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Numerical functional integration is one of 

perspective means of computation in many branches 

the 

of 

contemporary science, especially in quantum and statistical 

physics [1J. One of the important areas of application of 

functional. integrals [2J is the computation of various 

characteristics of physical systems which consist of many 

particles interacting with each other. The basis for the 

computations is the Green function G<x,x
0
,t) 

Euclidean metrics <t=i7) is the solution of the 

problem 

n 
a2s "6 1 L = 
~ 

- V<x> G = - HG; 
at, 2 

k=l k 

k=1, 2, ••• , n, 

which in 

following 

t>O; 

( 1) 

where VCxJ is a given function. The Green function-method is 

an effective means of solution of multidimensional problems 

in statistical mechanics, nuclear physics, quantum optics, 

etc. The solution of (1) without any simplifying assumptions 

(mean field approximation, collective excitations> is a 

rather complicated computational problem. In the case of high 

dimensiom; (n>3> the traditional methods (finite elements, 

finite difference) lose their efficiency because of the 

presence of singularities and of the necessit4 of salving the 

algebraic systems of extreme high orders. The approach based 

an the com□utation of matrix elements of the time evolution 
-TH operator e 

(2) 

appears to be perspective [3J. This approach-enables one to 



replace the differential formulation of the problem (1) by 

the evaluation of the functional integrals. The stochastic 

methods <Monte Carlo algorithms> are often used in this case. 

It provides the way of solution of the variety of multidimen

sional problems, e.g. problems of nuclear physics t4l. This 

approach is of particular importance when the other methods 

(perturbative, variational, stationary-phase approximation, 

etc.) cannot be applied C5J. In connection with the recent 

development of the methods of approximate evaluation of 

functional integrals w'ith respect to Gaussian measures 

(see t6J>, the approach based on the use of the expression of 

the matrix element (2) in the form of the integral with 

conditional Wiener measure d x w 

<xf le-THlxi> 
T 

= J exp{-Jvtx (t) ldt} dwx 
0 

(3) 

appears to be of particular interest. The integration in (3) 

is performed over all functions xlt) € Ct□ ,TJ satisfying 

x<O>=xi, xlT)=xf. One of the advantages of this approach is 

the possibility of solution of the oroblem (1) in unbounded 

rP.gion, without replacement of the boundary conditions at the 

infinity by the conditions at some large xkmax, k=1,2, ••• ,n~ 

In the framework of thP. deterministic approach which we 

are successively developing [7] we derived for the functional 

integrals with Gaussian measures µ 

J F[x] d,u(x) 

~ 

.some new approximation formulas exact on a 

polynomial functionals [8]. Here_-~ is a full 

(4) 

class of 

separable 

metric space, F is a real functional. The theorems on the 

convergence of approximations to the exact value of integral 

are proved, the estimate of the remainder is obtained. In 

particular case of conditional Wiener measure the famil4 of 

2 

r 
;<. 
' 

r r 

appro:<imation formulas with the weight is derived t9]. The 

use of the formulas in the prob,lems of quantum mechanics 

show (fOl that these formulas provide the higher efficiency 

of computations versus other methods of evaluation at 

functional integrals. The e'1!ployment of• our :formulas gives 

the significant _<by an order) economy of computer -time and 
. . 

memory with the equal accuracy of results compared to the 

lattice Monte Carlo method in the problems 'which we have 

considered. Moreover, while solving the problem (1) b4 fi~ite 

difference methods one has to discretise both space and time 

variables, the integral formulation via lattice Monte Carlo 

method assumes the discretization of time onl~!, and the 

continuum approach based on the use of our formulas does not 

need any space-time discretization at all. The discretization 

is pP-rformPd here only at the final step of 

the ordinary 

formulas. 

CRimanian) integrals which 

computation 

arise in 

of 

the 

For the multiple functional integrals with respect to 

the Gaussian measures 

J ... J Fcx 1 , ••• ,xn]dµlx 1 > ••• dµ(xn>~f F[xldµln> (x) (5) 

~ ~ ~ 

we derived [11] the new approximation formulas of the given 

summary degree of accuracy. In particular case of normalized 

conditional Wiener measure dwx, ~={<C[0,1],xlO)=xC1)=0}:,:<C_ 

we obtained the family of approximation formulas with the 

weight. 

Theorem. 

Let Bi (s) be the solution of the differential equation. 

