


Introduction |

This paper is a direct continuation of papers /1,2/. Here
we consider the problem of cost-effective solution of
finite-element =system of equations occurring in approximation
of elliptic boundary value problem with varying coefficients in
the parallelepiped i by the Galerkin method. The domain © is
parfitioned into subdeomains n‘ by three groups of planes
(with internal cross-lines ) parallel to the planes Y0Z,
X0Z and YOX, correspondingly. In each of the subdomains n‘ the
equation coefficients are equal to some constants u >0. Then
the initial problem is transformed to a boundary equation defined
at., the inner boundaries of subdomains . The class of
preconditioning operators is constructed which are "spectrally
close" to the initial linear boundary operator regardless of the
scattering range of the coefficients u,- It is shown that the
boundaries of preconditioned operator spectrum depend only on the
dimension of the basic function space of subdomains Q@ and don’t
depend on their number. Preconditioning operators are
easily invertible both for parallel and traditional
computers since every step of iterations consists of indepen-
dent solution of the partial boundary value problem for
each of the subdomains.

In §1 boundary equations of the domain decomposition methed
for the *"checkerboard" subdivision are formulated which
are defined only at the inner boundaries. In §2 the family of
preconditioners is constructed coinciding with the block-diagonal
part of the initial operator, where blocks correspond to some
splitting {at first into direct sum of subspaces reXeX

and then splitting of the component X)) ot the basic space of



finite elements, corresponding to some triangulation of the inner
boundaries of the subdomains Qi. The subspace x, defined on
the coarse grid with elements Q: provides the global data
transfer between substructures, other components of the direct
sum are defined only for the functions corresponding to separate
subdomains. In  §3,4 estimates of the spectrum boundaries of
the preconditioned operator for the subspaces xa’ RJ of the
general form are obtained which are expressed in terms of
characteristics of some functionals defined on finite-element
subspaces of separate subdomains Q:‘ In §5 the results are
applied to some concrete families of the first order finite ele-
ments characterized by the maximum number N of unknowns for ocne
variable for all subspaces nj . The method of constructing
operators "spectrally eguivalent" to the initial boundary
operator in two- and three-dimensional cases, based on the idea
of deformation of subdomains Q; is discussed in §6. Further
in §7 it is defined that for uniform partitioning of the domain G
by the "serendipity type" elements with the total number of
unknowns on one direction K, and the number of subdomains
p3 (in this case N= Nvp ) for arbitrary u, >0 the

asymptotics of the computational work (for the solution of the
initial problem by the PCG method with accuracy c=N_D} accounts
o= O[NEIZIDBN[Ng . NI/21nlsz(p?/2+p3N3/21ﬁN)]]
operations.
Note that the algorithm of the similar type for the problem
in the finite-difference formulation have been developed in /3/.
The preconditioners constructed here {(for the parallelepiped case)

provide the effective sclution by the PCG method of the equations

with varying coefficients in the domain QG with topologically



equivalent decomposion into subdomains each being a convex
gquadrangular prism, as well as of the divergent type quasi-linear
and incomplete-nénlinear /1/ . elliptic equations in the
domain Q {or QG).

The preblems of constructing bklock preconditioners
including those corresponding to the "strip" type of subdivision
have been investigated in /4-17/. Preconditicning operators for
two-dimensional finitehelemeﬁt elliptic systems'in the case of
"box" type of decomposition have been sufficiently completely
investigated in /18-22,1-3/. Preconditicners for the three-
‘dimensional problems for the case of cuts with cross-lines
have been considered in /23,24,1,3/. The multigrid domain decom-
position methods have been: considered in /25-27/, the
problems associated with the local grid refinementlhave‘ been
studied in /28-31/.

§1 Formulation of the equation for the domain decomposition
method

Let O = {(x,y,2z): Osx=a , dsysb , 0szs¢} be a paralle-
lepiped. Consider the decomposition G = U Qr into subdomains
ﬂj formed by three groups of nx—l, nyﬂl, n -1 planes , parallel
to the planes Y0Z, X0Z and YO0X, correspondingly. If necessary,

denote by n_=n, ‘ nyzg n_=n.. Designate by M =n n.n. Assume

2’

i i,i i}, il =31 + 1 + 1 nin = i i i,  , where s1 =n
(1’2’3)|| 1 2 3’ 17273 llgk'

h = 1,2,3, Define the checkerboard subdivision of the domain 2 as

a=a0Uq ,
B W (1'1)
QB=U91, Q:UQi s
€I rer
where I .= { i: i1l = 21»0, l1leN }, I,={ i: lil=21+1, 1>0, leN }.

Here N 1is a set of positive integers. Denote by T = 3Q,

FI= BQI, and also by T = U FJ\F 2 U CA - the integration of
i€r ter
B W

internal boundaries of the subdomains nj.
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For any function u € lfii(ﬂ) we define traces of this
function u,=v,u at the internal boundaries f‘l= rntr, of

subdomains ni, kil = M. The space of functions u[(&), £ € f"‘

1r2

(with the W “°(T,) norm) we denote by w:"‘*_- w2

H75 (T, )
Here and in what follows the index _ denotes the subspace of

1,2

functions from H (I‘I), differing from zero only on f: and

defined according toc the position of boundaries I“I and T

au
Similarly - the space of traces v,= 'x:_(u) = =5 Il" of normal
H

derivatives on [, /33/ for u e i’ () denote by ¥V 7%= w'77(r ),

where
ﬁ;”z(rl) = { v e rﬁ"’z(rt).;. (V,l)l_f= o }
Further define the space of the traces of functions from ﬁJ(Q)
at the inner boundaries I'| as :
2 o=e w7, X, ~e w:/‘?

