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Introduction 

Recently we have shown [1,2] that the continuous analog of Newton's method [3] to
gether with the continuation method [4] can be used successfully for the computational 
investigation of dynamic properties of quarks in a hadron by means of the Swinger
Dyson (SD} equation with the oscillator potential. The numerical scheme reduced the 
solution of the nonlinear differential equation to the solution of a sequence of boundary 
value problems for linear ordinary differential equations by Newton iterative scheme 
with special choices of iterative parameters and initial conditions for the iterations. 

In this paper we apply a modification of Newtonian iterations (5) with the contin
uation method for solving SD integro-differential equation describing the self-energy 
of the quark with arbitrary values of both the cunent quark mass(m0 ) and coupling 
constant (a} of the Coulomb potential that together with the oscillator potential con
tribute to the integral kernel of the equation. As a result, we obtain the computational 
scheme reducing the solution of the input problem to the solution of a sequence of 
linear differential boundary value problems. This scheme has a convenient algorithm 
for a assignment of initial conditions as a function of m0 , a due to special choice of the 
iterative parameter as a step of integrating the evolutionary equation of the continuous 
analogy of Newton's method. DYSON program for IBM PC/AT computer written 
in FORTAN is presented. This program can be used for the study of the dynamics 
of quarks forming a hadron as well as for solving the Bethe-Salpeter BS equation de
scribing the spectra of the bound states of quarks ( as mesons, baryons and exotics) 

2.Schwinger-Dyso_n equation for a quark 

In the potential quark models inspired by quantum chromodynamics the SD equa
tion is used as an effective tool for study of the constituent quark dynamics [1,2), 
[6]-[14). Usually this equation has the following easy-to-solve form 

(Zm - l)m0coa<p(p) - (Z - l)pain<p(p) = 

! / (d3q)
3 
V(I p - q l)[ain<p(q)coa<p(p} - pqcoa<p(q)ainrp(p)) 

2 2ir pq 
(1) 

where Zm and Z are the renormalization constants providing finiteness of the equation 
in ultraviolet region (p,q -+ oo). An explicit form of the potential, V(I p - q I) , 
depends on the used model. For a massless (m0 = 0) quark equation (1) has been 
solved using the oscillator potential, 

(2) 

with the phenomenological parameter Vo defined from light meson spectra [7). This· 
potential yields no ultraviolet divergency that is Zm = Z = 0. Equation (1) with 
m0 = 0 and (2} takes the form of sine-Gordon type differential equation, the numerical 
solution of which has been obtained in ref (7]. This equation with nonzero bare quark 
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mass, m 0 # 0, in the.oscillator potential approximation has been solved in refs [2,13] 
using the iterative scheme ( with a continuation of the parameter m0 ) based on the 
continuous analogy of Newton's method CAMEN. 

Application of potential (2), indeed, is restricted to only light quarks, m 0 :5 (!Vo)l. 
The "physical" potential adequated for describing all quarks has an additional Coulomb 
term, 

V(I k I) = V.,.,(I k I)+ Vco1(l k I), (3) 

where 

Vco1(l k I)= t::-
Equation (1) with potential (3) is the integro-differential equation which can be 

written as 

where 

Fm•,a(cp(p)j = F;.'o~a(cp(p)j + F:,t,0 [cp(p)] 

2 • sin2cp(p) 
F:.'o'a['f'(p)] = 'f'11(p) + -'f'1(p)-2psm'f'(p) + 

2 
+ 2m0 coscp(p), 

• p p 

co1 {2a j"" q . m0 
} Fmo,a['f'(p)] = COS'f'(p) 

3
11" dqPQo(p,q)[sm(f'(q)--' ✓q2 + m02 ] -

1 0 

sin'f'(p)g; j dq!Q1(p,q)[cos'f'(q)-1]} 
0 

Qo = lnl p+q I 
p-q ' 

p2 + q2 
Qi = -

2
-Qo(P, q) - 1 
pq 

(4) 

the prime means the derivative over p =I p I- Here the following renormalization , 
constants are used: 

1 / d3q m
0 

Zm = 2 (21r)3 V.,o1(I p - q I) Jq2 + (m0)2 

1 / d3q pq z = - -V.:o1(I P - q 1)-
2 (21r)3 pq 

The corresponding boundary conditions are 

'f'(0) = ~ 
2 

'f'(oo) = 0. 

