to get quantitative estimations, and the behavior of this quantity
(the first term of r. h. s. of (19)) can be analyzed only by the results of calculations
performed for a rising values of F,,.. Consequently, it is advisably to choose the
calculation scheme parameters Ppo, and k so that

I ¢°(8) = (P, Prmac, b, k) ||~ CB2, (21)

This allows one to correct the numerical solution, ¢(p, Pmez, &, k), by Richardson’s
extropolation [19]. In Tables 1-3 we quoted the numerical results displaying the con-
vergence of the difference solutions for various values of a when other parameter, m®,
being fixed. From the tables we see that the parameters of the calculation scheme
(Prmazs ¥, 7, and h) are fixed so that the convergence corresponds to estimation (21).

We have tested the convergence of the grid solution ¢(p, Pmsz, h, k) for the variations
of Pras (Prmac = 6,7,8), and obtain the agrecment of the results up to order 102,

In figs 1 and 2 the solutions of the SD equation and the dressed” quark energies
(defined Appendix B) for several quark masses and a = 0.2 are depictured.

3. The structure of the program DY SON

The considered above scheme of the numerical solution of problem (13)-(14) is
realized DY SON program, in FORTRAN, and calculations are performed by CDC-
6500 and IBM PC/AT computers.

In the main program, DY SON, the following parameters should be indicated :

N -is the maximum dimension for all the arrays are being filled by values of lattice

.nodes with the given steplength, H.

EPS -A small quantity on that a iteration process of finding of the initial approx-
imation is end up.

AM -is the physical parameter (the mass of a bare quark)

ALPHAS -is the physical parameter (the coupling constants of the Coulomb po-
tential)



The subroutine INFUN that should be called CALL INFUN gives the initial
algorithm of calculation of the initial approximation, and it provided with the print
options. To call this subroutine, with

CALL NEWW1 (To, EPS, ITER, MPR, NHIT, LST, IBT)
the following parameters should be specified:

TO -is the initial step, 7o = 0.1.

ITER -is the number of ending of the Newton iterations.

MPR,NHIT -is the whole numbers indicating the print options

LST = 3 -is the choice of 1 (sec,(16))

IBT -is the key for using the switching function (1 —e™):

= 1, the function is included;
= 0, not
The subroutine DELT A1 calculates the discrepancy and used as
CALL DELTA1 (N, H, DEL, RDEL),
which contains the following additional input parameters:
DEL -is the quantity of the discrepancy
RDEL -is the quantity of the node in which a maximal deviation is achived.
The subroutine PROGON1 realizes the method of progonks, using as
CALL PROGON1 (BETA)

BET A -is the value of the switching function.

The subroutine TAUK A calculates the iteration parameter 7, using as
CALL TAUKA (To, TK, TKM1, DELK, DELKM1, LST)

an additional input parameters are

TK -is the iteration parameter 1,(16)

TK M1 -is the iteration parameter 75-;.

DELK -is the discrepancy, ;.

DELK M1 -is the discrepancy, 8.

The subroutine DERIV E calculates a devivative of the function ¢(p) with accuracy
of h?, using as

CALL DERIVE (N, X, Y, DY),

an additional input parameters are

X(N) -is the lattice nodes.

Y(N) -is the values of the function, ¢(p), at nodes.

DY(N) -is the derivatives of the function,y’(p).

The subroutine SIM calculates an integral by Simpson’s rule with an accuracy of

O(h*), using as
CALL SIM (H, N, Y, RES)

an additional input parameters are

H -is the step of the integration

Y(N) -is the integrand function

RES -is the value of the integral

The subroutine ENERGY calculates the quatk energy, E(p), defined in Appendix’
B, using as CALL ENERGY

'
'
1
;

SN

4. Conclusions

We proposed the numerical method for solution of the SD equation with the poten-
tial Vor? — a/r. This equation is transformed to the value boundary problem for the
integro-differential equation depending on the physical parameters (m° and a). The
method consits the iterative scheme of the continuous analogy of Newton’s method. In
this scheme in order to solve the problem (4)-(6) with the given accuracy one has to
choose the grid parameters (h , Pnaa) by solving the problem for subsequent values of
these parameters.

For the iterative parameter we used expression (16) which requires a minimal num-.
ber of the iterations. We used the method of a continuation over the parameters (m°

and a) which provides an extantsion of the convergence region of the iterative scheme.

We tested the proposed method on the exactly solvable models. The method can
be used as a powerfull tool for study the nonperturbative phenomena of QCD.
The authors would like to thank T.Strizh for helpful discussions.

