
N-13

E.G. Nadjakov

coofi•BHIII
Ofila8ANH8HHOro

NHCTIITYT8
IAIPHWI

IICC18AOB8HIII

AYfiHa

Ell-90-391

MATRIX DIAGONALISATION ON PERSONAL

COMPUTERS

1990

1. Algorithm

There is a great variety of algorithms and programs for solving

this problem due to its importance in physics, and in particular in

quantum IIIBlcy body problems, As much as the algorithms are concerned,

a detailed survey may be found in [1], together with instructions

for programs constructions, As well known, a high order·matrix is a

rather complicated object, and may present various !.ntricated special

cases, Therefore so m~ algorithms.have been devel~p~d, in order to

be able to deal vi.th different matrix types and with their intricated

cases •. The programs based on them have been designe~ mostl1 for big

computers.

Our aim has been to suggest a method, universal enough to be able

to treat different matrix types together with their complications. At

the same time it should be able to compete in reasonable limits with

big computer.:•thods, with respect to high execution speed and matrix

order, And its program should be reasonably concise to fit into a

personal computer with a 640 and even a 256 kb memory. The idea to

achieve this has been not to apply complicated methods devoted to

knotty special cases. It has been to choose a variety of' most reli-
,

able methods, with the possibility to change them during performance.

Thus a tmiversal method is found. It allows the user to make a compro­

mise between accuracy and speed during execution, depending on the

results.

If one looks at the known algorithms, one can see that they in­

clude different initial matrix types, di~ferent matrix form trans­

formations to increase the speed, different itera~ion procedures to

find the eigenvalues, procedures to find the eigenstates, and diffe­

rent · procedures 1:lo decompose a.'matrix to find its determinant and

inverse matrix and/or its eigenvalues and eigenstates. As much as

the matrix types .are

X

A Qh Qt

Figure 1. Original (A), hessenberg (Qh) and tridiagonal (Qt) forms
of a matrix, the second and third one obtained by lmown successive

transformations [1] .

X

A .Pl Pu

Figure 2. Decomposition of a matrix (A or Q) into a product A:P1xPu
of a lower (P

1
) and upper (Pu) triangular matrices. The determinant

D of A is equal to the product of the diagonal matrix elements of Pu·
The inverse matrix A-1 = Pu-l x P1- 1 is obtained bJ a simple proce-

dure [2] .
123456 12345 6 4 6 2 3 1 5 -

11 5 5 ·,
2

X

2 j

1 X
II

I X 3
6

(

4

An AP Ac

Pigur! '•: No (A~), partial (AP) and complete (Ac,) pivoting of a matrix
(A or Q) used to make possible ~d/or numerically sta~le and accurate .
the transformation of figure 1 and the decomposition of figure 2 [1,2].

2

independent of symmetr;y (hermiticity). As much as matrix form trans­

formations are concerned, we have combined the possibility to apply.

4 forms: original, hessenberg, tridiagona~ accepted and another tri­

diagonal modified (figure l); the last one is good for low order ma­

trices only, but worse for high order ones. Thus we increase the exe­

cution speed very much, ·especially for high order matrices·, since the

theoretical execution times increase with matrix order N roughly as

:rf for original, N.3 for hessenberg and N2 for tridiagonal forms.

For finding the eigenvalues we have also used the·_ A - E = P1 x,Pu

decomposition (figure 2), which is the foundation of the_ LR and its

modification QR methods. [1]. As well known, this decomposition

does not apply to some special matrices and is not numericalIJ, stable

for many others [2], if pivoting is not applied (figure .3). No pivo­

ting means leaving the matrix form as it is, partial pivoting: inter­

changing its rows only, complete pivoting: interchanging its rows and

columns as well, in an optimal for form transf'ormation and matrix de­

composition way [1,2]. Then we have made use of an iteration proce~

dure based on the bisection method (figure 4). This method is most

reliable as much-as accuracy is concerned.

For finding the eigenstates after the steps of figures 1,2,.3,4

have been copipleted, we have applied a me;thod explained in figure 5_.

It allows one to find the multiplicity of a degenerate eigenvalue,

making special use of the complete pivoti~g in figure .3 during the

last step in figure 4. Generall;y this is a difficult problem [1 J .
Thereafter we find all the eigenstates belonging to this eigenvalue

(figure 5) and orthonomalise them b;y a Gram.- Schmidt procedure.

Thus our algorithm contains a combination of methods of the two

main classes [1 J : form transformations and LR , QR methods.