(5) 

(6) 

In this paper we represented CAMEN scheme and DYSON program to solve prob
lem ( 4)-(6) using the iteration scheme based on the continuous analogy of Newton's 
method combined with the continuation method. 
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2.Computational scheme. 

In order to solve the boundary value problem (4)-(6) in the region 0 :5 p < oo by 
means of a numerical method the asymptotical conditions (6) must be transferred to 
the finit boundary Pmaz of the interval O :5 p :5 P......,, Pmaz > 1. This task requires 
redefinition of the asymptotic formula in the interval (0 :5 p < oo ), and estimation 
of accuracy of this approximation. In general, one can carry out such an estimation 
only numerically using the results obtained for a range of values of the introduced 
parameter, Pmaz, · 

To redefine condition (6) in Pmaz, we can use a behavior offunction cp(p) at p-+ oo 

mo 

cp(p-+ oo) ~ Jp2 + (m0)2 (7) 

So the modified for numerical calculations boundai:y conditions can be chosen as 

{ 
cp(0) = i 

N'[cp] = P. _ m• • 
cp( ma:o)- ✓r+(m0 )' 

(8) 

It is just these conditions that are used to solve the equation by using the Newton 
iterative scheme, with three parameters which are m0, and a and Pma:o. 

2.1 Newton iteration scheme. 

The Newton iterative scheme is based on the continuous analogy of Newton's 
method (3]. According to it, nonlinear equation (4) is replaced with the evaluation 
process over continuous parameter t(0 :5 t < oo) 

F~o,
0

[cp(p,t)]d'f'~,t) = -Fm•,a(cp(p,t)] 

N'[cp(p, t)] d'f'~, t) p=P-..., = -N['f'(p, t)]p=P-•• (9) 

with cp(p, 0) = cpo(P) (in the initial approximation) where F~0 •0 [cp(p)] , N'[cp]p=P-•• are 
Frechet derivative, given in Appendix A. 

In ref. (3] it is proved that evalution process (9) in the limit oft -+ oo converges, 
from the successfully chosen initial function cp0 , to a solution of initial equation (4) if 
the following conditions are provided: i) in a l.ocal region there exists any nontrivivial 
solution of the initial equation ; ii) in a neighbourhood of this solution the function 
Fmo,0 (cp(p)] is "smooth" ; iii) there exists the bounded operator (F')-1• 

Using Euler's method for discretizing process (9) t0 , t,.+t = t,. + 1),, (k = 0, 1, 2, ... ) 
one gets the iteration scheme which is a generalization of classical Newton's method 

F~o,a['f'1,(p)]t11, = -Fmo,0 [cp1,(p)] 1 cp(p,t1,) = 'f'1,(p) 1 

N''t1,. = -N'['f',.] , 
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'Plc+l = ','k + n.'J9k 

where n. is the iteration parameters (the Euler method integration step) by choosing 
which one can provide a.n optimal condition for a. convergence of the iterative process 

(3,14]. 
Thus, the Newtonian iteration for problem (4) a.nd (8) consists in the solution of a. 

linear problem (10) a.t every k-step. 

2.2 Difference scheme 

Equation (10) is a. boundary value problem for linear in homogeneous integro- dif
ferential equation for t9,.. Straight application of a difference approximation with a. 
quadrature formula. of to this equation would lead to a. linear algebraic equation with 
the completed matrix. However, such a. wa.y ma.y require a. large memory capacity of a 
computer and provide low speed of computations Mega flops. To a.void this defect we 
rewrite equation (10) in the following form 

F:.!o,a['Pr.(p)]t9,. + F.'.;l,a['Pr.(P)]t?,. = -Fm•,a['Pr.] - F.'.;l,a['Pr.(p)]t9r.-1 , (11) 

}l't9,. = -N[r,:,r.] (k = o, 1, 2, ... ) (12) 

where the notations of Apendix A are used. Sufficient difference of this equation from 
equation (10) is that integral operator F12f is related to t9,._1 (i.e. to the solution of 
the previous step, k- 1) but no to t9,.. A; ~a result, equation (11) a.t every fixed k-step 
is a. linear in ho_mogeneous differential equation for t9r.(p). 