Apendix A

The kernel of integral operator FJ, [¢(p)] is singular one. Therefore for numerical
calculations it is convience to represent in the following form

F@) = p@) 4 p(2)

where

Pruas

F&) — -;%{ [,/ dqQo(p, 9)[W22(p, 9) — Waa(p,p)] — %Wu} )

FO? = £(p)Wn(p,p) ,

Wai(p,q) = —{cosso(p)[qsmso(q) mo]‘-"’“P(P)[ (cow(q)—l)]},

Pras
Wa= [ doglcosple) 1) ;

Praesx

L) = [ Qu(pi9)dg = (P + Prax)n(p + Prae) + (b = Prnaa)in(| P~ Pz ) 3

Then the Lh.s. of equation (9) can be written as

F'(p,tp,mg,a)ﬂ =(F{+ F, + F,)

9



— de
where § =

F{9=9"+ %19’ — 2pcosp(p) + %cos?tp(p)ﬂ — 2mgsinp(p)? ,

Pra . . .
= %:‘{ / Qo(p, fl)[szl(P, q)9(p) + Waz(p, q)3(q) - szs(P)i’(P)] + %W-ﬂl} ’

Fly = Wans(p)L(p)(0) ;

Wan = —--;;{sinsc(p)[qsiw(q) — my) + cosp(p)[E zZ,(Iz(6¢>st;°(<1) - 1)]} ;

Wyss = %{chw(p)ww(q)f 7 + 2 ing(p)sing(a)}

Wass = cosp(p) + ?siw(p) ,
Wan = /d‘l‘l-’imf’(‘l)'.‘/(Q) )
0

Apendix B.

The energy of "dressed” quark is defined by

E(p) = Eoue(p) + Eca(p)

E,..(p) = pcosp(p) + mosiny(p) — %lw’(v)]2 - C_o%z@ ,

Butp) = 2{sinetp) [ Lufer(0) - (0] + 110120 +

coso(p){ [ Laulttpa) ~ #:0)+ 58:6)0) |

8:(p) = psing(p) ~mo,  Falp,g) = L :"2 (cosplg) — 1) +Ba(p) = plcosp(z) — 1) .

2

10
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Fig. 1. The solutions SD equation (in @ = 0.2 ) for the
several values of parameter m? ( the quark mass ).

E (p)

T

Fig. 2. The energy of the " dressed” quark (in a = 0.2 ) for the

variations of the quark mass ( m® ).
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Input Table. 1. The solutions, ¢(p), on gridirons h,h/2 and h/4, where h is the grid
initial conditions parameter, h = 0.06, & = (pn—Pn2)/(Pns2 —Pns) = 4, Praz = 6,
m® = 0.007,a=0
> ] P Ph Phf2 Ph/a o
0.06 1.45037198 1.45024562 1.4502168 4.3983
§olution of a lf‘inding of 0.54 0.642634273 0.643247783 0.643400729 4.0113
linedr _pyoptem | iterative 1.02 0.239167869 0.239576370 0.2396783%3  4.0056
1 = correctrons 1.50 0.8291406BE-01 0.830718428E-01  0.831112638E-01 4.0023
¢ 2.04 0.2457935R2E-01 0.24620797E-01 0.246310793E-01  4.0022
— 2.52 0.89477328E-02 0.895802770E-02 0.896059908E-02 4.0036
Choice of =, 3.00 0.403698301E-02 0.403898628E-02 0.403948504E-02 4.0093
3.48 0.246771076E-02 0.2467939%3E-02 0.246799644E-02 4.0287
K + 1 | 4.02 0.184914786E-02 0.18491122E-02 0.184910337E-02 3.9605
4.50 0.159100327E-02 0.159097661E-02 0.15909697E-02 4.0175
4 4.98 0.142095517E-02 0.142094598E-02 0.142094365E-02 3.9500
< 5.64 0.124689774E-02 0.124689913E-02 0.124689948E-02 4.0000
5.88 0.119283842E-02 0.119284017E-02 0.119284063E-02 3.7500
5.94 0.11797137E-02 0.117971480E-02 0.117971515E-02 3.0000
6.00 0.116666663E-02 0.116666663E-02 0.116666663E-02 0.0000
, |
. 1 Table. 2. The solutions, ¢(p), on gridirons h,kh/2 and h/4, where h is the grid pa-
Soultion of a Finding of ’ﬂ;“e‘e’r =007, o= (pn—pn)/(Prz—rn) ®4,  Prax =7,
linear problem ——| iterative m? = 0.007,a =0
(a=0) corrections
- ] P Ph Phj2 Ph/a a
0.07 1.43044317 1.43027508 : 1.43023765 4.4904
Choice (of . 0.49 0.7069867% 0.707791507 0.7079919%8 4.0149
k 1.05 0.22400124 0.224530503 0.224662602 4.0065
1.54 0.7570637T@RE-01 0.759025291E-01 0.759515315E-01 4.0030
K + 1 < 2.03 0.2511106 5E-01 0.251689311E-01 0.251833908E-01 4.0021
2.52 0.894277170E-02 0.895678WTE-02 0.896029081E-02 4.0043
T 3.01 0.3982481BE-02 0.398510R27E-02 0.398576399E-02 4.0142
¢ 3.50 0.2431764T3E-02 - 0.2432042%0E-02 0.243211095E-02 4.0578
4.06 0.182166020E-02 0.182161015E-02 0.182159746E-02 3.9450
5.11 0.138297083E-02 0.138296(6IE-02 0.138295803E-02 4.0000
5.53 0.1274157403E-02 0.127415417E-02 0.127415336E-02 4.0000
+ 6.02 0.11682938E-02 0.116829338E-02 0.116829376E-02 0.0000
6.51 0.10787446E-02 0.107874663E-02 0.107874710E-02 4.2500
‘/\/\/\/\A’_‘ 7.00 0.100000006 E-02 0.100000005E-02 0.100000005E-02 0.0000
(Continued intil given number of
iterations is provided)
Fig. 3. The iterative scheme o the numerical realization of the solution
of equation (9).
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Table. 3. The solutions, ¢(p), on gridirons k,h/2 and k/4, where h is the grid