2. l:>:rQ.fS!:am

The program has been realised in turbo basic]anguage. The choice

3

D(A-E)

E

Pigure 4. Iteration procedure for finding the eigenvalues of a matrix
A by the zeros E1 of the determinant D:D(A-E) of A-E after the
tr~ormation of figure land the decomposition of figure 2 with
pivoting of figure 3 by a bisect~on method [1 J .

N-M Pu
r
I
I
I

N-M i I '__)('s._ I
I
I

&JIM
~

Ft M

Pigure.5. Method of obtaining the degeneracy (Dnlltiplicity) M of an
eigenvalue E, after the transformation (figure 1), by the decomposi­
tion P:(P1 , Pu) of A-E (figure 2), using its complete pivoting
(figure 3), and after the iteration procedure for finding E (figure 4)
leaving M zeros in the lower right end of the main diagonal of P.
All the M eigenstates of E are obtained by solving the N-M order
upper left determinant equations, with free terms: any of the M last
right columns.

4

-..

r

of this language may be well understood. First of all it preserves

the possibilities of the usual basic for a dialo~e ··between computer

and user. As we are going to see, this makes the many branching co~-
. .

mands during performance very convenient. On the other side it is

much better than the usual basic and has most of the possibilities of

the richer languages, e.g. fortran. In particular it automatically

includes the use of a mathematical coprocessor if it is available to

increase the execu~ion speed. At the same time it also automatically

includes the use ot the -Whole memory, especially if an extension of

it is available. However if one or both of these accessories are not

available, the program can be used without them as well.

We are going to describe the program in a schematic way.only. 1!he

input of the initial matrix A (figure 6) may be done• from a file,

prepared by the user after having calculated the matrix elements

earliear, or manually directly. A possibility is included either to

use this matrix as the ready one, or to conscruct by it a test matrix
,..., -1 A E A- and exchange it with A , after input of known eigenvalues E

(table 1) which are forgotten by the computer and may be found later

by its usual procedure. Then the original matrix form can be changed

from A into Q (figure 1) in order to increase execution speed.

Later on two main branches are open. In the r~h.s. of figure 6 is

a short branch which might be called determinant (equations) solution

(deso). After evelrltually having changed A to Q (figure 1) and then A

to A-E, it fulfills the decomposition (figure 2) with pivoting

(figure 3), finds the determinant D = D(A) , solves~ determinant

equation AxB = B by finding the solution column ~ . for any :free

column B, and 'finds the inverse matrix S = A-l (table 1) together

with the inversion check A:xS = I (table 2).

In the 1.h.s. of figure 6 is shown the long branch which might be

called matrix diagonalisation (madi). A short program finds the limits

of the eigenvalues from below -EM and from above +EM • They can be

5

~

,..,
~
I

~

A ~-~_]:_
I I~ _______ (s) __ 'l/~ h/t/tt

: I (sl ~-l

I : !-EM,fM, II I e d

• J a&' !/hf.u I
I
I ---"-'~ ·::· - .+--::i..

I
I
I ~~r.'--"'-1
I
I
I
I

,vrci -

s\s

I -lslrn
I~
I t._
I -i-c -

I
I •~,__ -
1

-s~· -~""'.c:-:__-_-'-i::_Y_,v~..,J)I c-

o ,A~SEI
r ~-

- rotsi

m

~ ,·
B

Pigure 6 •. Program scheme; see table 1: notations, table 2: checks,
table 3: commands, table 4: parameters.

6

I,

...

changed by user to EI and respectively EF , if he has additional

information about them and/or wishes to obtain onlJ several of the

eigenvalues situated in the interval (EI,~) • By usin6 all the pro­

grams and subprograms of the r.h.s. and additionally the iteration

procedure we find the eigenvalues E (figure 4) , with or without

the eigenstates S (table 1). The last ones may be found thereafter

too, Aey pivoting (figure 3) made during form transformation (figure

1) and matrix decomposition (figure 2) has been remembered and is re­

stored at this step. If there are degenerate eigenvalues, to obtain

their actual multiplicity and all their eigenstates, complete pivo­

ting (figure 3) is usually.necessary at the final iteration step

(figure 4) with the method of figure 5 • An orthonormalisation check

s+:xS = I is proposed for hermitian matrices A. It may also play the

role of checking if all eigenstates are independent for nonhermitian

matrices A , for which generally s+xS t I • A final diagonalisation

check A:xS - Sx:E = 0 is offered too,- It proves the actual validity

of all the eigenvalues E as well of all the eigenstates S directly

for the original form A of the matrix (table 2),

3, Instructions to users

These instructions are made evident in the program scheme presen­

ted in figure 6, together with the explanations in tables 1,2,3,~ •

The input of the matrix is shown at the top of figure 6. ·The deso

branch described in section 2 .is presented in the r.h.s. of figure 6.