There a.re several methods which ma.y be used for solving boundary problem (11) 
a.nd (12). One of the well known methods is the difference [15,16] Using in equation 
(11) the tree-point difference approximation of second order accuracy O(h2), his the 
step of uniform grid: (p,. = (n - 1 )h, n = 1, 2, ... , N + 1, h = Pii") we get the following 
coupled algebraic equations with a. three-diogona.l matrix: 

:l ('J9r.(n+l) ) 
2 ('J9r.(n+l) - ,?k(n-1)) 

2i?r.(n) + t9k(n-1) + Pn 
2

h -2p,.cosrp,.(p,.)i?k(n) + 

+ :! cos2rpr.(p,.)i?,.(n) - 2m0sinrpr,(p,.)i?k(n) + F~!~[rp,.(p,.)]i?i.(n) = 

Fm•,a[rp,.(p,.), h] - F'~o,a['Pk(p,.), h]i?i.-1 (13) 

}l'i?,. = -N(r,:,,.) (14) 

where Fm•,a['Pr.(p,.), h] a.nd F'~•.al'Pr.(Pn), h] a.re the discrete quantities obtained from 
the opera.tors F a.nd p(lt), respectevely (given in Apendix A) by using the the Simpson 
formula.. Whereas the problem (13) a.nd ( 14) ca.n be solved by means off the alternating 
direction implicit method. 

Thus, to solve problem (4)-(6) with the physical parameters m0 a.nd a we arrived a.t 
the following procedure: by some manner one ha.s to choose the initial approximation 
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{r,:,o(p,.), n = 1, 2, ... , N} (which will be discussed in next Subsection), a.nd solve coupled 
equations (13) with (14) to obtain the first step solutions which will be used as initial 
approximation in orderto obtain the nextstep solutions {r,:,1(p,.),n = 1, 2, ... , N}. Then 
these solutions will be used as initial approximation in order to obtain the next step 
solutions { r,:,2(p,.), n = 1, 2, ... , N}, and so on. 

Such an iteration process is continued to a.chive either the given total number of 
iterations (in the case of convergence process) or a required accuracy, for example, 
controlled by the discrepancy condition 

Sr. =II Fmo,a['Pr.n(Pn)] II< e , (15) 

where rpr,,. is the difference scheme solution of problem (13) and (14) corresponding to 
k - iteration step, e > 0 is the given norm of opera.tor F. 

Iteration parameter Tr, ca.n be given optionally or chosen according to a definite 
rulle. Here we represent some algorithms for choosing Tr, which are successfully used in 
practice [17] i)A simple algorithm is a choice of Tr, = To that corresponds to a constant 
step of the integration by Euler's method. This algorithm with a small enough To is 
usually used when one can not define the good initial approximation, for the purpose 
of obtaining a convergence from this approximation. Nevertheless, the expected con
vergence is too slow. Notice, when T~ = 1 we have classical Newton's method. ii)The 
para.meter Tr, can be chosen a.s 

_ { min(l, 2Tr,_i) if S,. < 0r.-1 
Tr. - ma:z:(To,¥) if S,. ~ S1c-1 

where o,. is the discrepancy with respect to a. uniform grid metric. This algorithm is 
convenient for the sucessfully chosen initial approximations. It provides speed conver
gence, however, may be unstable fa.r from the solution. iii) A more stable algorithm 
[17] which we used in DYSON program is a choice of Tr. 

{ 
min(l, tau:6•-1

) if Sr. < br.-1 
Tl, = ( Tl!u ) •1 C C ma:z: To,~ i 01c ~ 01c-1 . 

(16) 

Such a.n algorithm provides a. convergence for a large class of initial approximations. 

2.3 Method of extrapolation over a parameter 

The Newtonian scheme provides a convergence to the solution of equation ( 4) if 
only the initial approximations are close to the solution. Therefore, one has to define 
a. successful initial approximation. 