H
f€r i€r
B . W

According to definition of spaces x and X, there exists a
permutation operator T , 'IT'II'*= E performing cne~to-one mapping of
L into R, which is defined by the following way: let the

element u_ € Ks be the trace of the function u e II‘:IJ(Q) on 1"1

B
172 .
so that us=eu, u.-e Wf and u€ xw is a trace of the
1er
B .
same function u but having the presentation u=9ez, ze wj/z,

rer
' L

then '|ru5= u . The spaces conjugate to HE and %, are of the form
* ~1/2 Ed -1s2

= W , X o=e W .
1 W 1
IEIB JEIH
Let the arbitrary function dJdefined as ¥{£ye )x: . EeT,
* * .
where ¥ =eo%=Twv, v e X and also arbitrary positive
ler
B

constants u >0, 1ill = M are given. Our aim is to develop



cost-effective numerical methods for solving the following
problem:

Find the function u e m‘{n) such that

Y u, [wemar = [ ecr (nae (1.2)
=y Qi - rr
for all 7 e B'(Q).

For solving (1.2) we use the equation of the domain
decomposition method (for the decomposition (1.1) )} defined at
the inner boundaries F! with respect to unknown function

being a trace of the solution u(x) of the equation (1.2) on FI.

We define at the boundary F‘ the linear Poincare-Steklov opera-

tor /8,9/ SA'I: WII/E =+ W:/z , corresponding to the Laplace ope-
rator in Q and also the inverse operator SAT] , S0 that
D(S, ,)= v, D(SE.‘)= vi’?, Ker 5;1 ={uew’™

u = const, x € Fi}. The operator SA,: maps the .function
g e w;’/z into the element 7 (u) e N:/Z which is a trace of the
function u{x) , x €Q, on ﬁ:‘ satisfying the equation

J (Vu,va)dx = I g(E)wf(n)dg : . (1.3)
Qi rr
for all w e i (). Here the equality holds
“trz
(Sy.,9.m) = (v {ulm), ¥noe W

Further define operators

-1 -1 ' -t

*
Se.n —° S0 v Sp.p € Ry v X))
i1€7
8
-1 _ -1 -1 *
SH,A #,ZT sA,i . Sw,ﬂ € f(xw =» ﬂ”) B
W

and also diagonal operators of the type

M =a “:E1 B Nw =@ uJE‘ ,
i€l i€r
B . W

where E, are identity operatcrs on W:fz

-

I
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Let the 'functibn u e RB be a trace of the solution

u e ﬁz(Q) of the egquation {1.2) on TI. Then the equation of the
domain decomposition method for the subdivision (1.1) takes
form

(AR ua, m)=(¥n), noe % (1.4)

where @A = m[+ me and
* .1

p=-M- s A =T.M 8§
I B

g, A" 2 W w,AF' (1.5)

According to /1/ the operator A e E(ME £ K:) is symmetric and
positively defined ; the equivalent norms in the spaces %, and

* .
X, can be given as

2 H

z -
I u "x = { Au,u )}, I V‘"x‘ = ( A
B B

v.v ), (1.6)

and for any function ¥ € R: there is a unique solution u e KB

of (1.4) coinciding with the trace on F, of the solution
uix) 0: the eguation (1.2) . Note that the boundary operator A
has properties of both integral and differential operators
(pseudo~differential operator} with the domain of definition r.
In the simplest case when FI is a rectanguiar domain, parti-
tioning the parallelepiped I into »two subdomains we obtain
that A performs a one-to-one mapping:

A : ﬂ’/z(FI) = ﬁ_,/g(rl)’

where ﬂ”g(FI) is a space of traces on ', of functions

u e B'(0) and Y

(FI) is a space of traces on FI of their
normal derivatives.
Now let us construct the family of effective preconditioners

for some ciass of Galerkin approximations of the operator A.

§2 Construction of preconditioners
Let the subdivision of the domain (= U Q‘ considered above

_form a grid defining the "serendipity type" finite elements family



of the first order /34/. We suppose that the subdivision
satisfies the condition r:f/r‘lsr:‘J with some constant c0>0 which

doesn’t depend on d=max(diam Ql}, where r = are the radii of
i

spheres inscribed in @ . Dimension of the corresponding space of

2
pasic functions ": equals to KI= n‘(nk-‘l) of the inner vertexes
k=1

. .
of subdomains Qj. We introduce the notation l'"= U !"T , and
k=1
14 4 K. k fm
ar; = U 1"1'" , where I are sides and T~ are edges of the

m=1

parallelepiped Q,. Following /1,2/ introduce next definitions.

Definition 2.1, For every edge 1";‘"' we define a finite-dimensional

o

function space x‘;"‘ < I;I “2(1"'1"") . Each function ueﬂ';"' (we call it
a generatrix function) is associated with four functions E},
j=1,...,4 defined on four sides having commeon edge 1’":". These

functions are equal to u at the edge Ff"’ and to zero at the other
remaining three edges while at the inner points of the sides
they are defined depending on their oriemtation. Consider, for
example, a group of edges l"f"' which are parallel to the axis 0Z.

Then we define Ej for adjacent to l"i"" sides parallel to the
plane ZOY as 'a linear continuation on 1‘1: of the function

uexf’" and for the sides parallel to the plane ZOX the function

EJ is harmeonic in the domain I";. Two groups of edges parallel to
axes OX and OY are treated in a similar way. If we suppose the
function i?j , J=1,....4 equal to zero for the rest of the boun-

dary l"I , then so cbtained functions will form, according to defi=-

T4t K .
niti on, the space zz!‘". Its elements have nonzero harmonic

continuation only for four subdomains Qi having a common edge

'
r, "_. Further assume

Shkm
R, = ® R (2.1)

where the sum is extended on all inner edges l";"" el .



Note that the effect of the Poincare-Steklov cperator on the
function u = ﬁf" (at the boundary FI) is easily computed by .

. . K
means of the generatrix functiocn uexjm.