The madi branch of section 2 is presented in the l,h.s. of figure b.
' In addition to the program notations shown in table 1 and program

checks shown in table 2 1 both of them commented in section 2, we 111t1st

say a few words about the branching commands in table 3 and input pa­

ra.meters in table 4.

The branching commands (table 3) are used to change or repeat the

way of performance, The user does not need table 3 except for planning

7

Table_]._. Program notations:

A: ready or test matrix in original form;
an orthogonal (unitary) matrix used to = ---1 d test matrix A EA --+ A , or A= A
required.

A: its transformation into
obtain SJ:nmetric (hermitian)
if hermiticity is not

Q: hessenberg, tridiagonal accepted or tridiagonal modified form of A,
together with the matrix transforming back the hessenberg or tri­
diagonal form (in the last case a matrix diagonal Tis added) into
original form, situated in the free Q (0 elements) memory space
(figure l).

P: matrix decomposition of A-E = P1 x Pu into a product of a lower
P

1
and upper Pu triaiigo.lar matrices; for other than original

forms A ~ Q (figure 2).
S: inverse matrix S = A-1 in the r.h.s., eigenstates matrix

A~ = SxE in the l.h.s.
B: linear equations free terms input vector column ~itially, their

solution output vector column finally, in the r.h.s.
E: displacement in the r.h.s., eigenvalue in the l.h.s., multiplied

by the unit matrix; eigenvalues diagonal matrix, input for test
matrix construction 'A E 1-1 ~ A for the r.h.s. and l.h.s. ini­
tially, output after matrix diagonalisation in the l.h.s. finally.

D: determinant of A-E equal to the product of the Pu diagonal ele­
ments after decomposition in the r.h.s. and l.h.s.

R: ratio, geometric average of the lower than RA diagonal elements
of Pu in the r.h.s. and l.h.s.

DOS: quit program.

Table 2. Program checks:

Inversion check in the r.h.s.: AxS =+(unit matrix).
Orthonormalisatian check in the l.h.s.: s+x5 = I if A is hermitian.
Diagonalisatian check in the l.h.s.: AxS - SxE = 0 (zero matrix).

8

ii

!

his future actions, since at each branching point he obtains the

whole text of the possible"branching commands, together with the

corresponding letters he :rust choose to press, on his screen as shown

in table 3.

The input parameters (table 4) are demanded on the screen in the

same way as listed in table 4. However they need some explanations

since they may influence the accuracy and the speed. The transform

accuracy QA is needed only when a transformation to a Q hessen­

berg or tridiagonal form is required. If the transformed form is good

(during transformation no variable, by which one must -divide fi.J ,
happens to be near to 0) then QA= 0 will be OK. Otherwise one

might improve the Q form by taking a small number QA ~ 0 •

The ratio accuracy RA is one of the most important parameters

for the madi l.h.s. branch. It determines the degeneracy of the eigen­

value M (figure 5). If it is too low, the eigenvalue will be found,

but its degeneracy may be decreased even down to O. In the last case

this means th~t it will not be recognised (numerated). If it is too

high, the degeneracy of the eigenvalue may be increased, and thus

other eigenvalues might be skipped. Happily the useful interval for

RA is several orders of magnitude, e.g. roughly between the eigen­

value distance ED (figure 4) and the eigenvalue accuracy EA.

The eigenvalue accuracy EA is exactly what this means. A lower

value of EA, meaning higher accuracy, at the same time increases

the execution time, but only logarithmically.

The interval number LN must be chosen so that the eigenvalue

distance ED= (Eli' - EI)/LN is lower than the actual minimal eigen­

value distance. It is no~ recommended to choose this LN much higher,

correspondingly ED much lower, since this increases the execution

time unnecessarilJ.