In solving the problems depending on physical para.meters (like mo, a) the choice of 
the initial approximation can be simplified a.t the a.symptotica.l values of the parameters. 
Such a continual transition [4] from a. simple task to complicate one is allowed in the 
methods of extropola.tion over parametery [15,18]. An application of these method 
ca.n be considered a.s a. possibility of extension of a convergence region of the iteration: 
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method [18], that is as a manner of obtaning more success initial approximations by 
going over the parameters [1,2]. 

In more simple realization of a extrapolation method [1,2,18] one uses a natural 
dependence of the equations on the parameters of the investegated model. In our case, 
equation (4) contains two such parameters,m0 and a (Vo is fixed). 

The solutions to problem (4)-(6) for the given values of the parameters, m0 = M 
and a = A, in DYSON program we used the following way. The investigated intervals 
\ 

of the parameters, 0 .:5 m0 .:5 M and 0 .:5 a .$ A, are divided by nodes: 

{m~;i = 1,2, ... ,J,m~ = 0,m1 = M}, (17) 

{a;;i = 1,2, ... , J,a1 = 0,aJ = A}. (18) 

First, in integro-differentialequation (4) with boundary conditions (5) and (6) one puts 
a = 0 and solves the reduced differential equations for the range of parameters, (17), 
using difference scheme ((13),(14)). It is known that nodes mf one can by chosen so that 
for a given m 0 = mf the iterations converge to a solution from the initial approximation 
which is solution to problem ((13),(14)) in m0 = mf-1 [18]. The calculations end up 
when the corresponding subroutine of program DYSON obtains the solution 'Pkn in 
m0 = M and a = 0 with the required accuracy (15). Then, using the solution 'Pkn as 
the initial approximation, one repeats such a procedure over a set of the parameter a 
to achieve the required accuracy. 

2.4 Analisis of the calculation procedure and numerical results 

In DYSON program the system controlling the calculation procedure is provided. 
The numerical solution of problem (4)-(6) involves the following parameters: 

m 0 and a is the physical parameters included in the equation. 
Pmaz is the parameter reducing a singular.boundary problem to a finite region 

problem; 
h is the step of the difference scheme 
k is the number of the Newtonian iterations. 
For estimation of an accuracy of the numerical solution the following notations are 

used: 
,p*(p) is the exact solution to boundary problem (4)-(6); 
,p(p, Pmaz) is the solution to the problem representing a finite region approximation 

to (4)-(8); 
,p(p, Pmaz, h) is the exact solution to difference problem ((13),(14)); 
,p(p,Pmaz,h,k) is the approximation solution of problem ((13),(14)) obtained by 

means of k Ne~tonian iterations. 
Then, for the grid metric the following estimations are valid 

II ,p*(p) - 'P(P, Pma.,, h, k) II .$ II ,p*(p) - 'P(P, Pmaz) II + II ,p(p, Pma.,) - 'P(P, Pma.. 1 h) II + 
11 'P(P,Pma..,h)- tp(p,Pma.,,h,k) II . (19) 
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'T'l' 

From ref. [3] it follows that 

with 

11 'P(P,Pmaz)-,p(p,Pmao,,h) 11.:5 C1h2
' Ci> 0 

II 'P(p,Pm4",h)- ,p(p,P~,h,k)ll.:5 C26-,. C2 > 0 

lim 6-,. = 0 
k-+oo 

(20) 

where 6-,. is the discrepancy resulting from the substitution of the approximated solution 
,p(p,Pm4",h, k) into the grid boundary problem. Concerning the first term on the right 

. side of estimation (19) it is natural to suggest that 

lim II ,p*(p) - ,p(p,Pmao,) 11= 0 • 
Pffl.&z---+oo 

However, it is hard to get quantitative estimations, and the behavior of this quantity 
(the first term of r. h. s. of (19)) can be analyzed only by the results of calculations 
performed for a rising values of Pmao,. Consequently, it is advisably to choose the 
calculation scheme parameters P mao, and k so that 

II ,p*(p)-,p(p,Pma.,,h,k) 11~ Ch2
, (21) 

This allows one to correct the numerical solution, ,p(p,Pmaz,h,k), by Richardson's 
extropolation [19]. In Tables 1-3 we quoted the numerical results displaying the con
vergence of the difference solutions for various values of a when other parameter, m0

, 

being fixed. From the tables we see that the parameters of the calculation scheme 
(Pmaz, k, TJ., and h) are fixed so that the convergence corresponds to estimation (21). 

