


1. Algorithm

There is a great varlety of algorithms and programs for solving;}
this problem due to 1ts importance in ﬁhysics, and in particular in
quantum many body problems. As much as the algorithms are concerned; '
a detalled survey may be found in ['17], together with instructions (
for programs constructions., As well known, a high order;métrix is a
rather éomplicated object, and may present various intricated special
cases, Therefore so many algorithms have been develédped, in order to
be able to deal with different matrix types and with fhoi; intricated
cages, The programs based on them have been designed mostly for big
computers.

Our sim has been to suggest a method, universal enough to be able
to treat different matrix types together with their complications. At
the same time it should be able to compete in reasonable limits with
big computer.methods, with respect to high execution‘speed and matrix
order, And its program should be reasonably concise to fit into a
pérsonal computer with a 640 and even a 256 kb memory. The ldea to
- achleve this has been not to applj complicatedvmethods devoted to
knotty speéial cases. It has been to choose a variety of most reli- ‘
able m;thods, with the possibility to change them during performance.
Thus a universal‘method is found. It allows the user to make a compro-
mise befween accuracy and speed during execution, depending on the
results. _ '

If one looks at the known algorithms, one can see that they in-
clude different initial matrix types, different matrix form trans-~
formations to increase the speed, different iteration procedures to
find the eigenvalues, procedurés to find the eigenstates, and diffe-
rent ‘procedures to decompose a ‘matrix to f£ind its determinant and
inverse matrix and/or its eigemvalues and eigenstates. As much as

the matrix types .are concerned, we, have included any real matrices,
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independent of symmetry (hermiticity). As much as matrik form trans-
formations are conéepned,”we have combined the possibility to apply
4 forms: original, hessenberg, tridiagonal accepted and another tri-
diagonal modified (figure 1); the last one is good for low order ma-
trices only, buf worse for high order ones. Thus we increase the exe-
cution speed very much, especially for high order matrices, sincé the
theoretical execution times increase with matrixvorder N roughly as
& for original, N for hessenberg and N° for tridiagonal forms.

For finding the eigenvalues we have also used the A -E = P1 x:Pu
decomposition (figure 2), which is the foundation of the LR and its
modification QR methods. fl] « As well known, this decomposition
does not>apply to some special matrices and is not numerically stsble
for meny others [27] , if pivoting is not applied (figure 3). No pivo-
ting means leaving the matrix form as it is, partial pivoting: inter-
changing its rows only, complete pivoting: interchanging»its fows and
columns as well, in'an optimal for form transformation and matrix de;
composition way [1,2] . Then we have made use of an iteration proce-
dure based on the bisection method (figure 4). This method is most
ieliable as much -as accuracy is concerned.

For finding the eigenstaﬁes after the steps‘of figures 1,2,3,4
have been completéd, we have applied a method explained in figure 5.
It allows one to find the multiplicity of a degenerate eiéénvalue, '
making special use of the complete pivoting in figure 3 during the
last step in figure 4. Generally this is a difficult problem fl] .
Thereafter we f£ind ’all the eigenstates belonging to this eigenvalue
(figure 5) and orthonomalise them by a Gram. - Schmidt procedure.

Thus our algorithm contains a combination of methods of the two
main classes [1] : form transformations and LR » QR 'methods.

2. Program

The program has been realised in turbo basic langusge. The choice
' 3
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Pigure 4. Iteration procedure for finding the eigenvalues of a matrix
A by the zeros Ei of the determinant D=D(A-E) of A-E after the

transformation of figure 1 and the decomposition of figure 2 with
pivoting of figure 3 by a bisection method [].].
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Figure 5. Method of obtaining the degeneracy (multiplicity) ¥ of an
eigenvalue E, after the transformation (figure 1), by the decomposi-
tion P:(Pl » By) of A-E (figure 2), using its complete pivoting
(figure 3), and after the iteration procedure for finding E (figure 4)
leaving M zeros in the lower right end of the main diagonal of P .