(1-s>Bi' (s)-(1-s> 2 Bi 2 ls>-3Bi (s)-2pi (s)=O, i=1, ••• ,n 

? 
B - l 1 > =-~ p · ( 1) 

]. "' J. 
s E [0,1], Pi e<CE0,1J, 

(6) 

and let the fallowing definitions hold 
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t 

wi (t)=exp{ Jc1-s>Bi <s>ds}, 
0 

1 

J 1-u 
Ki <s>= qi <u>w. <u)du, 

s 1 

t 

qi .. ceca,u, 

Li <t>=J [Bi (s)Wi (s>Ki (s)-qi {s) ]ds + ci, 
0 

t t s 
. ~ 1-t J ( · .·· 

ai Ct>=JLi <sJds- w.ctT Bi (s)Wi Cs) JLi (u)du ds, 
0 l O 0 

where the constants c. 
1 

are determined by the condition 

1 

JLi (s) ds = O. 
0 

Then the approximation formula 

J Ptx 1 , ••• ,xnl Ftx 1 , ••• ,xnl dwx 1 ••• dwxn ~ 
en 

~ exp{- ~ 
n 1 L Jci-s>Bi<s>as} 

i=1 ° 
n 1 

exp{~ 

n 1 

L JLi 
2 (t)dt} 

i=1 ° 

. (2n>-1 L J Fta1<·), ••• ,ai-1<·>,-rnl'i<v,·>+ai(·), 

i=1 - 1 

(7) 

ai+l<·>,~--•an(")] dv, 

where Ptx 1 , ••• ,xnl=exp{ 

n 1 L ftpi (t)xi 2 <t>+qi (t)x1(t)ldt} 

i=1 ° 

is exact for any polynomial functional of the third summary 
degree an (Cn 

4 

11 

l 

Here wi<v,·> = fi<v,·) - a<v,•>, 

min{ Iv 1,t} 
f 1 <v,t) = sign<v> W~<i> [1+ f Bi(s)Wi<s)ds], 

1 0 

{ 

sign<v>, t~lvl, 
.o,o(v,t> = 

. o, t> 1v I . 

The proof of the theorem is based on the employment of 

the special linear transformation which maps the space cC onto 

i~self in one-to-one correspondence. We have found and 

studied this transformation in [12]. 

Equation (6) is in fact a Riccati equation. Its solution 

tor pi <t>;=pi=const. is 

Bi Cs) = l~s {~ ctg [~<1-s>] ~ 1.:s}· 

If we set also qi Ct>=qi =canst., then 

explicitly as 

ai (t) can be expressed 

ai (t) = qi [ pi cos~ ] sin(~ t) sin(~ (1-t) r 
and the approximation formula (7) for •Pi< ~n

2 
acquires the 

form 

J Ptx 1 , ••• ,xnl Ft~ 1 , ••• ,xnl dwx 1 ••• dwxn ~ 
cen 

n ~ 1/2 . ? 

n ( ,rLp: .] {" q. -~ 1 . exp 1 

i=1 sin~p- 2p-~ 1 1 1 

[ tan/2, - /2, ]} · 

n 
1 

<B> 

· (2n)-1 L J FC.a 1(·), •• ·.,ai-i(·),Yn>Jl<v,·)+ai(·_i, 
-j i=1 · . · . 

a i + 1 < · ) , ••• , an ( · ) J d v 

(for p<O the trigonometric functions are converted 'into 

hyperbolic ones). 
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Consider the Calogero model which is characterised by 

the Hamiltonian 

H = 
n 
~;. 
L....ax 4+ 
k=1 k 

! ,.J2. 
2 

n 

L<xi-xj>2 
i(j 

n 

+ 9 ~( -? L.... xi-x j) -. 

i(j 

This model correspo~ds to the system of n particles in one 

dimension, which interact pairwise via inverse cube repulsion 

("centrifugal potential") and linear attraction ("harmonic 

oscillator potential"). This model serves as an object of 

investigations for many authors (see [13]-[15]). The 

·convenience of the model is determined by the fact that the 

explicit analytic solution for it has been found (see [15]). 

