


Numerical functional integration is one of = the
perspective means of computation in many branches of
contemporary science, especially in quantum and statistical
physics [1]1. One of the important areas of application of
functional integrals [2]1 1is . the  computation .of various
characteristics of physical systems which consist of many’

particles interacting with each other. The basis for the

computations is the Green function G(x,xo,t) which in
Euclidean metrics (t=iT) is the solution of the following
problem
n i
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G(x,xD,O) = &(x—go); x=(x1,...,xk,...,xn3, (L
G(XgXD 2t} ’le:]-bm, k=1,2,...,n,

where V{x) is a given function. The Green function method 1is
an effective means of solution of multidimensional problems
in statistical mechanics, nuclear physics, quantum optics,
etc. The solution of (1) without any simplifying assumptions
(mean field approximation, collective excitations) is a
rather complicated cnmputational prdblem. In the case of hiogh
dimensions (n>3) the traditional methods (finite elements,
finite difference) lose their efficiency because of the
presence of singularities and of the necessity of solving the
algebraic systems of extreme high orders. The approach based
on the cnmnﬁtatinn of matrix elements of the time evolution

operator e_TH

By axg,T) = xg leTTH x> - (@)

appears to be perspective [31. This aphroach‘enables one to
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replace the differential formulation of the problem (1) by
the evaluation of the functional integrals. The stochastic
methods (Monte Carlo algorithms) are often used in this case.
It provides the way of solution of the variety of multidimen—
sional problems, e.g. problems of nuclear physics [41. This
approach is of particular importance when the uthér methods
{perturbative, variational, stationary-phase approximation,
etc.) cannot bhe applied [53]. In connection with the recent
development of the methods df approximate evaluation of
functional integrals with respect to Gaussian measures
(see [&41), the approach based on the use of the expression of
the matrix element (2) in the‘ form of the inteagral with

conditional Wiener measure dwx
T . .
<x+|e_TH|xi> = J exp{}JV[x(t)]dt} ¥ v (3)
o

appears to be of particular interest. The integration in (3)
is performed over all functions x(t) e €LO,T1 satisfying
¥ (0)=x,, K(T)=K{. One of the advantages of this approach is
the possihility of solution of the problem (1) in unbounded

region, without replacement of the boundary conditions at th?
infinity bg‘the conditions at some large kaax,-k=1,2,...,n.

in the framework of the deterministic approach which we
‘are successively developing [71 we derived for thé functional

integrais with Gaussian measures M

J FIx1 dpix) : : 4
b3

.s=ome new approximation formulas exact on a class of
poiynomial functionals E81. Here ¥ is a full ‘separable
metric space, F 1is a real functional. The theorems on the
convergence. of approximations to the exact value of inteqral
are proved, the estimate of the remainder is obtained. 1In

Daﬁticu]ar case nof conditional Wiener measure the family of
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approximation formulas with the weight is derived [91. The
use of the formulas in the problems of quantum mechanics
show (101 that these formulas provide the higher efficiency
of computations versus other methods of evaluation ot
+unctional‘integrals. The employment of - our formul as gives
the significant (by an order} economy of computer -time and
memory with thébequél accuracy of results compared to the
iattice Monte Carlo method in the problems which we have
considered. HMoreover, while solving the problem (1) by finite
difference methods one has to discretise both space and time
variables, the integral formulatjon via tattice HMonte Carld
method assumes the discretization of time only, and the
continuum apﬁroach based on the use of our formulas does not
need any space-time discretization at all. The discretization
is performed here only at the final step of computation of
the ordinary (Rimanian) integrals which arise in . the
formﬁlas.

For the multiple functional integrals with respect to

the Gaussian measures

J’J F[xi,...,xn]dp(xl)...dp(xn)gj Frxidu'™ Go (5)
%3 ®” , wn

we derived [111 the new approximation formulas of the given
summary degree of accuracy. In particuiar case of normalized
¥={CLO,13,x (D) =x(1)=03}=C
we obhtained the family of approximation formulas with the

conditional Wiener measure d,

weight..
Theorem._

Let Bi(s} be the solution of the differential equation.

(1-s)B,  (2)-(1-2)?B % (5)-3B, (5)-2p; (5)=0,  i=1,...,n

(&)

B; (1)=-% p; (1) s € [0,11, p; € €LO,11,

and let the following definitions hold
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Ni(t)=exp{ I(i—s)Bi(s)ds},
o . |

i—-u
Ki(5)=qu(U)W;TﬁTdu1 g; = €ro,t1,
S .

t

Li(t)=IEBi(s)wi(s)Ki(s)—qi(s)]d5'+ Ci»

. t t s
f c1ge. A=t - e
ai(t)-lLi(s)ds oy JBi(s)Ni(a) ILl(u)du ds,
2 ,

where the constants Ci
JLi(s)ds = 0.