All the M eigenstates of E are obtained by solving the N-M order
upper left determinant eqﬁations, with free terms: any of the M last
right columns.
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of this language may be well understood. First of all it preserves
the possibilities 6f the usual basic for a didlogqe'bétween computer
and user. As we are going to éee, this makes thé many branching co@-
mands during performance very convenient. On.the other side it is f
much better than the usual basic and has most of the possibilifies of
the richer languages, e.g. fortran. In particular it automatically
includes the use of a mathematical coprocessor if it is avaiiable to
increase the execution speed. At the same time it also automatically
includes the use of the whole memory, especially if an extension of
it is available. However:if one or both of these accessories are not
avallable, the program can be used without them as well.,

We are going to describé the program in a schematic way.only. The
input of the initial matrix A (figure 6) may be done from a file, |
prepared by the user after ha&ing calculated the matrix elements
earliear, or mamually directly. A possibility is included either to
use this matrix as fhe ready one, or to comstruct by if a test matrix

o~
2Bl

and einhange it with A , after input of known eigenvalues E
(tablq 1) which are forgotten by the comﬁuter and may be founq later
by its usual procedure. Then the original matrix form can be changed
from A into Q (figure 1) in order to increase execution speed.

Later on two main branches are open. In the rﬁh.s. of figure 6 is
a short ﬁranch which might be called determinant (equations) solution
(deso). After evelmbually having changed A to Q (figure 1) and then A
to A-E, it fulfills the decomposition (figure 2) with pivoting
(figure 3), finds the determinamt D = D(A) °, solves a determinant
equétion AxE = B by finding the solution coluﬁn B . for any free
colunn B , and ‘finds the inverse matrix S = A”l (table 1) together
with the inversion check AxS = I (table 2).

In the 1l.h.s. of figure 6 is shown the long branch which might be
called matrix diagonalisétion (hadi). A short program finds the limits

of the eigenvalues from below -EM and from above +EM . They can be
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Figure 6.. Progranm scheme; see table 1: notations, table 2: checks,
tablg 3: commands, table 4: parameters.

changed by user to EI and :espectively EF , if he has additiomal
information about thenm and/br wishes to obtain only several of the
eigenvalues situated in the interval (EI,EF) , By using all the pro-
grams and subprograms of the r.h.s. and additionally the iteration
procedure we find the eigenvalues E. (figure #) , with or without
the eigenstates S (table .1). The last ones may be found thereafter
too. Any pivoting (figure 3) made during form transformation (figure

1) and matrix decomposition (figure 2) has been remémbered and is re-

- stored at this step. If there are degenerate eigenvalues, to obtain

their actual multiplicity and all their eigenstates, complete pivo-
ting (figure 3) is usually .necessary at the final iteration step
(figure 4) with the method of figure 5 . An orthonormalisation check
s*xs = I is proposed for hermitian matrices A , It may also play the
role of checking if all eigenstates are independent for nonhermitian
matrices A , for which generally S*¥S £ 1 . A final diagonalisation
check AxS - SxE = O 1is offered too. It proves the actual validity
of all the eigenvalues E as well of all the eigenstates S directly
for the original form A of the matrix (table 2).

%. Instructions to users

These instructions are made evident in the program scheme presen-
fed in figure 6, together with the explanations in tables 1,2;5,4 .
The input of the matrix is shown at the top of figure 6. The deso
branch described in section 2 is ppesehted in the f;h.s. of‘fisure 6.
The madi branch of section 2 is presented in the l.h.s.vof figﬁre b.
In addition to the program notations shown in table 1 and'program
checks shown in table 2, both of them commented in section 2, we must
say a few words about the branching commands in table 3 and input pa-
rameters in table 4. »

The branching commands (table 3) are used to change or repeat the
way of performance. The user does not need table 3 except for planning
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Table 1. Program notations:

—~

A: ready or tedt matrix in original form; A: its transformation into
an orthogonal (unitary) matrix used to obtain symmetric (hermitian)
test matrix 4 B 11 —> A , Or %=hA if hermiticity is not
required.

Q: hessenberg, tridiagonal accepted or tridiagonal modified form of A,
together with the matrix transforming back the hessenberg or tri-
diagonal form (in the last case a matrix diagonal T is added) into
original form, situated in the free Q (O elements) memory space
(figure 1).

P: matrix decomposition of A-E = Pl x Pu into a product of a lower
P1 and upper Pu triangular matrices; for other than original
forms A —> Q (figure 2).