We computed the Green function G<xi,xf,T> for the various 

numbers of particles n. The Green function is the basis for 

computation of the physical characteristics, such as the 

bound sta~es energies, the propagator, the wave function, 

etc. [10]. Particularly, the ground state energy 

defined as follows 

I=' 
-□ 

.., 
1 

= lim [- - ln J G<x,x,T) dx]. 
T .. ,.. T -eu 

E 
0 

is 

The values.of ~ which we computed using our 

formula with weight (8) for g=1.5 in the case 

different values of ~, are listed in Table 1. 

approximation 

w Eo 

0.10 1.346 

0.20 2.700 

0.25 3.366 

0.50 6.738 

Erne 

3.35±0.004 

n=3 with 

Table 1. 

Eex 

1. 3472 

2.6944 

3.3680 

6.7361 

The CPU time af computation of E
0 

is 11 sec per point ... on 

6 

the CDC-6500 com□uter~ The values obtained for ...=0.25 and 

different n are presented in Table 2. 

Table 2 • . 
n Eo Erne E ex 

5 13.447 13.37±0.04 13.4397 

7 32.249' 32.34±0.09 32.2718 

9 61.473 61.31:t.0.1□ . 61. 5183 

11 102.865 102.31±0.14 102.6028 

For comparison, we cite the results obtained in [15] using 

Monte Carlo method (1000 points of discretisation, 100 itera

tions). These results are denoted by Erne· The exact results 

are denoted by Eex· The CPU time of computation of E
0 

for 

n=11 is 3 min on the CDC-6500 computer, whereas the computa

tion of Erne takes 15 min on the analogous com□uter [15]. 

The presented results show that our formulas provide the 

higher efficiency of computations. 
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no6aHOB ~-~-, Wax6arRH P.P., ~HAKOB E.n. 
MoAenHpoeaHHe MHoroMepH~X KBaHTOB~X CHCTeM MeTOAOM 
npH6nHmeHHoro KOHTHHyanbHoro HHTerpHpoeaHHR 

Ell-90-393 

PaccMaTpHeaeTCR npHMeHeHHe MeTOAa nPH6nHmeHHoro KOHTHHYaflbHoro HHTer
PHPOBaHHR AflR onHCaHHR MHoroMepH~X CHCTeM B KBaHTOBOH H CTaTHCTH4eCKOH 
~H3HKe. anR KpaTH~X KOHTHHyanbH~X HHTerpanoe no rayccoe~M MepaM B nonH~X 
cenapa6enbH~x MeTPH4eCKHX npocTpaHcTeax nony4eH~ Hoe~e npH6nHmeHH~e ~op
MYn~, TO4H~e Ha Knacce ~YHK4HOHanbH~X MHoro4neHOB 3aAaHHOH cyMMaPHOH CTe
neHH. Hcnonb30BaHHe ~PMYfl AeMOHCTpHpyeTCR Ha nPHMepe pac4eTa ~YHK4HH 
rpHHa H 3HePrHH OCHOBHoro COCTORHHR B MHoroMepHOH MOAeflH KanoAmepo. Cpae
HeHHe 4HCneHH~X pe3yflbTaTOB C AaHH~MH, nony4eHH~MH APYrHMH aeTopaMH MeTo
AOM MoHTe-Kapno c npHMeHeHHeM HTepa4HOHH~X anropHTMOB CBH~eTeflbCTBYeT o 
TOM, 4TO nocTpoeHH~e HaMH ~OPMYfl~ o6ecne4HBa~T B~COKY~•3$1>eKTHBHOCTb e~-
4HCfleHHH. 

Pa6oTa e~nonHeHa e na6opaTOPHH B~4HCflHTeflbHOH TeXHHKH H aeTOMaTH3a4HH 
OHHH. 

IIpenpHHT 061,e.zurnemmro HHCTHTyTa H,Itepm.IX HCCJie,It~BaHHH. ,lly6Ha 1990 

Lobanov Yu.Yu., Shahbagian R.R., Zhidkov E.P. 
Modelling of Multidimensional Quantum Systems 
by the Numerical Functional Integration 

El 1-90-393 

The employment of the numerical functional integration for the descrip
tion of multidime~sional systems in quantum and statistical physics is 
considered. For the multiple functional integrals with respect to Gaussian 
measures in the full separable metric spaces the new approximation ,formu-
1a·s exact on a class of polynomial functionals of a given summary degree 
are constructed. The use of the .formulas is demonstrated on example of 
computation of the Green function and the ground state energy in multidi
mensional Calogero model. The comparison of numerical results with the 
data obtained by the other authors which used the Monte Carlo method com
bined with iterative algorithms indicates that our formulas provide the 
higher efficiency of computations. · 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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