$90-564$

Сообщвиия
 обьединенного
 института ядерных исследований
 дубна

E11-90-564
V.Yu.Gonchar*, N.A.Chekanov*, B.L.Markovski, V.A.Rostovtsev, S.I.Vinitsky

THE PROGRAM OF ANALYTICAL CALCULATION OF THE NORMAL BIRKOFF-GUSTAVSON FORM

[^0]
1. Introduction

Transformation of the initial classical Hamiltonian to a more simple form, called normal form, is one of the universal methods of analyzing and integrating classical equations of motion ${ }^{11}$. In the present paper, we discuss the normal Birkhoff-Gustavson form ${ }^{2,3)}$ for the Hamiltonians that can be represented as a polynomial near the equilibrium points,i.e.:

$$
\begin{equation*}
H(q, p)=H^{(2)}(q, p)+V(q) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& H^{(2)}(q, p)=\sum_{V} 1 / 2 \omega_{V}^{2}\left(p_{V}^{2}+q_{V}^{2}\right), \tag{2}\\
& V(q)=\sum_{\geq 3} V_{j_{1} j_{2}} q_{1}{ }_{1} q_{2}^{j_{2}}, q=\left(q_{1}, q_{2}\right), p=\left(p_{1}, p_{2}\right) . \tag{3}
\end{align*}
$$

Here we consider the system with two degrees of freedom, however, the method can be applied for Hamiltonian systems with arbitrary number of degrees of freedom.

The procedure of reducing to the normal Birkhoff-Gustavson form and its realization depend on the relation between frequencies ω_{ν}. Birkhoff has proved ${ }^{2)}$ that if thefrequencies ω_{ν} of Hamiltonian (1) are incomensurable, there exists a canonical transformation $(q, p) \rightarrow(\xi, \eta)$ such that in the new variables the Hamiltonian $\Gamma(\xi, \eta)$ will be a function of only the following variables $I_{\nu}=1 / 2\left(\xi_{v}^{2}+\eta_{V}^{2}\right), \nu=1,2$. In other words, the normal Birkhoff form is an expansion of the initial Hamiltonian in terms of two harmonic oscillators

$$
\begin{equation*}
H(q, p) \Rightarrow \Gamma(\xi, \eta)=\omega_{1} I_{1}+\omega_{2} I_{2}+\sum \alpha_{\mu \nu} I_{\mu} I_{\nu}+\ldots \tag{4}
\end{equation*}
$$

Dabextor wen BCruTy

EMCDW TEGA

If the frequencies ω_{ν} are commensurable, i.e. if there exist resonance relations of the type $n \omega_{1}+m \omega_{2}=0,(n, m \neq 0)^{\circ}$ the Hamiltonian (1) can not be reduced to the normal Birkhoff form due to the appearance of zero denominators $n \omega_{1}+m \omega_{2}=0$. Therefore, one should not cancel some terms in the Hamiltonian (1), and the normal form becomes complicated ${ }^{3)}$ and will contain apart from I_{ν} other combinations of variables ξ_{ν} and η_{ν} as well. For the two-dimensional system with the resonance condition $n \omega_{1} \dot{+} m \omega_{2}=0$ these combinations are the following $\xi_{1} \eta_{2}{ }^{2} \quad \xi_{2} \eta_{1}, \eta_{1} \eta_{2}+\xi_{1} \xi_{2}$. Such an extended normal form is used to be called the Birkhoff- Gustavson form (B-G).

The first rather quick programs in FORTRAN for making cumbersome calculations of the normal form were realized in ref. ${ }^{3,4)}$. We shall point out other way of constructing canonical transformations (see formula (5)) suggested by Hori ${ }^{5}$) and Deprit ${ }^{6)}$ whose practical realization is based on the use of Lie transformations 7-9) The computer program for normalization of Hamiltonian systems in this approach were realized in ref. 10).

In the present paper, we expound two REDUCE programs for analytical construction of the normal $\mathrm{B}-\mathrm{G}$ form according to the Gustavson algorithm ${ }^{\text {3 }}$ which is briefly represented in sec.2. The first program GITA gives the normal form of a given order $s_{\max }$ if one introduces the initial Hamiltonian (1) and resonance relations between frequencies ω_{1}, ω_{2} or frequencies themselves if they are incommensurable. The second program GITN is applicable exceptionally for the resonance case $\omega_{i}=\omega_{2}, i . e$. for obtaining a modified normal form whose definition will be given in sec.2,3.