We have tested the convergence of the grid solution ,p(p, P maz, h, k) for the variations 
of Pmao, (Pma., = 6, 7,8), and obtain the agreement of the results up to order 10-2

• 

In figs 1 and 2 the solutions of the SD equation and the "dressed" quark energies 
( defined Appendix B) for several quark masses and a= 0.2 are depictured. 

3. The structure of the program DYSON 

The considered above scheme of the numerical solution of problem (13)-(14) is 
realized DYSON program, in FORTRAN, and calculations are performed by CDC-
6500 and IBM PC/ AT computers. 

In the main program, DYSON, the following parameters should be indicated: 
N -is the maximum dimension for all the arrays are being filled by values of lattice 

, nodes with the given steplength, H. 
EP S -A small quantity on that a iteration process of finding of the initial approx

imation is end up. 
AM -is the physical parameter (the mass of a bare quark) 
ALPHAS -is the physical parameter ( the coupling constants of the Coulomb po

tential) 
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The subroutine IN FUN that ihould be called CALL IN FUN gives the initial 
algorithm of calculation of the initial approximation, and it provided with the print 
options. To call this subroutine, with 

CALL NEWWl (TO, EPS, ITER, MPR, NHIT, LST, IBT) 
the following parameters should be specified: 
TO -is the initial step, To = 0.1. 
IT ER -is the number of ending of the Newton iterations. 
MP R, NH IT -is the whole numbers indicating the print options 
LST = 3 -is the choice of 'Tl, (sec,(16)) 
I BT-is the key for using the switching function (1- eT•): 

= 1, the £unction is included; 
= 0, not 

The subroutine DELTAl calculates the discrepancy and used as 
CALL DELT Al (N, H, DEL, RDEL), 

which contains the following additional input parameters: 
DEL -is the quantity of the discrepancy 
RDEL -is the quantity of the node in which a maximal deviation is achived. 
The subroutine PROGONl realizes the method ofprogonb.~ using as 

CALL PROGONl (BETA) 
BET A -is the value of the switching function. 
The subroutine TAU KA calculates the iteration parameter T/o, using as 

CALLTAUKA(T0, TK, TKMl, DELK, DELKMl, LST) 
an additional input parameters are 
T K -is the iteration parameter T/o,(16) 
TKMl -is the iteration parameter T/o-t• 
DELK -is the discrepancy, 6,.. 
DELK Ml -is the discrepancy, 6,._1 . 

The subroutine DERIVE calculates a devivativeofthe function rp(p) with accuracy 
of h2, using as 

CALL DERIVE (N, X, Y, DY), 
an additional input parameters are 
X(N) -is the lattice nodes. 
Y(N) -is the values of the function, rp(p), at nodes. 
DY(N) -is the derivatives of the £unction,rp'(p). 
The subroutine SIM calculates an integral by Simpson's rule with an accuracy of 

O(h"), using as 
CALL SIM (H, N, Y, RES) 

an additional input parameters are 
H -is the step of the integration 
Y(N) -is the integrand function 
RES -is the value of the integral 
The subroutine ENERGY calculates the quark energy, E(p), defined in Appendix 

B, using as CALL ENERGY 
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4. Conclusions 

We proposed the numerical method £or solution of the SD equation with the poten
tial Vi,r2 - a/r. This equation is transformed to the value boundary problem for the 
integro-differential equation depending on the physical parameters (m0 and a). The 
method consits the iterative scheme of the continuous analogy of Newton's method. In 
this scheme in order to solve the problem (4)-(6) with the given accuracy one has to 
choose the grid parameters (h, Pmaa) by solving the problem for subsequent values of 
these parameters. 