All other parameters of table 4 are used in special cases only

which will be understood without explanations. E.g. the determinant

9

Table 3. Branching commands:

a.zcy other sign: ••• /-·
input via file/direct: f/­
test/rea~ matrix: t/­
hermitian/rucy matrix: h/-
original/hessenberg/trid.iagonal accepted/tridiagonal modified form:

-/h/t/tt
pivoting no/partial/complete: -/p/c (figure 3)
eigenvalues/determinant: e/d (l.h.s./r.h.s.)
linear equations/inverse matrix/not: 1/i/-

~with/out eigenstates: w/o
return/alternate/unique: r/a/- •
return/again/continue/not: r/a/c/­
-states/not: a/-
values/states/not: v/s/­
manual/aut·correction: ml-
change ••• /not: c/-
abs/rel correction: a/-
repeat ••• /not: r/-
·•• check/not: c/-
end/not: e/-

Table 4. Input parameters:

transform accuracy: QA (r.h.s. and l.h.s.)
determinant accuracy: DA {r.h.s. and l.h.s.)
ratio accuracy: RA (r.h.s. and l.h.s.)
displacement: E (r.h.~.)
eigenvalue accuracy: EA (l.h.s.)
interval number: LN (l.h.s.)
eigenvalue initial point: EI· (l.h.s.) , instead of evaluated -EM
eigenvalue final point: EF (l.h. s.) , instead of evaluated +El,1

initial number: II (l.h.s.) ,, instead of accepted 1
correction (abs corr): R (l.h.s.) , instead of evaluated R
lllltltiplier (rel corr): D (l.q.s.) , DR instead of evaluated R

10

•

accuracy DA may in alr'.lost all cases be put DA= 0. DA,. 0

plays a role only to shorten the time of the eigenvalue c~lculation_

sometimes, but on the other hand this is ._dangerous since it ~ie;ht

decrease the accuracy.

4. ~iles and tests

In the case of accesting this work as a JINR preprint, anybody

interested will get a copy of a diskette containing the files nece­

ssary for use and test.

First of all, two files mainev.bas and veinev.bas are inclu­

ded. They have been prepared in usual basic language, since they must

be accessible for changes to the particular needs of any user. The

first one creates the input matrix A and outputs it into the change­

able file matrix.dat (top of figure 6). The second one creates the

free terms column B (r.h.s. of figure 6), or the known eigevalues

row E (l.h.s. of figure 6), and outputs them into the changeable

file vector.dat. Both of them can be used either manually-directly

or if an authors subprogram starting from line number 100 is added,

calculating the corresponding elements according to the user's wishes.

If unchanged, after command - they will create the files introduced

manually, but after command e they will create corresponding files

with O elements only.

Then three files deso39.exe , deso67.exe , deso89.exe !'ollow,

compiled in turbo basic language. The numbers denote the maximal or­

der of the matrix accessible for each file. All the three of them

correspond to the r.h.s. of figure 6 only (its deso part) without the

top of it except the lnput of a ready matrix A directly or from a

file (i.e. without the creation of a test matrix and without its

transformation into another form Q) and without the l.h.s.: its

madi part.

Thereafter the basic three files madi39.exe , madi67.exe ,

11

madi89.exe follow, compiled in turbo basic language as well, the num­

bers denoting the same maximal order. All the three of thecr correspond

to the complete figure 6 (with its top part, its r.h.s. deso part a.~d

its l.h.s. madi part). Three maximal orders have been chosen due to

the fact that turbo basic makes the performance for a matrix of the

same order a little longer if a higher maximal order is chosen, and

due to the fact that order 89 is inaccessible for a 256 kb memory,

but accessible for a 640 kb memory, and order b7 is accessible for a

256 kb memory.

At last three matrix files matr06.dat, matrl2.dat , matr24.dat

and three vector files vect06.dat , vect12.dat , vect24.dat are.

available for tests of matrices of order 6 , 12, 24 corresponingly.

E.g. to use the test matrix and test vector of order 24 one must

copy matr24.dat onto the changeable file matrix.dat, and vect24.dat

onto the changeable file vector.dat. With each .of them we can suggest

ll18lcy test combinations. In fact, we have 4 initial and 4 final forms,

3 initial and 3 final pivoting;, i.e. 4
2; 2 = 144 form and pivoting

choices, times an unknown set number of 4 important parameters (sec~

tion 3).