Note that since $I_{1}(\xi, \eta)$ and $\Gamma_{s}(\xi, \eta)$ are independent integrals of motion in the S approximation, then expressing ξ and η through the initial coordinates q, p one can obtain an approximate integral of motion $I_{1}(q, p)$. It can be used in different applications, for instance, in ref. ${ }^{11)}$ for elucidating the criterion of negative curvature. However, the range of applicability of
the normal $\mathrm{B}-\mathrm{G}$ form goes beyond the limits of classical description of the system: it has successfully been applied for quantizing the classical Hamiltonian as well 12-16).
2.The method of reducing the Hamiltonian to the normal form

2.1. The normal Birkhoff-Gustavson form

As it has been point out above, the Hamiltonian (1) can always be reduced to the normal form making successive canonical transformations

$$
\begin{equation*}
\xi_{\nu}=q_{\nu}+\frac{\partial W^{(\prime)}(q, \eta)}{\partial \eta} ; p_{\nu}=\eta_{\nu}+\frac{\partial W^{(\prime)}(q, \eta)}{\partial q_{\nu}} \quad, v=1,2 \tag{5}
\end{equation*}
$$

with the help of the generating function, or more exactly, the polynomial $W^{(s)}$ of the power s

$$
\begin{equation*}
F_{2}(q, \eta)=q_{\nu} \eta_{\nu}+W^{(s)}(q, \eta) . \tag{6}
\end{equation*}
$$

The integer numbers means the power of that part of the Hamiltonian which is reduced to the normal form by using the polynomial $W^{(s)}$. In this case, the parts of $H^{(1)}$ with $i<s$ do not change under the canonical transformation (5). Then under the canonical transformation the Hamiltonian $H(q, p)$ turns into a new one $\Gamma(\xi, \eta)$

$$
\begin{equation*}
H\left(q, \eta+\frac{\partial W^{(s)}}{\partial q}\right)=\Gamma\left(q+\frac{\partial W^{(s)}}{\partial \eta}, \eta\right) \text {. } \tag{7}
\end{equation*}
$$

Expanding this expression in the Taylor series near $q=\xi, \eta=p$ one equates the terms of the same power. For $i=2$ we get the known results that the Hamiltonian (2) is still in a normal form

$$
\begin{equation*}
\Gamma^{(2)}(\xi, \eta)=H^{(2)}(q, p) ; \quad q=\xi, p=\eta . \tag{8}
\end{equation*}
$$

For the terms of power $i=s=3$, by which the procedure is starting the reducion to the normal form, we derive the generic equation in the form

$$
\begin{equation*}
D(q, \eta) W^{(s)}(q, \eta)=-H^{(\mathrm{s})}(q, \eta)+\Gamma^{(s)}(q, \eta) \tag{9}
\end{equation*}
$$

where the operator of the normal form

$$
\begin{equation*}
D(\xi, \eta)=\sum \omega_{\nu}\left(\eta_{v} \frac{\partial}{\partial \xi_{v}}-\xi_{v} \frac{\partial}{\partial \eta_{v}}\right) \tag{10}
\end{equation*}
$$

is introduced. At each subsequent ($\mathrm{S}-2$) step of reducing the Hamiltonian to the normal form we should solve eq. (9). So we have to find two unknown functions: the generating polynomial $\mathrm{w}^{(s)}$ and

Hamiltonian $\Gamma^{(s)}$ in the normal form, satisfying condition $D \Gamma^{(s)}=0$ Before discussing the way of solving eq. (9) we first write down the relations resulting from the higher powers $i=s+1, s+2$, that will be necessary for the next step of reducing

$$
\Gamma^{(J)}(\xi, \eta)=H^{(j)}(\xi \eta)+\sum_{k} \frac{1}{K!}\left\{\left(\frac{\partial W^{(S)}}{\partial \xi}\right)^{k}\left(\frac{\partial^{k} H^{(1)}}{\partial \eta^{k}}\right)-\left(\frac{\partial W^{(S)}}{\partial \eta}\right)^{k} \frac{\partial^{k} \Gamma^{(1)}}{\partial \xi^{k}}\right\} .
$$

Here the two-dimensional integer-valued vector K satisfies the conditions
 Having calculated at the $(s-2)$ step, beginning with $s=3$, and generating polynomial $W^{(s)}$, we find the next higher power contributions to the Hamiltonian (il) to be used in performing the above procedure of reducing to the normal form. The number of iterations determines the order of approximations $s_{\text {max }}$.
2.2 The method of solving the basic equation

The linear operator D is determined in the functional space of all homogeneous polynomials $\Phi^{(s)}(\xi, \eta)^{\text {of }}$ the power s of four variables (ξ, η). In this space (dim $=m=(s+3)!/ 3!s!)$ the set
 $I_{2}=s$) define the basis. In our (two-dimensional) case $m=20,35$, $56,84,120$ and 165 , respectively, for $s=3,4,5,6,7$, and 8 .