Definition 2.2. Let the partitioning r= u Ff is given. For
k=1

every ka’ Iskoss we define a finite-dimensional subspace
k o sz k
G(FI° Jem? (FID) of functions equal to zeroc on all sides TT
3 sz K
except TIO {we dencte by H (F,OJ the space of functions
1,2 : o
u e H (Tj}, such that u{f;}=0 . for ali £ e T ;) - Then
define
s *
33 =e G, 61 = ® G(Ff) . (2.2)
1er k=1
a I'd
Fln =2

Construct the finite-dimensional space

WO = Kle Kam H3 < RB . {2.3}

Consider the following problem: find the function uE ¥,

satisfying the eguaticn
' (Ru,,m) = (4,1 , ¥ae¥ - (2.0
Let us constrﬁct preconditiohing operators B for the
finite-dimensional operator Ay defined by {2.4}. In the subspace

G c X, we represent the operator Séjl'in a block form:
r

-1 km .
SA,I = { S: }, Kk, m i 1,...,6
according to representation of the functicn uel, in the form
u = (uj,...,us)r, u.e G(F?), K=1,...,6. In the subspace RJ

define the operator

[

5
. _ Kk - Wk
diag A =M @ (ki’:, 8 )+T[M" e ( K- s, )T (2.5)

1 €r 1€1 "
I =2
T

2 Frnr:z ¥



We represent an arbitrary function u e ¥, in a form

U =u o+u, +U ., UE R, 1=s1,....3. Consider the family of
aperators Bku, uewo, k=1,...,5 , defined by the equalities:
(B‘u, v) = (& ul'Vr) + (R uz,vz) + (diag m3u3,v3), (2.6}
(Bu, v) = (Rlu+u ], v +v_ )} + (diag Au_,v }, (2.7}
(Eau, v) = (A& UJ'V,) + (diag mgug,va), (2.8)

for all v e ¥, Consider alse the operator Bu, uelkelX
defined by

(Bgu, v) = (A u:,vl) + (& uz,va) (2,9)
for all v = R e ma. For solving the auxiliary problems we use the
preconditioning operator B u, u e.RE defined by the eguality

(Bsu, v) = (diag A u.v . (2.10)

for all v e %,, where diag R, is the block-diagonal part of
the operator A, in the subspace R, corresponding to the
following presentation of the element

= @
u e Y, a e Ne .
v €X
P

where the sum is spread for all inner edges rf“e ',. The block
-dimension of the operator A in the subspace K, equals to 13.
Note that the proklem of inverting operaters B, k=1,....5
is essentially easier than the one for the operator A, (at
the corresponding subspace D(B,)). Solution of the equaticn

(Bu, vj=(r,v), vvoeY, ‘ (2.11)

is reduced to consecutive solution of problems: find functions

g, u,, u, from the eguations
(diag m3u3,v) = {(f,v}, ¥ v e 13 . (2.12)
(mjrz,v) = {(f,v}, Vver, (2.13)
(Pu,, v} = (£,v), YvexX . (2.14)

From (2.6) it follows that the function u = Ut ou b U, is the

F4
solution of the equation (2.11). The problem (2.14) is the



)
finite-elemant\system of equations for the "serendipity type" ele-
ments of the first order, formed by the subdivision Q = U Q’
Dimension cf this SLAE equals to KI. The problem (2.12) is equi-
valent tc independent (and partial} solution of mixed problens
' for the Laplace cperator in QI , insM with the Neumann
condition on one side and the homogeneous Dirichlet condition for
the rest five ones. With appropriate choice of the subspace z,
partial problems in n‘ are solved by the FFT method.

For solving the eguation (2.13) with unknown functions
defined only at the inner edges the PCG method with the pre-
conditioner B, can be used. Inverting the operater B, from (2.11}
is a trivial problem. The estimate of the convergence rate for the
PCG method will be given below. Above considerations are
similarly applied tc the probleéms of solving equaticns {2.8),
(2.9). The equation resulting from projection of (2.7) to the
subspace Ko X, is solved by the PCG method using the precondi-

tioner B4.

Further consider estimates of the c¢ondition number of

operators B;’mo, k=1,...,5 which are reduced to estimates of
the constants c: . cf:o frem inegualities
o (Aw,u) = (Bu,u) = ch(Bu,u), Y ueB(B,) (2.15)

§3 General estimates of condition numbers for the
operators B &
k a
In analyzing the spectral closeness of operators Bk, k=1,...,5

and mo we use the following characteristics _a(I,E!} of the

- P
direct sum of Hilbert spaces /1/ Z = o I
k=1

p
Definition 3.1. For the given spaces Z and ik we define real

tr

10



numbers «(Z,Z,) according to
a(I,Zk) =sup a, =20 ; k=1,...,p,
where numbers a &0 satisfy the conditions

P
Z a v 12 s
k i

k=t

n
for all Ve zk, such that v = @ LA
k=t

Remarh 3.1. Let for p=2 the estimate a(z,zl)z a »@ 1is true,
then the inequality heclds

®(Z,2,) = (2+a”')7"

2 2 . -1 Z
In fact, if uxiﬂ = a uxl+x2H ’ X e I‘, X, tx, € Z, then
2 -1 a

uxzu s (1+a )“X:+xz" .
Remind that according to (1.6) the norm in WO is given by

2 1,2

ol = Z“r’p&(“i)' ue v,°, (3.1)
o

Willsy
where B, (V)= S1ve fax is the Dirichlet integral from the
ﬂ!
function ¥(x) defined on Q, such that :?(x)l_ = v(x) . Later
i
we shall use the norm of the type (3.1).

Remark 3.2. We consider below only such subspaces uz, xs for

which the norms in H'7?

(TJ) (r, is a surface of a parallelepiped)
constructed according to definition from /32/(where we choose a
combination of various pairs of adjacent sides as a finite
subcovering of the boundary rf) are equivalent to standard norms
using subcovering including vertexes of the domain Q . Formu-
lated requirement is a simple consequence of the hypotheses 1-4
{concerning spaces Rz, xg) used below (see §5}.

For the function v ¢ G,c X, given on sides Ff = {x,.x;

Osxlsaf, Osxgsbf}, k=1,...,6 define functionals

11



k L1

b

2 i z
_ Ilv(xj,xz)lrrz) I!v(xf,xzjll(“
£, (V) = - dx, + —e———— dx_ ,
x, la, -xji lebf —xal
0 o
where lI-!IU) is the 1, norm over the variable X j=1,2. Fer

5
the function u = @ u¥ e u;' define the functional
k=1

k(uk). (3.2)

6
£ (u) = Z fr,
k=t
The functicnal f:' Uet, majorizes the functional used in /32/ in
formulation of conditions of pasting functions from spaces
IHUZ(I"TJ, k=1,...,6 for every pair of adjacent sides.