~ith the above mentioned 24 order matrix we recommend the follow­

ing tests. After the calling command: madi39, we choose the following

branching commands and input parameters: f;-,d,-,c,o,o,o, and obtain

the determinant of the ready matrix in its original form:

D = -5.120 764 213 753 242 ; then after: 1,f we obtain the solution

of the determinant equation, its last element being

B'(24) = -2.445 755 752 506 978 ; and after: i we obtain the inverse

matrix with its last element S(24,24) = 3.851 ;00 418 96.8 261 E-00; •

The inversion check is satisfied. After the following co~~ands and

parameters: madl39,f;-,e.~,t,-,o,t,p;-,-,o,1, .ooc 000 01, 400,- we

get all the eigenvalues of the ready matrix, the last of which is

E(24) = 7.962 485 292 138 446, all of them with multiplicity M = 1

12

after: -,-,s,t,p,0,1 we get all eigenstates components with the last

one:- · 8(24 ,24) = .228 704 973 291 901 3

In order to show the possibility to find degenerate eigenvalues

with all their eigenstates, we construct a test hermitian matrix and

diagonalise it by: mad.139,f;t,h,c,o,o,o;f,-,-,-;e,o,t,-,o,t,c;

-,-,0,.01, .ooo 000 01, 200,- obtaining all its eigenvalues E, with

their multiplicities M, e.g. E(16-21) = 2.099 999 997 594 839 with

the highest M = 6 and the last E(22-24) = j.100 000 001 093 565 with

M = 3 ; after: -,-,s,t,c,0,.01 we obtain all eigenstates components

with the last one: S(24,24) = -.176 446 704 683 418 ~.

To show the diagonalisation of a nonhermitian matrix, we construct ! ·

a test nonhermitian matrix and diagonalise it by: m.adi39,f;t,-,c,o,o,o;

f,-,-,-;e,o,t,-,o,t,c;-,a,-5.1,5.1,-,o,.o1,.ooo ooo 01, 200,- and

find all the eigenvalues E with their multiplicities M, e.g.

E(l6-21) = 2.100 000 002 503 403 with the highest M = 6 and the last

E(22-24) = 3.100 000 003 695 500 with M = 3 ; after: ~,-,~,-,c,.01

we find all eigenstate components with the last one

8(24,24) = 5.833 837 799 603 148 E-002 • With the more usual commands

and parameters after the last";" sign of the 1first sequence:

-,-,0,.01, .ooo 000 01, 400,- one finds:

E(16-21) = 2.099 999 998 669 201 and E(22-24) = 3.100 000 005 ll!i 749

and with the same second sequence: S(24,24) = 5.833 837 821 984 524

E-002 • Results coinciding with the first ones for the same matrix

will be obtained with the second tridiagonal modified form if we

change the first sequence after the third";" sign to:-e,o,tt,-,

.001, tt,c;-,a,-5.1,5.1,-,o,.ool, .ooo 000 01, 200,- and i:f we,

do no~ change the second sequence. Due to the nonhermiticity of A

the orthonormalisation check shows that the eigenstates are norma~

lised but generally they are nonorthogonal. On the other hand the

diagonalisation check is satisfied, as in the other cases with good

comm.ands and parameters.

13

5. Characteristics

The execution time of obtaining all the eigenvalues of the 24

order matrix with accuracy 10-8 is 1m47s for a Pravetz-15 with co­

processor, about 5 times longer wi~hout coprocessor, and about 10

times shorter for a Microway. This time depends on the initial and

final matrix forms and pivotings, on the eigenvalue accuracy EA and

interval number LN, and strongly on the matrix order U. E.g. if

EA= 10-8, LN = 400 and N = 24, the dependence of the time on the

form ;is as-follows. For t,p,t,p initial form and pivoting, final

form and pivoting it will be: 4mo2s, h,p,h,p : 5~8s , -,p,-,P:

30~6s. Its dependence on the pivoting is as follows. For t,-,t,-
m s .m....s m.-s it will be; 1 43 , t,p,t,p. 4 u2 as above, t,c,t,c : 68 ~4 •

The time for t,c is almost the same as that for h,c and -,c. For the

most relevant mixed cases like t,-,t,p it will be: lm48s , t,-,t,c

3m33s , t,p,t,c : 5m48s • Fort,- and t,p it·must increase with N as.

about N2 , for h,- and h,p : as about.N3 , :for t,c; h,c; -,-; -,p and
4 -,c : as about N •

In conclusion we summarise the main characteristics of the method:

1) Universality: a variety of methods with different accuracy and

speed may be chosen by combinations of several possible initial and

final forms, initial and final pivotings and parameter sets.

2) All these methods may be chosen during performance, depending on

the· results.

3) Reliability, accuracy and speed may be optimised due to 1) and 2).