For the iterative parameter we used expression (16) which requires a minimal num-. 
ber of the iterations. We used the method of a continuation over the parameters (m0 

and a) which provides an extantsion of the convergence region of the iterative scheme. 
We tested the proposed method on the exactly solvable models. The method can 

be used as a powerfull tool for study the nonperturbative phenomena of QCD. 
The authors would like to-thank T.Strizh for hdp£ul discussions. 

Apendix A 

The kernel of integral operator F;.0 ,a[rp(p)) is singular one. Therefore for numerical 
calculations it is convience to represent in the following form 

p{2) = p{21) + p{22) 

where 

2 { p___ 1 } 

p(n) = 
3
: / dqQ0(p,q)[W22(p,q)- W22(p,p)] - PW33 , 

0 

p<22> = .C(p)W22(p,p) , 

1 ~+~ W22(p,q) = -{coarp(p)[qainrp(q)- mo] - ainrp(p)[--(coarp(q)- 1)1} 
p 2p 

p __ _ 

W33 = J dqq(coarp(q)- 1) ; 
0 

P,. ... 

.C(p) = / Qo(p,q)dq = (p + P,,...z)ln(p + P......,) + (p- Pm...,)ln(I p- P,,...., I) ; 
0 

Then the l.h.s. of equation (9) can be written as 

F'(p,rp, mo, a),1 = (F; + F;1 + F;2 )1' 
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where iJ = 4.£ 

F{ iJ = {}" + ~{}' - 2pcoscp(p) + ; cos2cp(p )iJ - 2m0 sincp(p )iJ , 

F;1 = !: { 7--Qo(P,~)[Wm(p,q)~(p) + Wm(p,q)iJ(q)- W223(p)iJ(p)] + ~W331} 
0 

F;2y = W223(p).C(p)iJ(p) ; 

1{ p2+q2 } Wm= -- sincp(p)(qsincp(q)- mo]+ cos,p(p)[--(coscp(q)- 1)] 
p ~ 

Wm= .!_{qcoscp(p)coscp(q) + p2+ q
2 
sincp(p)sincp(q)} 

p 2p 

W223 = coscp(p) + mo sincp(p) , 
p 

00 

W331 = / dqqsincp(q)y(q) , 
0 

Apendix B. 

The energy of "dressed" quark is defined by 

E(p) = Ea.c(P) + Eco1(P) 

Ea.,(P) = pcoscp(p) + mosincp(p) _ !.[cp'(p)]2 _ cos
2

cp(p) 
2 p2 

2a{ . (/ dq 1 ) Eco1(p) = 
3

,r smcp(p) PQo[ili1(q) - ifi1(P)] + pifi1(p).C(p) + 

coscp(p)(/ ;Qo[ili2(p,q)- ilia(p)] + ~~3(p).C(p))} , 

p2 + q2 
ifi1(P) = psincp(p) -mo, ifi2(p,q) = --(coscp(q)- 1) , ilia(P) = p(coscp(p) -1) . 

2p 
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Fig. 1. The solutions SD equation (in a = 0.2 ) for the 
several Vll-lues of parameter m0 ( the quark mass ). 
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k = k + 1 I 

k = k + 1 

Input I initial conditions 

Finding of Solution of a~ 
linear problem ----+ iterative 

(a=O) 

Choice~ 

~ 

Soultion of a 
linear problem 

(a=O) 

Choice of ,: 
k 

corrections 

Finding of 
----+I iterative 

corrections 

C:=J 
(Continued intil given number of 

iterations is provided) 