Denote by umJl the trace of the function u e xm, m=1,...,3
at the boundary fl. The following theorem is true.
Theorem 1, Let the numbers a(xi,vo), a(xe,xzsﬁs) are positive,
then the estimate holds '

(B,u,u) = c;[[litoc(xl,‘ﬁ'o)'f]-[1+a(x2,22®x3)"]- (Ru,u) +

+Zu]f‘(u3,1):| (3.3)

s =y

for all o e wo and also the estimate

(Bu,u) = ci[{lﬂx(ﬂj,\?o)_l]- (P, u) +Zu1fl(u3'1)] (3.4)
Hill=y

for all u € X oX_.
13

Let o (Rj ®M2 . ‘:Tu) >0, then the estimate

= 2 -7 -

([Bzu,u) = cz[[1+a(xr®x(2,\:?o) } (RAu,u) + Zu[f[(usli)] (3.5)
IFRET

is true for all u € Vﬂ and for a(xl,R1@K2)>0 the following

expression helds
4q -1
(IB4u,u) = c, [1+a(;x!,x<1@xz) ]-(.'Au,u) (3.6)

for all u € % % . The lower estimate from (2.15) is true, where

12



constants c?>0 n=i,...,5 as well as the constants c; y k=1,...,4
depend only on the shape of subdomains Q,  and don’t depend on
dimension of the space v .

Proof. Assume u = u+utou, ue xk and use the presentation

(du,u) = E: urmr(u1+ u,* uj). (3.7)
ey ’
According to triangle inequality we obtain
g
(pu, u) = ¢ ? p![ qg]mr(uq}ri

whence again using triangle inequality we find

6 .
kk_k i

¥ (S.' u3 U M+

LS - :

(B,u,u) = ? u:[ mf(ut.i) * mi(uz.l)] * E: M,
' iEer
. 8
8 &k k k !
+ Zu, L(s (T uJ',) AT uJ‘i) ) = ¢, (Au.uj.
Jer k=1
W
The lower estimate for the form (B,u,u) for k=2,....,5 can be
performed in'a similar way. Consider the upper estimate

According to Remark 3.1 we have

N
o (Rzmuj, Wu) = [I + a(Rl,VO) ] (2.8)
. . -1y-t
o (RJ,Mg@ XJ) = [1 + a(ﬁe, Kaﬂ ﬂS) ] .

Therefore, taking intec account {3.7) and using inequalities (3.8)

we obtain

2+ acr, 0] [2 ¢ atx, w0 2,07 uuy

2 (3.9])
= crml L mr(uq.r)]'
f q=1

From the other side according to the traces theorem for

functions from M'(Q'J on the Lipschitz surfaces /32/ we obtain

E 6
(Blu,u) =c¥ uj[ T Ml(uq LN ut 4?

z . {3.10)
] q=1 L 3.1 Ht/achJ]

Using the results of pasting functions from M, O<r<i for twa

adjacent sides of parallelepiped /32/ we obtain the inequality

13



A(u, }=clu il = cl u I z
1Y, 2,1 H'rﬂf; 3 z/z(rf)
g 2
=cThu I .
2k,
¥4 2 & 2 ,
Fou, = C [II u il + £ (u )]
J. i ﬁl/efr:‘} 3,4 IHI/Z rr,) i,k 2,7
for k=1,...,8. Summing the latter inequality over k we obtain
& * 2 ]
u oo =Cu [Hu I + £ {u )]. (3.11)
{ k=t e AV 1 IﬁI/Z(rf) ! 3,1 Hi/zfrli‘ T 3,1

Summing over i inequalities (3.11) and comparing the result
with estimates ({3.9), (3.10} we come to inequality (3.3).
Inequalities (3.4}-(3.6} can be cbtained similarly. The theorem

is proved.
Let us formulate as a hypothesis the estimates characteri~

zing some general properties of subspaces X X, X, which allow

1" Ta

cne to present results of the Theorem 1 in constructive form:

G1. There is a constant g3(ﬂ0)>0 such, that for any function
uey, satisfying the condition u{g,)=0, for some £, the

inequality holds
2 - ,2
u =g (¥ ) I | Vu |“dx
LT e Q.
i i
G2, For any function ue X, the estimate is true
= k k
f),u(u:) = ej(ﬂ}) maxll ui
xel"k

2

with a unigque constant C?(R3)>O for all inner edges re.

: ks
G3. There is a constant v(ua,xj)>0 such that for any functicn
ue¥ s ¥ the inequality holds

2 - 2
Wl = V()XE,MS) 1 Ur“

i 172

, .
MrFH M (FH
G4. There is a constant n(x2)>0 such that for any function

u=eRe x, having a trace u  on rr the estimate is true

4



i u‘";’fr!; =a ()0 u‘“:"ecr‘i:
for all subdomains Qc Q.

Now remind the formulation of hypotheses H1, H2 /1,2/ analo-
gous to Gl and G2 but relating to two-dimensional problems.

Denote by uf the trace of arbitrary function u e ¥, on the side

K
r.l

and by u‘" the trace of the function u € X, at the edge
rf” ={ &: O=E£=a }.
Hi. There is a constant g(vo)>0, such that for any function uf
satisfying the condition uf(go) = a, Eoe Ff the inequality holds
k2 k 2
I urﬂ w x g(Vo) J IVujI dx .
[N k
i T
1
H2. There exists a constant e(x2)>0, such that for any function

v(£) = u'™(£), € e I|" the inequality holds

vi(E) 2
— df = e(xa) Ll N
£le-al L frjmr

Denote by d = max (diam Q ). The following Lemmas are true.
i

Lemma 1. Let the hypocthesis G1 be fulfilled, then the estimate is
true
-1
a(Ri,vo) = C [1 + d g3(va)] .
Lemma 2. Let the hypothesis G3 be fulfilled, then the inequality
holds
-1
al X® % ,¥) =c [1 + d'u(xz,ug)]
Lemma 3. Let the hypothesis 63 be fulfilled, then the inequality
is true
> Nl -1
af RZ,RZ@ x3) = c [1 + o u(xz,ug)] .
Lemma 4. lLet the hypotheses Hi with the constant g(xz) and Hz
be fulfilled, then the estimate is true
-1
a( %, Ko ¥, =xc [1 + g(,) (% )-d ] .