To solve the equation (9) the canonical transformation to the complex variables x, y is made

$$
\begin{equation*}
q_{\nu}=1 / \sqrt{2}\left(x_{\nu}+i y_{\nu}\right), \eta_{\nu}=i / \sqrt{2}\left(x_{\nu}-i y_{v}\right) \tag{12}
\end{equation*}
$$

in which the operator of the normal form will be diagonal

$$
\begin{equation*}
\tilde{D}(x, y)=i \sum \omega_{v}\left(x_{v} \frac{\partial}{\partial x_{v}}-Y_{v} \frac{\partial}{\partial y_{v}}\right) \tag{13}
\end{equation*}
$$

and the basic equation becomes

$$
\begin{equation*}
\tilde{D} \tilde{W}^{(s)}(x, y)=-\tilde{H}(x, y)+\tilde{\Gamma}^{(s)}(x, y) \tag{14}
\end{equation*}
$$

The basis of functional space consists of monomials of the form

$$
\begin{equation*}
\Phi^{(\mathrm{s})}=x_{1}^{l_{1}} x_{2}^{l_{2}} y_{1}^{m_{1}} y_{2}^{m_{2}} \tag{15}
\end{equation*}
$$

which, as one can easily verify, are eigenfunctions of the operator D,i.e.

$$
\begin{aligned}
& \tilde{D} \Phi^{(s)}=\left[i \sum \omega_{\nu}\left(\|_{\nu}-l_{\nu}\right)\right] \Phi^{(s)} . \\
& \text { the solution of the basic } .
\end{aligned}
$$

Then, the solution of the basic equation can be written as $\tilde{\mathrm{W}}^{(s)}=\tilde{D}^{-1}\left[\tilde{\Gamma}^{(s)}-\tilde{\mathrm{H}}^{(\mathrm{s})}\right]$
where the inverse operator D^{-1} is determined by the relation $\tilde{D} \phi^{(s)}=\Phi^{(s)} /\left[i \quad \sum \omega_{\nu}\left(m_{\nu}{ }^{-1} \nu_{\nu}\right)\right]$.
Since $\Gamma^{(s)}$ is not yet determined, we choose it so that the quantity $\tilde{W}^{(s)}$ would have no poles $\sum \omega_{\nu}\left(m_{\nu}{ }^{-1} \nu\right)$. The Hamiltonian $\Gamma^{(s)}$ should be chosen so as to compensate exactly those terms $H^{(s)}$ which lead to the resonance condition $\Sigma \omega_{\nu}\left(m_{\nu}{ }^{-1} \nu\right)=0$.. But if this condition is fulfilled for some terms of the Hamiltonian $H^{(s)}$ this implies the normal form and consequently $\tilde{D} \tilde{H}^{(s)}=0$. Thus, the quantity $\tilde{H}^{(s)}$ can unambiguously be represented as a sum of polynomials $\tilde{\mathbf{H}}^{(s)}=\tilde{N}^{(s)}+\tilde{\mathbf{R}}^{(s)}$ with $\tilde{D N}^{(s)}=0$. Choosing $\tilde{\Gamma}^{(s)}=\tilde{\mathbf{N}}^{(s)}$ (the normal form) we see that the terms of the Hamiltonian $\tilde{H}^{(s)}$ leading to the condition $\Sigma \omega_{\nu}\left(m_{\nu}{ }^{-1} \nu\right)=0$ are canceled by the same terms in the Hamiltonian $\Gamma^{(8)}$, the generating function $W^{(s)}$ being finite and determined from the algebraic equation $\tilde{D}^{(s)}=R^{(s)}$ Moreover, relation $\Sigma \omega_{\nu}\left(m_{\nu}{ }^{-1} \nu\right)=0$ may holds if $m_{\nu}=\nu_{\nu}$ and ω_{ν} are incommensurable (the normal Birkhoff form) or if $\boldsymbol{m}_{\nu} \neq l_{\nu}$ but there are resonance relations of $\sum n_{\nu} \nu_{\nu}=0$ (n_{ν} being integers). In the last case, the structure of the normal form Γ becomes more complicated, as ithas been mentioned in the Introduction.

Finally going back from the complex variables x and y to variables ξ, η we find the normal Hamiltonianform $\Gamma^{(\beta)}(\xi, \eta)$ and the generating function $W^{(s)}$ in the s order of approximation in terms of the initial variables.
2.3. The modified normal form of Birkhoff-Gustavson

In this section we present a certain modification ${ }^{101}$ of the procedure of reducing the Hamiltonian to the normal B-G.Before reducing the initial Hamiltonian (1) to the normal form according to the Gustavson algorithm ${ }^{3)}$, (Sec2.1 and 2.2) we first do the canonical change $(q, p) \Rightarrow(P, Q)$ which would transform the operator form Eq. (10) into the diagonal one. For the Hamiltonian (1) with the
resonance relation $\omega_{1}=\omega_{2}$ the above transformation has the form

$$
\begin{align*}
& q_{1}=i / 2\left(-Q_{1}+Q_{2}+\mathcal{P}_{1}+\mathcal{P}_{2}\right), p_{1}=1 / 2\left(Q_{1}-Q_{2}+P_{1}-\mathcal{P}_{2}\right), \\
& q_{2}=1 / 2\left(Q_{1}+Q_{2}+P_{1}+P_{2}\right), p_{2}=i / 2\left(Q_{1}+Q_{2}-\mathcal{P}_{1}-\mathcal{P}_{2}\right), \tag{20}
\end{align*}
$$