8: inverse matrix S = A'l in the r.h.s., eigenstates matrix
AxS = SxB in the l.h.s.

B: linear equations free terms input vector column initially, their
solution output vector column finally, in the r.h.s.

E: displacement in the r.,h.s., eigenvalue in the l.h.s., multiplied
by the unit matrix; eigenvalues diagonal matrix, input for test
matriz construction A E Ihl —> A for the r.h.s. and 1l.h.s, ini-
tially, output after matrix diagonalisation in the l.h.s. finally.

D: determinant of A-E equal to the product of the Pu diagonal ele-~
ments after decomposition in the r.h.s. and l.h.s,

R: ratio, geométric average of the lower than RA diagonal elements
of Pu in the r.h.s. and l.h.s.

DOS: quit program.

Table 2. Program checks:

Inversion check in the r.h.s.: AxS = I (unit matrix).
Orthonormalisatiasn check in the l.h.s.: S*xS = I if A is hermitien.
Diagonalisatian check in the l.h.s.: AxS - 5xE = O (zero matrix).

i
il

9
|
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his future actions, since at each branching point he obtains the
whole text of the possible-branching commands, together with the
corresponding letters he must choose to press, on his screen as shown

in table 3.

-

The input parameters (table 4) are demanded on the screen in the
same way as listed in table 4. However they need some explanations
since they may influence the accuracy and the speed. The trénsform
accuracy QA~ is needed only when a transformation to a Q hessen-
berg or tridiagonal form is fequired. If the transformed form is good
(during transformation no variable} by which one mist divide [{] N
happens to be neer to 0) then QA = O will be OK. Otherwise one
might improve the Q form by taking a small number QA > O .,

The ratio accuracy RA 1is one of the most important parameters
for the madi l.h.,s. branch. It determines the degeneracy of the eigen-
value M (figure 5). If it is too low, the eigenvalue will be foungd,
but its degeneracy may be decreased even down to O . In the iast case
this means that it will not be recognised (numerated). If it is too
high, the degeneracy of the eigenvalue may be increased, and thus
other eigenvalues might be skipped. Happily the useful intervai for
RA is several orders of magnitude, e.s.'roughly between the eigen-
value distance ED (figure 4) and thé eigenvalue accuracy EA .
The eigenvalue accuracy BEA 1is exactly what this means. A lower

value of EA , meaning higher accuracy, at the same time increases

- the execution time, but only logarithmically.

The interval number LN mst be chosen so that the eigenvalue
distance ED = (EF - EI)/LN is lower than the actual minimal eigen-
vaiue distance. It is not recommended to choose this 1IN muéh higher,
correspondingly ED much lower, since this increases the execution
time unnecessarily. '

A1l other parameters of taﬁle 4 are used in special cases only

which will be understood without explanations. E.g. the determinant
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Table 3. Branching commands:

any other sign: .../-

input via file/direct: f/-

test/ready matrix: t/-

hermitian/any matrix: h/-

original/hessenberg/tridiagonal accepted/tridiagonal modified form:

-/b/ /%t

pivoting no/partial/complete: -/p/c (figure 3)
eigenvalues/determinant: e/d (1l.h.s./r.h.s.)

lineéi equations/inverse matrix/not: 1/i/-
_with/out eigenstates: w/o

return/elternate/unique: r/a/- -

return/again/continue/not: r/a/c/-

‘states/not: s/-

values/states/not: v/s/-

manual/aut correction: m/-

change .../not: c/-

abs/rel correction: a/-

repeat .../not: r/-

..+ check/not: c/~- -

end/not: e/-

Table 4. Input parameters:

transforn accuracy: QA (r.h.s. and 1l.h.s.)

deternminant accuracy: DA (r.h.s. and 1l.h.s.)

ratio accuracy: RA (r.h.s. 'and 1l.h.s.)

displacement: E (r.h.s.)

eigenvalue accuracy: EA (l.h.s.)

interval number: IN (l.h.s.)

eigenvalue initial point: EI ~ (l.h.s.) , instead of evaluated -EM
eigenvalue final point: EF (1l.h.s.) , instead of evaluated +EH
 initia1 number: II (l.h.s.) ,. instead of accepted 1 ,
correction (abs corr): R (1l.h.s.) , instead of evaluated R
maltiplier (rel corr): D (l.h.s.) , DR instead of evaluated R
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accuracy DA may in almost all cases be put DA =G, DA S O
plays a role only to shoften the time of the eigenvalue calculation
sometimes, but on the other hand this is dangerous since it might

decrease  the accuracy.