Proofs for Lemmas 1-4 are given in §4. In all Lemmas the

15



constant ¢ depends only on the shape of subdomains 9,- From the
Theorem 1 and Lemmas 1-4 immediately follows the

Thecrem 2. Undexr hypotheses G1-G4 as well as  their
two-dimensional analegues H1 and H2 the estimates are true

(Biu,u) = c; [1 + d'gsr\fo)] ll + 53(33) +[1+c(x2)g(axz@x3)]*
u(xz,xs')d] (Ru,u),

2
(Bu,u} = c, [1 + d g3(‘fo)] [1 + 63(33)](5’\11,&)
for all u e ¥, and alsoc the estimate
= 3 B '
(IBau,u) = c [1 +_dg3(\fd)] {1 + :B(Ra)](mu,u)
holds for all u e )Kj@ X, and also the estimate
4
([B4u,u) s € [1 + d-gs(\fo)](#lu,u)
is true for all u e x® )ﬁz.
The following theorem is also true (see the proof in §4).
Theorem 3. Let the hypotheses Hl, H2 and G4 are fulfilled for
the space xz. Then the estimate holds
s
(@) = c5-d1 + g(x) e (x)] -0 00,) (Bu,u)

for all lu € Ra.

In &5 we shall obtain using Theorems 2,3 estimates of the
condition numbers of operators [B;Imo, k=1,...,5 via the quantity
dsh (here h is a parameter of triangulation of some cc:ncrete
finite-element subspaces X, and X} as a conseguence of the
corresponding estimate of constants Gur By v, m from the

hypotheses G1-G4.

§4. Proofs for Lemmas 1-4 and the Theorem 3.
Let us prove Lemma 1. Take any one of subdomains ﬂf. Present
the function u, }x: defined in S‘aI in a form u=u const,

where u; orxk): 0 and x is one of the vertices of 2 . Since
.
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+ = R w can assum o . i
A (u u } mf(uLJ; u) e e u, a, , Simple

calculations bring to inequalities /1,2,18/

2 2
= c-d | s c-d A +u_ 0l
mi(uLJ c-d I uLu ® c-d uL U +U ’

[ANS Y Lt
.’ Ff)

where ue Rz and u_e XJ are some arbitrary elewments. Now the
necessary statement follows from the hypothesis G1.

Similarly for proving Lemma 4 choose such ue X , for which
uL(EO)=O with £, being the vertex of Q,. Again we have (for

arbitrary ue % } the inequality

2 = . 2 =
R(u, ) s cd b u+ ul™ = cd g, ) Wy« u, J h
L ,ri, L’rri;
s o-od g(gz)n(;zz)llu:_f- u‘?u;"/'?,r 15 c-d g(xz)ﬂ(ﬁz)'#\l(ur_+ u,j

1
where the latter inequality is a consequence from the Poincare
inequality and the traces inequality for functions from H’(Qi)
on the Lipschitz surfaces 32/ for the case of harmonic
continuation inside ﬂ‘. Lemma 4 is proved.
To prove Lemma 2 use at first the traces inequality for

functions from W' (Q,) /32/

2 2
ha + u_ll = c g+ u_l
2
L HzfQj) L o H"Z(Fl;

then it‘s easy to obtain the following estimate for every pair of

adjacent sides Ff and FT (denote by G = FTU FT)

2
= ¢c-d ﬂuL+ u?u 12 =
(6) T H a6,

2
g o+ uw_
L 2 IHI/Z
s c-d 2
c- u+u+u
r/2 2 3
H "¢ 86, t Mics

for all ue xs. Summing the latter inequality over all adjacent

= cd Hu + u_+ u_l
L 2 3

pairs G c FI we obtain

n? =

2
HuL+ u ﬂ“t = ¢-d nuL+ u2+ u, .
H rQJJ " H trl)
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2
= c-d V(R _ X )u + u +
2 3 i L 2 J

W = cd U(RZ’XJJmJ(UL+-u2+ us)

frﬂ
Q.E.D.

The proof of Lemma 3 is exactly analogous to that for
Lemma 2.

Now let.us prer the Theorem 3. Let u « z,. Designatg the

trace of u on FI by uI.IThen the inequality holds

(Au,u) =T uh (u,) =L gl ujunavp . (¢.1)
; i H 'rrl) :

Let 17 ={ £ 0 = £ = af i, q¥1,...,12 are the édées éf'the
boundary F‘ and functions Vj(E) are generatrix functions at these
edges cerresponding to the given function u, . Dencte by uj(x),
¥ eI the continuation of the function Vf on Fl (according to

. Definition 1 this continuation differs from zero only on two
adjacent sides having common edge 1?); It is easf to obtain the

inequality
: 1z

2 .
(Bu,u) =¥ ) na? o - ) (4.2)
5 r[ . 1 Hsz(ri} )

1 =1
From (4.1) and (4.2) it follows that it is sufficient to
determine the estimate of the Theorem 5 only for one subdomain 91
and for an arbitrary function u, being a trace of some u e Kz
on Fr. Let uf be & trace cf the function u, on the siqe TT,
k=1,...,6. Continue (4.1) for one subdomain g, using the

hypothesis G4:

€ 2
[T — el u_ | z
i /2 CM(R_ ) i 1
T 2 H T (4.3)
c 5 - 12
7 E f uk[ N 1Z s T i v? nzf/z
K 2 ar W Ear*, T, (i)
k=1 i I, g=1
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continue the estimate of the summand from (4.2) with the index i
at fixed gq. Let Ff and FT are sides having a common edge 1?