The Hamiltonian (1) in the new variables looks like

$$
\begin{equation*}
K(Q, \mathcal{P})=K^{(2)}(Q, \mathcal{P})+\sum_{j>2} K^{(J)}(Q, \mathcal{P}) \tag{21}
\end{equation*}
$$

were

$$
K^{(2)}\left(Q_{1} \mathcal{P}\right)=i\left(Q_{1} \mathcal{P}_{1}+Q_{2} \mathcal{P}_{2}\right)
$$

and the canonically conjugate coordinates and momenta are $Q=\left(Q_{1}, Q_{2}\right) \quad, \mathcal{P}=\left(\mathcal{P}_{1} \quad \mathcal{P}_{2}\right)$. Note that transformation (20) are canonical with $"$ valence" equal to imaginary unit ${ }^{17}$.

Each term $K^{(J)}$ of Hamiltonian (21), which is a homogeneous polynomial in variables Q and \mathcal{P} of power j, is reduced to the normal form by making a series of canonical transformations (Q, \mathcal{P}) $\Rightarrow(\xi, \eta)$ with the generating function (6). Reducing to the normal form is simplified by a solution of the basic equation

$$
\begin{equation*}
D W^{(s)}=\Gamma^{(s)}-K^{(s)} \tag{22}
\end{equation*}
$$

owing to the diagonality of the operator D. The introduction of (Q, P) variables simplifies the algorithm providing an useful tool for quantization of (1) for $\omega_{1}=\omega_{2}$.
3. Description of the program in REDUCE

The GITA program consists of 6 basic and 4 auxiliary blocks, sone of them being created as procedures.

Block 1.Transformation of the coordinates $p_{\nu} \rightarrow \sqrt{\omega_{\nu}} p_{\nu}, q_{v} \rightarrow q_{\nu} / \sqrt{\omega_{\nu}}$ for reducing $H^{(2)}(p, q)$ to the $N F$ (2). The nonlinear part of the Hamiltonian (3) is simultaneously transformed too.

Block 2.The beginning of the cycle $s=3, \ldots s_{\max }$ where $s_{\max }$ is the maximal order of reducing to the normal form. The procedure SUPQXY performs transformation to the complex variables (12) of the homogeneous part of the s-order $\tilde{H}^{(s)}(x, y)=H^{(s)}(p, q)$.

Block 3. The SEPA procedure makes division of $\tilde{H}^{(s)}(x, y)$ into monomials (15).

Block 4.T The BASIS procedure solves the basic equation (16) and finds the generating function $\tilde{W}^{(s)}(x, y)$ and the sth order $N F$ of
the Hamiltonian $\tilde{\Gamma}^{(s)}(x, y)$.
Block 5. The inverse transformation is fulfilled from the complex variable x, y to the initial variables q, p.

Block 6. It implies the transformation of the remaining part of the Hamiltonian containing all higher than s orders which are necessary for the next reduction step. At the end of the cycle one goes back to block 2 .

Upon completion of the cycle with respect to s one gets a Hamiltonian in the NF up to order and the "abnormal" part of the order higher than $S_{\max }{ }^{\text {. }}$

Additional blocks.
Block 7. One transforms the $N F \Gamma^{(s)}(q, p)$ from the Cartesian coordinates to the action-angle variables I, φ. If the case is nonresonant one the $N F \Gamma^{(s)}(I)$ depending only on the action I (i.e.,it is angle-independent).

Block 8 . The basic results are collected into output file for further convenience.

The auxiliary procedures $F A C(N)$ and $C N M(N, M)$ calculate the factorials and binomial coefficients correspondingly. The GITN program calculating the modified $B-G$ form has the same structure as GITA.
4. Examples
4.1 The normal B-G form. The resonance case.

The potential function of quadruple vibrations of the surface of a spherical liquid drop of matter can be parameterized as ${ }^{18-19)}$
$v\left(q_{1}, q_{2}\right)=\frac{1}{2}\left(q_{1}^{2}+q_{2}^{2}\right)+b\left(q_{1}^{2} q_{2}-\frac{1}{3} q_{2}^{3}\right)+c\left(q_{1}^{2}+q_{2}^{2}\right)^{2}$.
As is known ${ }^{(19-20)}$, the invariant polynomials of the discrete $C_{3 v}$ group can be polynomialy expressed in terms of two basis invariants $\left(q_{1}^{2}+q_{2}^{2}\right)$ and $\left(q_{1}^{2} q_{2}-1 / 3 q_{2}^{3}\right)$. Therefore, the potential function (23) is the most general among the 4 -order polynomials obeying symmetry $C_{3 V}{ }^{21)}$. Note that for $c=0$ the expression (23) is reducing to the well known Henon-Heiles potential ${ }^{22)}$.