Then the approximation formula

I P[xl,...,xnl F[xl,....xnl dXyes-d X =

1
o~ exp{ E I(i-s)B (s)ds} exp{ p

B |-

Nt
> jLi?<t1dt}
i=1 ©

n

. .
(zm 1 E I FLa () yaensay_ JC Y VRE (v, D ra g (e

i=1 -1

are determined by the condition

7)

35,10 Varnansag ()T dv,

where

i=1

is exact for any polynomial functional of the
degree on <N,

third
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PLXgqenn oy ]—exp{ z Inplttlw Z(tr+g; (B xyg (t)]dt}

summary

Here wa(v,-) = fi(v,-) — a(Vv,y-},

mind|v|,t}
f;(v,t) = sign(v) g%%%y [1+ .Bi(s)wi(s)ds]S
o
sign(v), t=|v],
x(v,t) =
o, . £ |v]-

—

The proof of the theorem is based on the employment of

the special linear transformation which maps the space € onto

itsel¥ in one-to-one correspondence. We have {found and

studied this transformation in [1Z2].
Equation (&) is in ¥fact a Riccati equation. Its solution
for pi(t)Epi=const. is

B; (s) = Iég {fﬁp- Ctg[fﬁpi(i“S’] - Iég}'

1

If we set also qi(t)Eqi=CDnst., then gi(t) can be expressed

explicitly as :

a; (t) = qi[pi CDS.I/ s1n[.|/,.,p t 51n[.‘/2p (1- t)

o

and the approx1mat1on formula (7) for -pj < éﬂ .acquires the

form

I P[XI""’XHJ F[kl,...,xnl dwxi...dwxn EX
cn

n F _1/2 . >
~ [ [___~_'°1_J exp{_q;_
i=1 sinffpi 2in§p1

[ean/Bor - /B 1}

U (8)
(2m—1 E J FLa () yunnaay_gC ) ARV, d+a; ),

35,40 ) y-nnsa ()1 dv

(for p<0 the trigonometric functions are converted into

hyperbolic ones).



Consider the Calogero model which is characterised by

the Hamiltonian

n

a N n .
ll + ! w? E 32+ E -=
H = - 3;;2. 2 (x; X (o} (xi—xj) -

k=1 i<j i<j

This model corresponds to the system of n particles in one
dimension, which interact pairwise via inverse cube repulsion
("centrifugal potential®) and ‘linear attraction (“harmonic
uscilletor-petential“). This model serves as an object of
investigations for many authors (see [131-0[151). The
‘convenience of the model is determined by the fact that the
explicit analytic solution for it has been found (see [151}.
We computed the Green function G(xi,xf,T) for the various
numbers of particles n. The Green functinn is the basis for
computation of the physical characteristics, such as the
bound states energies, the propagator, the wave function,
etc. [101. Particularly, the groend state energy ED is

defined as follows

1 o
E_ = lim,[— - 1n J Glx,x,T) dx].

Taw T _&

The values of Eb which we computed using our eppruximation
formula with weight (8) for g=1.5 in the case n=3 with

different values of w, are listed in Table 1.

: C Table 1.
@ ED . EmC EEX
D.10 1.346 B © o 1.3472
0.20 2.700 - 2. 6944
0.25 | 3.366 3.35%0. 004 3.3680
0.50 . 6.738 - 6.7361

The CFU time of computation of ED is 1{ sec per point « on

6

the CDC-4500 computer:. The values obtained for «w=0.25 and

different n are presented in Table 2.

Table 2.
n o Ee ’ Emt Eex
5 13.447 13.37120.04 13.4397
7 3I2.249° Z2.3420.07 I2.2718"
e &1.473 61.3120.10 . 61.5183 .
11 102.865

102.3110.14 102. 6028

For comparison, we cite the results obtained in [151 using
Monte Carlo method‘(IDDD points of discretisation, 100 itera-
tions). These resulte are denoted by Emc' The exact results
are denoted by E_ . The CPU time of computation of Eg for
n=11 is 3 min on the CDC-4500 computer, whereas the computa-
tion of Emc takes 15 min on the anaioqnus comouter [151].
The presented results show that our formulas provide the

higher efficiency of computations.
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Modelling of Multidimensional Quantum Systems
by the Numerical Functional Integration

The employment of the numerical functional integration for the descrip-
tion of multidimensional systems in quantum and statistical physics is
considered, For the multiple functional integrals with respect to Gaussian
measures in the full separable metric spaces the new approximatian‘formu-
las exact on a class of polynomial functionals of a given summary degree
are constructed, The use of the .formulas is demonstrated on example of
computation of the Green function and the ground state energy in multidi-
mensional- Calogero model. The comparison of numerical results with the
data obtained by the other authors which used the Monte Carlo method com-
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