parameter, h = 0.06, o = (pn—@ns2)/(Pn;z—Pan) = 4, Praz =6,
m® = 0.007,a = 0.2
P Yh Ph/2 Ph/a 4

0.06 1.45386398 1.45373440 1.45370200 4.0111
0.54 0.661486338 0.662056327 0.662185788 4.4029
1.02 0.255236566 0.255638689 0.255728871 4.4590
1.50 0.929073021E-01 0.930754R1E-01 0.931117386E-01 4.6262
2.04 0.2975842RE-01 0.298122410E-01 0.298233032E-01 4.8645
2.52 0.1177156 4E-01 0.117921019E-01 0.117962351E-01 4.9689
2.94 0.6096735600E-02 0.610732706E-02 0.610952498E-02 . 4.8189
3.00 0.563521404E-02 0.564502509E-02 0.564707769E-02 4.7823
3.54 0.328625250E-02 0.329212495E-02 0.329344603E-02  4.4452
3.96 0.25401395E-02 0.254466012E-02 0.254571741E-02 4.2759
4.02 0.246681343E-02 0.247118971E-02 0.247221743E-02 4.2583
4.50 0.203323620E-02 0.203668652E-02 0.203751400E-02 4.1697
5.04 0.171704323E-02 0.171971589E-02 0.172036455E-02  4.1202
5.52 0.148363062E-02 0.148555330E-02 0.148602459E-02 4.0851
5.88 0.126786297E-02 0.126861653E-02 0.1268802719E-02 4.0456
5.94 0.122016622E-02 0.122057961E-02 0.122068194E-02 4.0398
6.00 0.116666663E-02 0.116666663E-02 0.116666663E-02 0.0000
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Ochmnarorcn nopeHuescKan Kouuenuuﬂ cbuauqecxoro BaKyyma cyuj.em ao-"
'f“aal-me npusnnernpoeannon CMCTeMbl oTcueTa, cBnaaHHoe c HapyLLleHMeM rpyn-’
: a’noaux ‘cBOMCTB oGumx npeoGpaaoBaHMu I'IopeHua Bea- Bpauj.emm u aoamum-
: ‘;‘Hocrb NOCTaHOBKW SKCI'IepMMEHTa no OGHapy)KeHWO HaprJEHMH npuuuuna omo--,
‘,;CMTeanOCTM oﬁycnoeneHHoro TOMaCOBCKOM npeueccueu cnnHa pennmam*rc-ﬁ
_ . T KUX 3neKTp0Hoe Paccmomeuu KOHerTHbIe BapMaHTbl nOCTaHOBKM 3KcnepM- A
(,‘;MEHTa, METOAbl Haﬁmonemm ) naHu oueHKu Tpe6yeMb|x paﬁowx napametpoa e
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-On the Check- Up of the Vlolatlon of the Relatlv»ty S
g Prlncrple by the Investlgatlon of the Local Propertres
of Spin Precessmn of Relauwstlc Electrons Conducted ;
at the. Storage ng S ; ; o u‘;},\.‘ e

- D191.96 |

,‘Lorentz s concept of physncal vacuum; exrstence of"a pnwhged reference
: ;‘frame related to vrolatxon of: group propertles ‘of: general Lorentz s transforma-v~
"f»tlons w1thout rotatlon and- ‘a possibility! of settmg up an expenment to detect
f"gfvrolatlon of the;s prmcrple of relatwnty due to Thomas spin; prece55|on of relatl-r
fwstrc electrons ‘are: discussed; «Specrfrc vanants of the" expenment and methods
«;fof observatlon are consndered the necessary parameters of the devrce are estl-‘,

: mated

AR The mvestlgatlon ias been performed at the laboratory of Superhlgh, o
;;:",Energles JINR ’ ' R Cene s