The normal Birkhoff-Gustavson form for the Hamiltonian (1)
with potential (23), in 4th approximation order equals to

$$
\begin{align*}
& \Gamma_{4}(\xi, \eta)=1 / 2\left(\xi_{1}^{2}+\xi_{2}^{2}+\eta_{1}^{2}+\eta_{2}^{2}\right)+ \tag{24}\\
& +\left(-\frac{5 b^{2}}{48}+\frac{3 c}{8}\right)\left(\xi_{1}^{2}+\xi_{1}^{2}+\eta_{1}^{2}+\eta_{2}^{2}\right)+\left(-\frac{c}{2}+\frac{7 b^{2}}{12}\right)\left(\xi_{1} \eta_{2}-\xi_{2} \eta_{1}\right)^{2}
\end{align*}
$$

In the action-angle variables

$$
\begin{equation*}
\xi_{\nu}=\sqrt{2 \overline{\mathrm{I}}_{\nu}} \cos \bar{\varphi}_{\nu}, \eta_{\nu}=\sqrt{2 \overline{\mathrm{I}}_{\nu}} \sin \bar{\varphi}_{\nu}, \nu=1,2 \tag{25}
\end{equation*}
$$

one have

$$
\begin{equation*}
\Gamma_{4}=\overline{\mathrm{I}}_{1}+\overline{\mathrm{I}}_{2}+\left(-\frac{5 b^{2}}{12}+\frac{3 c}{2}\right)\left(\overline{\mathrm{I}}_{1}^{2}+\overline{\mathrm{I}}_{2}^{2}\right)+\left(1 / 3 b^{2}+2 c\right) \overline{\mathrm{I}}_{1} \overline{\mathrm{I}}_{2}+ \tag{26}
\end{equation*}
$$

$+\left(-\frac{7 b^{2}}{6}+c\right) \bar{I}_{2} \bar{I}_{2} \cos 2\left(\bar{\varphi}_{2}-\bar{\varphi}_{1}\right)$.
or in the new canonically conjugate variables

$$
\begin{equation*}
2 I_{1}=\bar{I}_{1}+\bar{I}_{2}, 2 \varphi_{1}=\bar{\varphi}+\bar{\varphi}, I_{2}=\bar{I}_{1}-\bar{I}_{2}, \varphi_{2}=\bar{\varphi}_{1}-\bar{\varphi}_{2} \tag{27}
\end{equation*}
$$

the normal form becomes
$\Gamma_{4}=2 I_{1}+\left(-\frac{5 b^{2}}{4}+\frac{9}{2} c\right) I_{1}^{2}+\left(-\frac{7 b^{2}}{24}+\frac{c}{4}\right) I_{2}^{2}+\frac{1}{4}\left(\frac{7 b^{2}}{6}-c\right) I_{2}^{2} \cos \varphi_{2}$.
As the variable φ_{1} does not explicitly enter the Hamiltonian (28), the corresponding canonically conjugate momentum I_{1} is the integral of motion. Another integral of motion is the Hamiltonian Γ_{4} itself.Thus, the Hamiltonian Γ_{4} describes the integrable system.
4.2 The modified normal form

For comparison we present the modified NFfor the same Hamiltonian as in Sec. 4.1 in the 4 th approximation obtained by GITN $\Gamma_{4}=i\left(\xi \eta+\xi \eta+\left(\frac{b^{2}}{6}+c\right)\left(\xi_{1}^{2} \eta_{1}^{2}+\xi \eta\right)-\left(2 b^{2}-2 c\right) \xi_{1} \xi_{2} \eta_{1} \eta_{2}\right)$.
One can easily verify that independent integrals of motion here are $N=\xi_{1} \eta_{1}+\xi_{2} \eta_{2}$ and $M=\xi_{1} \eta_{1}-\xi_{2} \eta_{2}$, and the $N F$ equals to

$$
\begin{equation*}
\Gamma_{4}=i\left(N+N^{2}\left(-\frac{11 b^{2}}{24}+\frac{5 c}{4}\right)+M^{2}\left(\frac{13 b^{2}}{24}-\frac{3}{4}\right)\right) \tag{30}
\end{equation*}
$$

As it is seen, the separation of variables takes place in coordinates N, M unlike I_{1} and I_{2} though in the 6-th approximation there is no separation.
4.3. The Birkhoff-Gustavson NF- nonresonance case.

As a potential function we choose the function
$v\left(q_{1}, q_{2}\right)=1 / 2\left(\omega_{1}^{2} q_{1}^{2}+\omega_{2}^{2} q_{2}^{2}\right)+\sqrt{2} q_{2}^{3}+q_{1}^{2} q_{2}+1 / 4 q_{2}^{4}$

The normal form obtained by GITA in the 4 th approximation equals $\Gamma_{4}=\omega_{1} I_{1}+\omega_{2} I_{2}-0.016735 I_{1}^{2}-0.375 . I_{2}^{2}-0.219363 . I_{1} I_{2}$.