Direct computations using Definition 2.1 lead to the esti-

mate
1 ou? =au? , ST+ T,
X 1 HI/Z(FIJ . i ﬁI/Z(ri‘(U I_T) ‘ 1 2
where
PET) q au*|
L= ()| f)ax, - Emd | viE) 55| 4,
r,k . ilq' i

F) !
whereas at the side Ff the function uf is harmonic, while on the

side FT the function u? is a linear continuation of Vf(&).
au® .
Here an is a normal derivative of harmonic function ut(x),
q

i
x € Ff oh the part of the boundary 1fearf. Using the Poincare

inequality we obtain the estimate

I, s c-d 1w 0? = cd ¥ v? 0P .
1 1 i u0_'01/.? q
ngri) (1)

According to the Green formula we obtain for the quantity Zz

analogous estimate

- q 2
Ez = cdlv, LU q
1ty

As a result the inequality holds

1

Y

0 a® nf : = o-d

PR PZ- " V? I
H (FIJ

01,2 q. ' (4.4)

12
2
5
!
7 H (L

.

q= . g=

which must be compared with (4.3}. For this purpose use hypothe-
ses H1l, H2 and results of pasting functions from H (¥} (where ¥
is a combination of two segments /32/); as a result we obtain

estimates
12 12

g g2
= ¢ v +
! ﬂ°;/2r:?) o3 [ | 1/2¢13) L (4.5). ¢



q

1 rigy1®

. j T, ]
£lg-at|

o

a7
12 Jf vie”®

1A

&
dg = ce(X )-g(x J J IVu dx
£1g-a? 2 ,‘Z

o
I
(4.6)
sce(n)g(x)n(x )Ilulr "zl" .-
(T )

Comparing estimates (4.5), (4.6) with (4.3) we come to inequality

for one subdomain ﬂj

12

(Bu,u) = [ v 2,9, + C(xa)-g(ﬁzj-n(xar
g=1 I ’
El 2
o = cd [1 + f{8_)gi(R )]-n(x o u
i H:/z(]_.‘)] 2 2 E I IH”zrl"j;
Q.E.D.

§5 Estimates of condition numbers for operators IB;IA*:&o for sonme
classes of finite element subspaces

The choice of the space K, is defined by the components R:""
Consider the subspace of piecewise linear functions on I"”" with
zerces at the vertices of the side I‘f. We partition the edge 1"""’
into n, ,*1 segments Aj, j=0,. ce.f1 S0 that for all i,k

there exist constants €,r €, which don’t depend on h2>0 and

cohzslajlsczhz for all j and for all edges. Then define

2" = fue @) u, <P (x); ux) = o0, xe8(T*"}},  (5.1)
1,h ! 'A 1 i
J
where P, (x) is a set of linear polynomiais. Spaces ifmh are

constructed accdrdinq to Definition 2.1
Now consider the space xg. We construct a regular
triangulation /34/ l"f h(Rs) with the step 'h3=h3(.i,k) and

elements e, at every inner side l‘f. We take as B(I‘f)
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the finite element space

w': h(r‘:) =({ve C(F‘;).- v, eP(x); v(x)=0, xea(rf)}, (5.2)
eJ
where P (x} is a set of linear polynomials. Along with Wt , one
can use the space UT N constructed on the basis of "serendipity”
¢lements fj, so that
vt (i) =o{ve oT* ) v, eP(x); bv =0 xef;

H
o, (5.3}

vi(x) = 0, xeafrf)} < ﬁ”z(rf).

suppose that partitioning of edges FT” (for the space X)) and
triangulation of sides (for the space Rj) are in agreement.
According te PDefinitions 2.1 and 2.2 functions from
spaces X, and X are harmonic’ inside subdomains Q. Besides,
traces of functions from ﬁ?” on Fj correspondiné to generatrix

s . & . :
function belonging to xi” are also harmeonic functions on one of

Kk

two sides r, belonging to domain @, and having a common
edge rf"‘ .
Then consider spaces X, and X being "h~harmonic"

2,k 3.k
analogues of spaces xa and RJ, correspondingly, for which the
harmonic compenents in subdomains are substituted by "h-harmonic"
ones. For this purpose ceonstruct regular triangulation Ff_h(xz)
(with the step h)) of the side adjacent to the edge Ff"
(coordinated with decomposition of the edge F:”) and let’s
1

consider regular triangulations Q h(xz) (with the step h } and

2, h(}13) (with the step h?) in the domain Q coordinated with

decompositions rf‘h(xe) and Ff,j(ﬁg) for each of spaces X,
and K- In the case of the space X, (similarly for Kg) consider

the set of the first order finite elements wh(QJ.h(Rs)} defined
on Qj,h(xa) in the same way as (5.2) er ({5.3}. We suppose

that . the function u,e S if the following inequality helds
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in each of subdomains Qj:

j (Vuh,Vz)dx =0, uh{x) = u{x), x e FI {5.4)
0 .
i
[ -
for all =z e wh(Qi,h(xsj), where u(x) e Wllh(F‘) R k=1,...76

k &
(oxr u € q:,n(rx))'
According teo /34/ (see also /1/) the estimate is true

a b ui . = uhll . = ctz-ll u il s {5.5)
H (Q[} H er) H rQ“

where ., @, don’t depend on h3 and U is a harmonic functicn

in Ql, such that E(x)=u(x), X € F!. Analogous statement is true
for elements from Ra .+ Because of (5.5) we perform all further

estimates for elements from RE N and -

Designate the "h-harmenic" continuation of the Ffunction

v & 2" on the adjacent edge Ff by ?h (v

. :-is defined from

).

It is sufficient to obtain estimates of the constants g,

bt

the equation of the type (5.4) on the edge Ff

E,e Vo M from the hypothesises G1-G4 for spaces Rz Nt RJ " only
for some one-subdomain Q =14, . Use notation N2=[d/h2L
Ny=[d/B ], h = min(h h }, N = max (N ,N_).
Lemma 4. The following estimates are true
-1
u(leh, Ka.h) = c-ho (5.6)
Y |
n(ﬁz'h) * Cohy (5.7)

Estimates (5.6) and (5.7) are a particualar case of a more
general property of inverse assumption /39%/ for the spaces of

conform finite elements S;'r{c) c H(G), t >r =0, which

: k = k

include also our constructed spaces ~ W' it wf " [Vh, Vv e ﬁlmh)
i, h o, .

km

P (defined on edges). Let’s

(defined on sides) and spaces X
recall the definition. The space S;”{G) satisfies the inverse
assumption if there exists €>0, r = £ > 0 such that for any

s, r-£ =5 =r and for any ¢ S;'F(G) the estimate holds
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e sch T p (5.8)
H (G H (G

Remark 5.1. Lemma 4 is a consegquence of the inverse assumption in
a form (5.8) at r=1, s=1/2, €21/2 with one of the sides r*

chosen as G and with the estimate /32/
i 2
' hoa’ o s c-hu W
H!/Z K i foa

(l"l) (1'")

k=1
To prove the inverse assumption we use the following auxiliary

statement.