The usual speed of the diagonalisation of,a 24 order matrix ~s equal

to finding all eig~nvalues in 110 s for Pravetz-16 with coprocessor,

about 5 times slower without it and about' 10 times faster for Microway.

It decreases proportionally to about the square df the order.

4) The highest possible-matrix order is 67 :for a 256 kb memory or 89

for a 640 kb memory. The last number 89 may be increased about (2

, times to about 125 by a minor change in the program.

14

5) ~atrices with degenerate eigenvalues are accessible to the method.

6) The eigenvalues are found, in the order of increase. This makes it

possible not to search for all of them, but only !o~ several in a

definite interval, and thus to decrease the execution time conside•·

rably.

References

(1] Wilkinson J H 1965 The algebraic eigenvalue problem

(Oxford: Clarendon Press)

[2] Dahlquist G and Bjork A 1974 Numerical methods

(London: Prentice Hal~)

Received by Publishing Department

on June 8, 1990.

15

HaA11<aKOB E. r·. / Ell-90-391
tl1,1ar0Han1,13a41,111 MaTpl1_4 · Ha [lepCOHanbHblX KOMnblOTepax.

npeAno>KeHbl anropllJTM 1,1 nporpaMMa AflR A11a:r0Han1,13a41,11,1 peanbHblX;. HO· He. 06R:-
3aTenbHO 3pM1,1TOBblX MaTp114: Bb16paH KO,;mpoMl1CC' Aena10U111lii l,1X ·yH11BepcanbHblMl,1,
co MHOrl1Ml,1 Bb16opaM11 .AOCTynHblMl,1 BO BpeMR 111cnonHeHIIIR' HaAell<HblMl,1, TOYHblMl,1, .

. 6blCTpb1Ml,1 1,1· np1,1n01t1i,1MblMl,1 K Marp1,14aM BblCOKoro nopRAKa B TO ,ltle .caMoe BpeMR.
tlnR anropl1TMa 3TO AOCTl1rHYTO nyTeM He3HaKOMOJii KOM61,1Ha41,1L-i ··3HaKOMblX COBpeMeH­
HblX BblYl,1Cfl1,1TenbHblX. MeTOAClB;. np1,1MeHeH HOBbllii ,MeTOA AflR. o6pa60TKl,1 MaTp1114 C Bbl- '

p011<AeHH~~icci6CTBeHHblMl,1 3HaYeHl,1RM~.·nporpaMM~ peanl130BaHa Ha:R3bl~e ryp6o .·
6eliic1,1K; 3ro nojsonReT 1,1cnonb3oBaTb aojM01t1Hocr1,1 KaK MaTeMaT1,1YecKoro Konpo~
4eccopa AflR 6onee. 6blCTporo. Bc1nonHeH1,1R' . TaK 1,1 pacw1,1peHHOlii naMRTl,1 AflR . np1,1no-·
11<eHl,1R K MaTp1,14aM .6onee. BblCOKotci-nop114Ka' _ecn1,1 311,1 AOno'nHeHl1R eCTb;. l,1fll,1 np11-:
MeHRT~ nporpa~MY 6e3 H1,1i·ecn1,1 1,1x HeT'.. •

Pa6oTa'_BblnOnHeHa .a· na6oparopl-'ll-1TeopernYeCKOlii cji'1,13~Kl,1 mum. , ~/- - , --;l - ~ , - • . .

Nadjakov E.G. .
Matrix Diagonalisation,cin Personal Computers .

. Algorithm and program for rea 1 , but not necessarily hermitian, matrix
· diagonalisation are suggested;.A compromise has been chosen ~hich makes··
,them universal; with many choices accessible to user during perfomance, re­
·liable, ·accurate, fast and applicable to high ordermatdces at the same.·.
time. For the a 1 gori thm this, has been: achieved by an unknown .combination· ·
of known contemporary computational methods. A new method has been applied
to treat matrices with _degenerate ei genva 1 ues .' The program has been rea 1 i :­

,sed in turbo basic language. This makes it able to use the~possibilities
. of. both mathemati ca 1 coprocessor for faster.execution and-of extended me:;. .•
mory,for application to higher order matrices·if:these-accessories are
available, or to apply the program .without' them if-the;'.,are not available.

The investigation has -~~en perfo~med· at:•the'Labo~at6rj of Theoretical
Physics, JINR.' .

'J. . .
. Communicatio_n of the Joint Institute for Nuclear Research. _Dubna 1990