References

1. Arnold V.I.Mathematical methods of classical mechanics. M. Atomizdat, 1974,.p. 431 (in Russian)
2. Birkhoff G. Dynamical systems. M.OGIZ,1941, p. 384 (in Russian)
3. Gustavson F.G., Astron.J. v. 71, p. 670.
4. Giorgilli A., Comput. Phys.Commun. 1979, v. 6, p. 331.
5. Hori G.I., Astron.Soc. Japan. 1966, v.18, p. 287.
6. Deprit A., Cel. Mech. 1969, v.1, p. 12.
7. Campbell J., Jeffris W.H. Celest. Mech. 1970, v. 2, p. 467.
8. Henrad J., Roels J. Celest: Mech. 1974, v.10, 497.
9. Mersman W.A., Celest.Mech. 1970, v. 30, p. 81.
10. Markeev A.P., Sokolsky A.G., Some calculation algorithms for the normalization Hamiltonian systems. Preprint IFM AN SSSR, 1976, N 31.
11. Bolotin Yu.L. et al Phys.Elem.Part.At.Nucl.,1989, v.20. part 4, p. 878.
12.Swimm R.T., Delos J.B., J.Chem. Phys. 1979,v. 71, p. 1706.
13.Jaffe C., Reinhart W.P. J. Chem. Phys. 1982,v.77,p. 5191.
14.Robnik M., J.Phys.A: Math.Gen. 1984, v.17, p.109.
12. Uzer T., Marcus R.A., J.Chem. Phys. 1984, v. 81,p. 5013.
13. Chekanov N.A. Jad.Fiz., 1989, v.50. p. 344.
14. Gantmaher F.R. Lectures on analytical mechanics. M. Nauka, 1966 (in Russian)
18.Eisenberg I.,Greiner V. Model of nuclei. Collective and one particle states. M. Atomisdat (Russian transl), 1975:
19.Bolotin Yu.L.,Vinitsky S.I.,Gonchar V.Yu., Chekanov N.A., Yad. Fiz. 1989, 6(12), p. 1563.
20 Bolotin Yu.L et al ,Yad. Phys. 1990, v. 51, 1818.
$21 . S l e t e r$ Dj. Electron structure of molecules. Mir, 1965.
15. Henon M., Heiles C. Astron.J., v. 69, p. 73.
```
Appendix
% ========== The start Conditions============
file Gita;-Pri ...=1 tables for terms neq 0, =2 all terms----
    SMAX:=4; IMAX:=SMAX; PRISEP:=0;PRIBAS:=0;IU:=1;
BLOKSIZE]*:=80;off nat;
    %off echo:
Procedure ptim(N)
            begin integer N; real TN,DT;
begin integer N; real TN,DT;
tn:=time(); DT:=TST-TN;% if N neq 0 then
write
    "<*<*<*<*<* range= ",NST,"_"",N,"time=",DT,"msec *>*>*>>*>*>";
M"<*<*<*<*<* range= ",NST,"-",N,"time=",DT,"msec *>*>>>>*>*>";
1f------n;
    NST:=N; TST:=TN end;
lisp operator time; ptim(0)
g******************************t**************;
Procedure SUPQXY(A);
    begin real B;
    B:=sub(Q1=T/SO2*(Y1-i*X1),P1=(Y1+I*X1)/SQ2
    Q2=I/SQ2*(Y2-I*X2), P2=(Y2+I*X2)/SQ2,A);
clear SQ2 ; return B
end;
%-------------------
        begin real B;
    let SQ2**2=2;
    B:=sub (Y1=1/SQ2* (P1-I*Q1), X1=1/SQ2* (-I*P1+Q1),
    Y2=1/SQ2*(P2-I*Q2), X2=1/SQ2*(-I*P2+Q2),A);
clear SQ2 ; return B end;
            Procedure FAK(N);
FAK:= if N<0 then O else if N=0 then l else for J:=1:N product J;
\therefore Procedure CNM(N,M):
CNM:= if (N<0 or N<M) then 0 else FAK(N)/(FAK(N-M)*FAK(M));
    Procedure SEPA(HT,S)
        begin integer K;
                            real c1,c2,c3,c4;
    for Ll1:=0:S do begin
    for L22:=0:S do begin
    for M11:=0:s do begin
    M22:=s-(M11+L11+L22);
if M22 geq 0 then HK(Li1,L22,M11,M22):=0;
    end end end:
```

for Ll:=0:s do
begin
C1:=coeffn(ht, Y1, L1) ;
begin
C2:=coeffn(C1,Y2,L2);
for M1:=0:s do
begin \quad for $=$ coeffn $(\mathrm{C2}, \mathrm{Xl} \mathrm{ml})$
$\mathrm{C} 3:=$ coeffn $(\mathrm{C} 2, \mathrm{X} 1, \mathrm{ml}) ;$
$\mathrm{M} 2:=\mathrm{S}-(\mathrm{L} 1+\mathrm{L} 2+\mathrm{M} 1) ;$
if M2 geq 0 then
begin
$\mathrm{K}:=\mathrm{K}+1$;
c4:=coeffn(c3, x2,m2);