4, Files and tests

In the case of accepting this work as a JINR preprint, anybody
interested will get a copy of a diskette containiﬁg the files nece~
ssary for use and test.

First of all, two files mainev.bas and veinev.bas are inclu-
ded. They have been prepared in usual basic language, since they mst
be accessible for changes to the particular needs of any user. The
first one creates the input matrix A and outputs it into the change-
able file matrix.dat (top of figure 6). The second one creates the
freekterms columm B (r.h.s. of figure 6), or the known eigevalues
row E (1.h.s. of figure 6), and outputs them into the chdngeabie
file vector.dat . Both of them can be used either manually-directly
or if an authors subprogram starting from line number 100 is added,
calculating the corresponding elements according to the user's wishes.
If unchanged, after command - they will create the files introduced
manually, but after command € they will create corresponding files
with O elements only.

Then three files deso39.exe , desob?.exe , deso8%.exe follow,
compiled in turbo basic language. The numbers denote the maximal or-
der of the matrix accessible for each file. 111 the three of them
correspond to the r.h:s. of figure 6 only (its deso part) without the
top of it except the input of a ready matrix 4 directly or from a

file (i.e. without the creation of a test matrix and without its

transformation into another form Q ) and without the 1.h.s.: its

madl part.
Thereafter the basic three files madi39.exe y madic?.exe ,
11



padi89.exe follow, compiled in turbo basic language as well, the num-
bers denoting the same maximal order. All the three of then correspond
to the complete figure 6 (with its top part, its r.n.s., deso part and
its 1.h.s. madi part). Three maximal orders have been chosen due to
the fact that turbo basic makes the performance for a matrix of the
same order a little longer if a higher maximal order is chosen, and
due to the fact that order 89 is inaccessible for a 256 kb memory,

but accessible for a 640 kb memory, and order 67 is accessible for a
256 kb memory.

At last threé matrix files matr0O6.dat , matri2.dat , matr24.dat
and three vector files vectu6.dat , vectl2.dat , vect24.dat are
available for tests of matrices of order 6, 12 ,'24 corresponingly.
E.g. to ﬁse the test matrix and test vector of order 24 one muét
copy matfz4.dat onfo the changeable file matrix.dat, and vect24,dat
onto fhe changeable file vector.dat. With each of them we can suggest
many test combinations. In fact, we have 4 initial and 4 final forms,
3 injtial and 3 final pivotingé, i.e. 4252 = 144 form and pivoting
choices, times an unknown set number of 4 important parameters (sec=
tion 3). ‘

‘Fith the above mentioned 24 order métrix we recomnmend the follow-
ing tests, Aféer the calling command: madi®9, we choose the following
branching commands and input parameters: f3-,dy~,c,0,0,0, and obtain
the determinant of the ready matrix in its original form:

D = -5.120 764 213 753 242 ; then after: 1,f we obtain the solution
of the determinaht equation , its last element being

B(24) = -2.445 755 752 506 578 ; and after: i1 we obtain the inverse
matrix with its last element S(2%,24) = 3,851 200 418 958 261 E-00Z .
The inversion check is satisfied. After the following commands and
parameters: madi39,fj—,€;%,t,=30,t,D5=»—0,1, 0CC 000 01, 400,- we
get all the eigenvalues of the ready matrix, the last of which is
E(24) = 7.962 485 292 138 446 , all of them with multiplicity M =1 ;3

12

after: -;-,s,t,p,O,l we get all eigenstates components with the last
one: ' S(24,24) = .228 704 973 291 901 3 .