Fig. 3. The iterative scheme o the numerical realization of the solution 
of equation (9). 
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Table. 1. The solutions, tp{p), on gridirons h, h/2 and h/4, where h is the grid 

parameter, h = 0.06, <T = ( 'Ph - ';"h/2)/( ';"h/2 - 'Ph/4) ~ 4 , Pma., = 6, 

m 0 = 0.007,a = 0 

p ';"h 'Ph/2 'Ph/4 
(T 

0.06 1.45037198 1.45024562 1.45021619 4.3983 

0.54 0.642634273 0.643247783 0.643400729 4.0113 

1.02 0.2391678W 0.239576:rT0 0.239678353 4.0056 

1.50 0.8291406!BE-0l 0.830718428E-01 0.831112638E-0l 4.0023 

2.04 0.2457935f12E-01 0.246207:Il7E-0l 0.246310793E-01 4.0022 

2.52 0.894 773283E-02 0.8958027T0E-02 0.896059008E-02 4.0036 

3.00 0.403698301.E-02 0.403898628E-02 0.403948004E-02 4.0093 

3.48 0.246771076E-02 0.246793963E-02 0.246799614E-02 4.0287 

4.02 0.184914 7:BE-02 0.184911222E-02 0.184910337E-02 3.9605 

4.50 0.159100327E-02 0.159097001E-02 0.159096007E-02 4.0175 

4.98 0 .142095517E-02 0.142094008E-02 0.1420943:i5E-02 3.9500 

5.64 0.124689774E-02 0.124689913E-02 0.1246899i8E-02 4.0000 

5.88 0.119283842E-02 0.119284017E-02 0.119284003E-02 3.7500 

5.94 0.ll 7971376E-02 0.ll 7971480E-02 0.ll 7971515E-02 3.0000 

6.00 0. ll 6666663E-02 0.116666003E-02 0.116666003E-02 0.0000 

Table. 2. The solutions, tp(p), on gridirons h, h/2 and h/4, where h is the grid pa-

rameter, h = 0.07, <T = ( ';"h - ';"h/2)/( ';"h/2 - ';"h/4) ~ 4 , Pma., = 7 , 

m 0 = 0.007,a = 0 

p ';"h 'Ph/2 ';"h/4 (T 

0.07 1.43044317 l.430275CB 1.43023765 4.4904 

0.49 0. 70698672> 0. 707791007 0.707991gj8 4.0149 

1.05 0.224001244 0.224530003 0.224662002 4.0065 

1.54 0. 757063702E-Ol 0. 7590252l1E-01 0. 759515315E-0l 4.0030 

2.03 0.25111062>E-01 0.251689311E-0l 0.251833008E-0l 4.0021 

2.52 0.8942771 iUE-02 0.895678007E-02 0.896029CB1E-02 4.0043 

3.01 0.3982481CBE-02 0.398510f127E-02 0.398576:Il9E-02 4.0142 

3.50 0.24317647JE-02 0.2432042>0E-02 0.243211005E-02 4.0578 

4.06 0.1821660'.!JE-02 0.182161015E-02 0.182159746E-02 3.9450 

5.11 0.1382970&3E-02 0.138296ffi9E-02 0.1382958J3E-02 4.0000 

5.53 0.127415743E-02 0.127 415417E-02 0.127415336E-02 4.0000 

6.02 0.l 1682931BE-02 0.116829388E-02 0. ll 6829:r76E-02 0.0000 

6.51 0.107874465E-02 0.107874003E-02 0.107874710E-02 4.2500 

7.00 0.lO00000ffiE-02 0.100000005E-02 0.100000005E-02 0.0000 
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Table. 3. The solutions, rp(p), on gridirons h, h/2 and h/4, where h is the grid 
parameter, h = 0.06, U = (rp1, - 'Ph/2)/(rpi./2 - 'Ph/4) ~ 4 , P....,., = 6 , 
m 0 = 0.007, a = 0.2 