if $\mathrm{K}=1$ and PRISEP>0 then write "K M1 M2 L1 L2. H ";
if PRISEP > 0 then
write $\mathrm{K}, \mathrm{"}$ ",M1," ",M2," ",L1," ",L2," ", C4;
if $C 4$ neq 0 and M2 geq 0 then
HK (L1, L2 , M1, M2) $:=c 4$;
end end end end;
return end:
procedure basis(S); begin real FF,TF; integer $K ; K:=0$ for $\mathrm{L} 1:=0: \mathrm{S}$ do
begin
for L2:=0:S do
begin
for M1:=0:S do
begin
$\mathrm{M} 2:=\mathrm{S}-(\mathrm{M} 1+\mathrm{L} 1+\mathrm{L} 2)$
if M2 geq 0 then
oegin $\mathrm{K}:=\mathrm{K}+1$,
if $K=1$ then write " Resonances at $S=", S$;
FT: =Y1**L1*Y2**L2*X1**M1*X2**M2;
EID:=I*(W1*(M1-L1)+W2*(M2-L2));TGT:=0;
if EID $=0$ then
begin TGT: =HK (L1,L2,M1,M2); GT: =GT+TGT*FT end else
begin TWT: $=$ HK (L1, L2, M1, M2)/EID;
WT:=WT- TWT*FT end;

"M1-L1 $=", M 1-L 1, ~ " M 2-L 2=", M 2$
$" ~ H K=", H K(L 1, L 2, M 1, M 2) ; ~$
if PRIBAS >0 then begin M1 L1 M2 L2 *W1 *W2 HK";
if $K=1$ then write "K M1 L1 M2 L2 *W1
if TGT $=0$ and TWT $=0$ and PRIBAS<2 then goto MFB;
write K," ",M1," ",M2," ",L1," ",L2," ", FT," ", EID," " G=",TGT,
" $\mathrm{W}=$ ", TWTS; MFB: end end end end end;

return end;

ptim(1);
\%============
on div;
operator HK,GG,H,W
factor $\mathrm{W} 1, \mathrm{~W} 2$; on rat;
for $k:=2: 8$ do $H(K):=0$;
write if IU $=1$ then begin write "Potential Henon-Heiles ";
rite
write W2:=1
Write SQW1:=1
Write SQW2:=1;
write $\mathrm{H} 2:=1 / 2 *(\mathrm{Pl} * * 2+\mathrm{P} 2 * * 2)+1 / 2 *((\mathrm{~W} 1 * \mathrm{Q} 1) * * 2+(\mathrm{W} 2 * \mathrm{Q} 2) * * 2)$: write $\mathrm{H} 3:=\quad(\mathrm{Q} 1 * * 2 * \mathrm{Q} 2-1 / 3 * Q 2 * * 3)$;
write H4:=0; end;
 if IU=2 then begin write " Potential anti-Henon-Heiles"; W1:=1;W2:=1;SQW1:=1;SQW2:=1;
H2: $=1 / 2 *(\mathrm{P} 1 * * 2+\mathrm{P} 2 * * 2)+1 / 2 *((\mathrm{~W} 1 * Q 1) * * 2+(\mathrm{W} 2 * Q 2) * * 2):$
H3: = (Q1**2*Q2 +1/3*Q2**3):
H4:=0

if IU $=7$ then begin write "Potential quadr. vibrations";
W1:=1; W2:=1;SQW1:=1;SQW2:=1;
Write $\mathrm{H} 2:=1 / 2 *(\mathrm{P} 1 * * 2+\mathrm{P} 2 * * 2)+1 / 2((\mathrm{~W} 1 * \mathrm{Q} 1) * * 2+(\mathrm{W} 2 * \mathrm{Q} 2)$ **2) ;
Write $\mathrm{H} 3:=\mathrm{B} *(\mathrm{Q1**2*Q2-1/3*Q2**3)} \mathrm{;}$
write H4:=C* Q 1 ** $2+\mathrm{Q} 2$ ** 2) ** 2 ;
end;