In order to show the possibility to find degenerate eigenvalues
with all their eigenstates, we construct a éest hermitian matrix and
diagonalise it by: madi?9,f;t,h,e¢,0,0,0;f,-,~-,-3;0,0,t,-,0,t,c;
-4—y0,.01, .000 000 01, 200,— obtaining all its eigenvalues E , with
their multiplicities M , e.g. E(16-21) = 2.099 999 997 594 639 with
the highest M = 6 and the last E(22-24) = 5.100 000 001 093 565 with
M =3 ; after: -,-,8,t,c,0,.01 we obtain all eigenstates components
with the last one: S(24,24) = -.176 446 704 683 418 .

To show the diagonalisgtion of a nonhermitian matrix, we construct |-
a test nonhermitian matrix and diagonalise it by: madi?9,f:;t,-,c,0,0,0;
£y,~y—y—3e,0,%,~,0,%,c4~,2,-5.1,5.1,-,0,.01,.000 000 01, 200,- and
find all the eigenvalues B with their multiplicities M , e.g.

E(16-21) = 2,100 000 002 503 403 with the highest M = 6 and the last
E(22-24) = 3,100 000 003 695 500 With ¥ = 3 ; after : -,-,s,-,c,.01

we £ind all eigenstate components with the last one

s(24,24) = 5.833 837 799 603 148 E-002 , With the more usual commands
and parameters after the last "i" sign of the first sequence:
-,-,0,.01, 000 000 Ol, 400,- one f£inds: , '

E(16-21) = 2.099 999 998 669 201 and B(22-24) = 3.100 000 005 115 749
and with the same second sequence: S(24,24) = 5.833 837 82i 984 S24 -
E-002 . Results coinciding with the first ones for the same matrix
will be obtained with the second tridiagonal modified form if we
change the first sequence‘after the third ";" sign to:-e,o0,tt,-,

«001 ) tt,c;-,a,-5.1,5.1,;,0,.001 . .000 000 01, 200,- and if we:
do not change the second sequence. Due to the nonhermiticity of A
the orthonormalisation check shows that the eigenstates are norma-
lised but generally they are nonorthogonal. On the other hand the
diagonalisation check is satisfied, as in the'other cases with good

commands and parameters.

13



5. Characteristics

The execution time of obtaining all the eigenvalues of the 24

8 is 1T49° for a Pravetz-15 with co-

order matrix with accuracy 10~
processor, sbout 5 times longer without coprocessor, and about 10
times shorter for a Microway. This time depends on the initial and
f£inal matrix forms and pivotings, on the eigenvalue accuracy EA -and
interval number IN , and strongly on the matrix order N . E.g. if
EA = 10-8 , IN = 400 and N = 24 , the dependence of the time on the
form is as-follows. For ¢t,p,t,p initial form and pivoting, final
form and pivoting it will be: 4#™02% | n,p,h,p : 5™28°% | ~,p,-,p :
30m56s . Its dependence on the pivoting is as follows. For +,-,t,-
it will ve: 1%3% , t,p,t,p : 47025 as above, t,c,t,c : 685545 ,
The time for t,c is almost the same as that for h,c and -,c . For the

most relevant mixed cases like t,-,t,p it will be: 1748% | t,-,t,c

3325 | &,p,t,c : 5748% | For t,- and t,p it must increase with N as.
abbut'N2 , for hy- and h,p : as about"N3 , for t,c; h,ecy -,-; -,p and
-,C : as about N4 .
In conclusion we summarise the maiﬁ characteristics of the method:

1) Universality: a variety of methods with different éccuracy and
speed may be chosen by combinations of several possible initial and
final forms, initial and final piﬁotings and parameter sets.
.2) All these qethods may be chosen during performance, depending on
the results. ‘

%) Reliability, accuracy and speed may be optimised due to 1) and 2).
The usual speed of the diagonalisation of a 24 order matrix is equal
to finding all éigqnvalues in 110 s for Pravetz-16 with coprocessor,
about 5 times slower without it and about 10 times faster for Microway.
- It decreases propoftionally to about the square of the order.

4) The highest possible matrix order is 67 for a 256 kb memory or 89
for a 640 kb memory. The last number 89 may be increased about }7{
. times to about 125 by a minor change in the program.
14

5) Matrices with degenerate eigenvalues are accessible to the method.
6) The eigenvalues are found in the order of increase. This makes it
possible not to search for all of them, but only for several in a

definite interval, and thus to decrease the execution time conside--

rably.
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