Lemma 5. Let there exist >0 , such that for any ¢ € S;'k(c) it

is true:
-€
ek . =ch - U@l
M G HEo 6
Then for any 0 = z = £ weé have
e s B g (5.9)
H (%) HWE R g
Proof. We use the scale of Hilbert spaces which connects

€

spaces H* and MO and consider the representation

in eigenbasis of positively defined self-adjoint operator W:
H* » ®*"% , which is besides compact in #F% so that Vg,= Ag,.
A LS A @< A= 0 at k = w. Under condition of Lemma 5 for

any ¢ € S:’k(G) we have

-] (-]
2 -2 o2 z
Zlbkl A =sc h z b, 17 . 7 (5.10}
k=1 k=1
our aim is to obtain the estimate (at 0 = @ = 1)
L] o ’
2 -2 260 2. -2%
Zlbkl A% s ch Z b, 172777, (5.11)
k=t =1 )
t,k

which iz eguivalent to (5.9). Let in s, some basis {gom},

m=1,...,L is chosen. Then any function p can be presented as
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L
p=) brlor.
k=1
where elements g; satisfy the equality (vg;, ¢ ) = Xk(g;, v 3.

at m=1,..., L, Ak*ls Ak, Aka AL>O , K=1,...,L., Therefore

inequalities (5.10}, (5.11} take form
L L

b, 173 % s cn 2y b7 5.12

& x P (5.12)

k=1 Je=1
L
’ - _ - ’ -
kaﬁ-ak 2 s oY Z b, 1% & ~2%, (5.13)
k=1

From (5.12) immediately follows the estimate
¥

A, = cn® (5.14)

which gives rise to inequality

L L
te T -z T 20%-12 f.2 T -29
E:Ibkl A, ® AL E: Ibk? Ak =
k=1 R

-2E01-
2 o pTEE-®)

L
‘a2 T o-z0
E: |bk| A, ]. C[(5.15)
=1

Then assume 9=(7—11)/(12~11)5(7—k+e)/c, where 12=k, lt:k—e,
¥ = %e+k-e. In this case we obtain 1-¢ = ckt(k-w), or

£(1-8) = k~y . Now (5.15) takes form

20 z-E}

2
e 1° =cn Ve i,

2
H H
where it is supposed 7 = k-g+z. Lemma 5 is proved.
Now it is easy to verify the fulfillment of Lemma 5

4= N -
condition for each of the spaces W: "t w, n {Vh, v e ijh) and
. . .

M:Th at k=1, e=1 , for h=h_ or h=h_  , where under H#(G) the
space LZ(G) is supposed. Using Lemma 5 at k=1, e¢=1, z=1/2 and
taking into account Remark 5.1 we obtain estimates of Lemma 4.
Remark 5.2. According to /1,27 for the constants g(vo) and z(nz)
from the hypotheses H1 and H2 the estimates are true

90¥,) = e 1+ ncarm)) (5.16)
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E(R,) s c-{ 1+ ln(d/haj}- (5.17)
Lemma 6. The following estimate is true

CJ(KJ) = C'[ 1+ ln(d/hj)]' (5.18)
The estimate (5.18) is obtained exactly in a similar way as
(5.17) {(see /1/).
Leﬁma 7. The estimate is true

g (¥,) = c-[ 1+ In(d/ho)]-h;l- (5.19)

Proof. Use the hypothesis Hl with estimate (5.16) and also the

hypothesis G3 with the estimate (5.6). We obtain inequalities
) &
0w s c-[ 1 + In{d/h )] Z I et 1 2dx s
i ® a " i

L (F‘) — Fr

1A

c-[ 1 + In(dsh )]-h"u u =
o o ¥ IHJ/.?{F‘_J
P c-[ 1+ m(d/ho)]-h;‘- J |v&l13dx ;

i
The Lemma is proved.
Lemark 5.3. The estimate of the type (5.16) for the spaces of
piecewise linear elements in the two-dimensional case is obtained
in /35,18/. Lemma 7 is a generalization of Lemma 8 from /1,p.II/
for the three-dimensional case, which results in appearence of
auxiliary coefficient 1/h0 (Lemma 8 /1/ as it was formulated in
/1/ is true only for the two—dimensional case).

Denote by k= & (B;lmo) the condition number of the
operator B;‘AO . Using Theorems 2,3 , Lemmas 4,6,7 and the
Remark 5.2 it is easy te obtain
Corollary 1. For the space ¥ = X o leh@ Rz,n the following

estimates are true

K, £ (1+ N-lnN)-[u # lnzN)-N] (5. 20)
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K = c' {1 + N-InN) (1 + 1nN3) . i=2,3 (5.21)
K = c+f1 + N-InN} (5.22}

K = co(1 + lnN-lnNa)-NE {5.23)

§6 About operators spectrally equivalent to A

The most laborious part of calculations in solving the
equation (2.4), for example, by the PCG method as well a=z in
using the operator A as a preconditioner for solving equations
of a more general form is computation of the residual vec-
tor mov. Therefore operators EG spectrally equivalent to R in
two- and three-dimensional cases are of interest for which calcu-
laticon of the residual vector ﬁov can be made by faster methods.
Examples of using such operators ﬁo are given in §7.