 write " Transformation of $\mathrm{H}(2)$ to normal form";let SQ**2=2;let SQW1**2=W1;
write $\quad H(2):=\operatorname{sub}(P 1=S Q W 1 * P 1, P 2=S Q W 2 * P 2, Q 1=Q 1 / S Q W 1, Q 2=Q 2 / S Q W 2, H 2)$; write $H(3):=\operatorname{sub}(P 1=S Q W 1 * P 1, P 2=S Q W 2 * P 2, Q 1=Q 1 / S Q W 1, Q 2=Q 2 / S Q W 2, H 3)$; write $H(4):=\operatorname{sub}(P 1=S Q W 1 * P 1, P 2=S Q W 2 * P 2, Q 1=Q 1 / S Q W 1, Q 2=Q 2 / S Q W 2, H 4)$;
 write $G G(2):=H(2)$;
for $\mathrm{S}:=3:$ SMAX do
begin
H3X:=SUPOXY (H(S))
write " $\mathrm{H}(\mathrm{P}, \mathrm{Q})$ to $\mathrm{H}(\mathrm{X}, \mathrm{Y})================1$, ptim(2);
H3N: $=$ NUM (H3X) ; H3D: =DEN (H3X) ; SEPA (H3N,S) ;
write "Separate $H(X, Y)$ to components $========$ ", ptim(3); GT:=0; WT: $=0$;
basis(S):
write "Evaluation $W(X, Y)$ and $G(X, Y)=========0=1, p t i m(4)$; GT:=GT/H3D;WT:=WT/H3D;
write
write writo

GG(S):= SUXYPQ(GT)
W(S):= SUXYPQ(WT):
" $G(X, Y), W(X, Y)$ to $G(P, Q), W(P, Q)==============$ "G(X,Y),
ptim(7):
for $I I:=S+1$: IMAX do
begin
S:=0;
for $J:=1:$ IMAX do
begin
$L:=I I-(S-2) * J$; write $" S=", S, " \quad I=", I I, " \quad J=\|, J, " \quad L=", L ;$
if $L<J$ then goto FINJ;
for J1:=0:J do

begin

J2: =J-J1; DHL: =DF(H(L),P1, J1,P2, J2); DGL:=DF(GG(L),Q1;J1,Q2,J2);
if $J 1>0$ then $\quad W Q 1:=D F(W(S) ; Q 1) * * J I ;$
if $J 1>0$ then $W P 1:=D F(W(S), P 1) * * J 1$;
if $\mathrm{J} 2>0$ then $\mathrm{WP} 2:=\mathrm{DF}(W(\mathrm{~S}), \mathrm{P} 2) * * J 2$;
if $\mathrm{J} 2>0$ then $W Q 2:=\mathrm{DF}(W(S), Q 2) * * J 2$;
if $J 1=0$ then $W Q 1:=1$;
if $J 1=0$ then \quad WP1: $=1$;
if $J 2=0$ then \quad WQ2: $=1$;
TT: $T T:=1 /(F A K(J 1) * F A K(J 2)) *(D H L * W Q 1 * W Q 2-D G L * W P 1 * W P 2) ;$ SS:=SS+TT end
FINJ:
end;
write $G G(I I):=H(I I)+S S$; ptim(6) end;
for K:=S:IMAX do $H(K):=G G(K)$; end;ptim (10);
write
\%on gc;
 HTAF: $=0$;
for JS:=2:IMAX do
begin
HHH:=GG(JS) ;
if (JS $>$ SMAX) then HHH: $=\mathrm{H}(\mathrm{JS})$;
HAF: =sub(Q1=SQ2*SQA1*COS(F1), P1=SQ2*SQA1*sin(F1),
$\mathrm{Q} 2=\mathrm{SQ} 2 * \mathrm{SQA} 2 * \operatorname{COS}(\mathrm{~F} 2), \mathrm{P} 2=\mathrm{SQ} 2 * \mathrm{SQA} 2 * \sin (\mathrm{~F} 2), \mathrm{HHH})$:
for all X let $\cos (X) * * 2=(1+\cos (2 * X)) / 2, \sin (X) * * 2=(1-\cos (2 * X)) / 2$;
factor sin, cos;
let $S Q A 1 * * 2=A 1, S Q A 2 * * 2=A 2, S Q 2 * * 2=2$;
HAF: = HAF;
for all X, Y let $\cos (X) * \cos (Y)=(\cos (X+Y)+\cos (X-Y)) / 2$, $\cos (X) * \sin (Y)=(\sin (X+Y)-\sin (X-Y)) / 2$,
$\sin (X) * \sin (Y)=(\cos (X-Y)-\cos (X+Y)) / 2 ;$
HAF: =HAF ;
for all X, Y clear $\cos (X) * \cos (Y), \cos (X) * \sin (Y), \sin (X) * \sin (Y)$:
for all Z clear $\cos (Z) * * 2, \sin (Z) * * 2$;
HTAF: =HTAF + HAF
end;
on float:

```
write HTAF:=HTAF;
```



```
off nat; off echo;
out gitares;
IMAX:=IMAX; IU:=IU; SMAX:=SMAX;H2:=H2;H3:=H3;H4:=H4;
W1:=W1;W2:=W2;NU:=NU ;MU:=MU;
for S:=3:IMAX do write "W(",S,"):=",N(S);
for Kt=2:IMAX do write "H(",K,"):=",H(K);
on list;
HTAF:=HTAF;
shut gitares;
ptim(20);
```



```
end;
```


[^0]: * Kharkov Institute for Technical Physics, USSR