p 'Ph fPh/2 fPh/4 
0.06 f45386398 1.453734«1 1.45370200 
0.54 0.661486328 0.662056327 0.662185788 
1.02 0.255236500 0.255638ffi9 0.255728871 
1.50 0.929073021E-0l 0.930754WlE-0l 0.931117386E-0l 
2.04 0.2975842fl2E-0l 0.298122410E-0l 0.298233002E-0l 
2.52 0.117715641E-01 0.117921019E-01 0.117962351E-01 
2.94 0.609673500E-02 0.610732'/06E-02 0.610952498E-02 
3.00 0.56352140iE-02 0.564502lil9E-02 0.564 707769E-02 
3.54 0.3286252:DE-02 0.329212495E-02 0.329344003E-02 
3.96 0.25401392>E-02 0 .254466012E-02 0.254571741E-02 
4.02 0.24668134"3E-02 0.24 7118971E-02 0.24 7221743E-02 
4.50 0.20332362JE-02 0.203668ffi2E-02 0.2037514J0E-02 
5.04 0.1717043~E-02 0.171971589E-02 0.172036455E-02 
5.52 0.148363062E-02 0.148555380E-02 0.148602459E-02 
5.88 0.126786297E-02 0.126861ffi3E-02 0.126880279E-02 
5.94 0.122016672E-02 0.122057001E-02 .0.122068194E-02 
6.00 0.116666663E-02 0.116666003E-02 0.116666003E-02 
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· HeraHOB 6.C; 
K ilpoeepKe HapyweHl1A np~.Hu11na ·oTHOCl1TenbHocrn 

., ·, '., , ,. I ., 

nyTeM 11ccneA0BaHll!A B HaKcn11TenbH0M K0nbue 
• - ' < ,, 

Jl0KanbHblX CB~HCTB cnl1HOBOH npeuecc1-111, 
· pennntBl-1CTCKl-1X 3JleKTP0H0B 

A1-91-96 

06cy>KAa~TCA nopeHueE:cKaR K0Huenu111n cp1131111ecKoro eaKyyMa, ~yLUec. ao-
eaH11e np111a11nernpoeaHHOH Cl1CT~Mbl OTC'leTa, CBR3aHHoe C Hapyi+JeHIIICM rp~in-
0OBblX caoi:icTB 06LU11x npeo6pa3oeaH111.::i JlopeHua 6e3 apaLUeH11.::i, 11 B03Mo>K

·HoCTb nocTaH0BKl1 3KCnep11~eHTa no 06Hapy>KeHl110 HapyWeHl1A np1-1HUl-1na OTHO· 
· .c11TenbHOCT11, o6ycnoaneHHoro TOMacoacKoi:i npeuecc11ei:i cn11Ha pennrna111:ic
< K~X 3IleKTPOHOB. PaCCMOTpeHbl KOHKpeTHble aap11aHTbl nocTaHOBKl-1. 3KCnE,p11- · 

, " • • I • 

. Metna, MeTOAbl Ha6n10AeHl1A 11 AaHbl oueHKW Tpe6yeMblX pa60111-1x napaMeTpOB . 
np116opa. 

.. 
Pa60Ta · BblnOJlHeHa 13 JlafiopaTOpl-111 CBepXBblCOK~1X 3HeprnH 01..1A 1..1. 

Coo6ll\eHHe O6'bC~eHHc,ro HHCTHTyTa .11/leptthIX HCCJI~OBaHHH. ,lly6Hl~ 1991 

. Neganov B.S, . . 
On the Chei::k~Up of th1f ViolatioH of the Relativity 
Principle PY the· Investigation of the Local Properties 
of Spin Precessi~n of Relativistic Electrons Gonducted , 
, at the Storage Ring . ,, ; ,:, ;,. .I 

.. Lo~entz;s 1conce·pt of ;physical vat1'.i'urri, ,exisience of:, a priviliged referenc~ 
frame: related. to: violatjon. of gro~p. prbperties: of 'general., Lot~ritz's tra~sforma

, ti6n; witho'ut. rdtatirin, a11d a possfbilitY 16f 'se):ting up an experiment to detect 
.·. vlolation of the/principle. of,,relativity, du~ to Thomas spin :precession ofi-elati· 

. ', . I. . - ' , . . . • ' . ' , , . ' , ' •. , : ''. . ., , .... , . , . . , '.' ,: ; 

vistic,i ~IElctrons :ar.e, ,discu·;sed;! Specific variants of the ·experiment and methods 
of obser~atio~ are considered, the necessary parameters of the- dev!ce are esti
mated, 

The investigation t:as · been performed at the . Laboratory of Superhigh 1 
Ene;gies, JINA.' 

' , ' . ' '/ , •'. ·. ' '· . 

qom~unicatiqn of, the ;JoinU11$titpJe;f 9r Nµ,cleartR!l~~rch .(D.!.1bn11 \199,1 .. 