Consider one class of such operators 50. Let for the
two-dimensional case all ﬂi be the guadrangles with the edge I.
Consider a set of circles G[ with the radius R=1/2 inscribed
iﬁ Q.. Every circle aﬂr is divided into four equal arcs
{(requirement of equality for arcs is not necessary) with the middle
points of the arcs coinciding with the tangent points of adjacent
circles. We call adjacent arcs the pairs of tangent arcs having
common points. Let for: all i H. >0 are given. Consider
the following
Problem (Eo): Find harmcnic functicns u, in the subdomains g,
{(for all i) such that the trace functions u, and uj (at the bounda-
ries of each pair of tangent circles G, and G}) coincide a; the
pair of adjacent arcs and their normal derivatives at these arcs

are bound by the relation

au Ju, — -

M, a8t M, SR’ (8) = #(E), £ess, £eos,

where £ is the point symmetric to £ with respect to the common
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tangent. In addition, for the arcs corresponding to the external
boundaries of the guadrangles u =0 is true.

The problem (ﬁa), apparently, has noc physical analogues (the
domain of definition of functiens u, is not simply connected),
though it’s a good mathematical model for  constructing easily
invertible precconditioners for more complex problems (where
subdomains Qr are not rectangles, there are variable coef-
ficients in Q , quasiflinear operators in ﬂi eﬁc.) It is
convenient to consider the generalized (weak) formulation of the
problem (ﬁn) after its transformation to the boundary equation
(of the type (1.4) with the operator A) of the domain depomposi—
tion method, which for the +two-dimensional case is thoroughly
considered in /1,2/. We denote by & _ the corresponqing boundary

. \ ts
gperator defined on scme direct sum of spaces H 2

(86,). Note
that the condition Rl=l/2 is not necessary, values of R, can be
chosen according to some optimization considerations.

Consider one-to-one bi-Lipschitz mapping 7y : 32> 3G,

(for example, by means of the projection from the centre of

the circles Gj] which assoclates every function u(m)e mllz(aﬂr),
L] aQI with the function ur(§)= u{m), £ = 7(n) € aGf,
u, {€)e u 7% (a6,) .

Proposition 1, Operators A (of the type (1.4)) and mci are

r

spectrally eguivalent in the following sense

2

N LWCHCIC PO a,(v(n))] = [ & wca), agn)] =
s e[ u a0 u, (v(n))]
fbr all u{wm)e szakaﬁr},‘where constants c,r <, >0 depend only
;9 thé thiq R /L. :
Propesition 1 is a consequence of results in /36/ concerning

the stability of Sobolev’s spaces on the Lipschitz surfaces at

smooth replacement of variables.
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Exactly analogous construction df operatérs spectrally
equivalent to operator A (of the type(l.4)) can be performed in
the three-dimensional case if one chooses as Gr inscribed spheres
with the radius R, =1/2, where 1 is an edge of the cube
(domain Qx)' Dencte these operators by msph. One can use as G,
also cylinders with axes parallel to one of coordinate directions

A will

{operator mcy son’ By

). In turn, these operators Aa y A

1 elr

be spectrally equivalent to operators A {of the type (1.4))
constructed for such subdomains Q‘ as rectangles, parallele-
pipeds, convex quadrangles or prisms. We call the proposed

method of constructing operators mclr, A

. B the method of
sph cyl
variating. substructures (VS-method) . More detailed consideration

of these operators will be performed in a separate paper.

§7 Discussion of results

Let us estimate the computational workl( for example, for.
the PCG method) necessary for solving the problem {2.4}) for
different combinations of preconditioners B,, k =1,...,5, as
well as for similar constructions in the two-dimensional
case /1,2/.

According to /2/ for the two-dimensional problems (with
rectangular QI ) the condition number of the operator B A is
O(lnen), where N=0(d/h) is the maximum ( over all Q:) number of
unknowns for one varjable, ' and p2 = p;-py is the overall
numbér of subdomains £ . For the three-dimensional problem the

_humber N is defined in a similar way. Suppose that N = 2" and
the necessary accuracy of computations is £ = NV , v>0. If we
use the algorithm proposed in /37/ (for N=32 the method proposed

in /38/ is one of the most effective) for solving the partial
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Dirichlet problem in subdomains, then the solution of the
two-dimensional problem by the PCG methed will reguire
g, =0 PN (1og N ) {7.1)
operations for defining the solution on the cutting lines.
Ccomputing of the solution at the inner points of Qr will require
auxiliary O(Nj) operations , where Ni = Nz-p2 is the total num-.
ber of variables. The estimate of the type (7.1) is also true
for the similar algorithms in the case of finite-difference
schemes /3/. For the operator A with variable (but "weakly"
changing inside 0} coefficients in subdomains ( Q may be con-
vex quadrangles) the quantity lev for the preconditicner B /2/
will require already
Q,, =0 ( #NilogNI") (7.2)

operations.

Estimates of the condition number for the operators B;Imo
(see Corvllary 1 § 5) for the subspaces szh and xg’h shaow
that the most cost-effective version of solving the equation
(2.4) is the two-level iteration process PCG, on the first level
of which - the preconditioner B8, is used (with the condition
number O(N InN lnNg)), while for solving the equation in the

subspace R e x, - the preconditioner 84 { k=0 {( N InN }}.

h LS

Assuming N, = N = N we obtain that solution of (2.4) at the

inner boundaries (with accuracy c=N'D) will reguire

o, .= o(vIn"?N-q (N.p) + N'/InN (p'N*1a®N )N (7.3)

operations, where p3 is the overall number of substructures and
sz(N'p) is labour required for one step of iterations

in selving the problem on X e X, which 1is estimated as

Q, =0 (p7/2+3p3NlnN). Computing the solution at the inner
points of will require auxiliary O(ijg) operations.

Let us consider the problem of the type ({2.4) with the
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operator A of a more complicated form, but "closer" in spectrum
to operator Ao. For example, A corresponds to the equation with
variable coefficients inside £, or corresponds to partitioning
to subdomains (topologically equivalent to the initjial subdivi-
sion) in which Q: are convex guadranles (for Rz) or
gquadrangular prisms etc. The soclution of the problem is
accomplished with the help of "boéhdary", as well as with "inner"
uﬁknowns in the subdomains. In this case computation of the
residual vector &v assumes computation of the solution in all
inner points of the subdomains and accounts not less +than
o] (NJpSInN) operations. Therefore for solving the eguation with
the operator A it is advisable to use at once the preconditioner

A or the operator of the type A ={ A A I

o vs cir’ spk’ mch
considered in § 6. For operators of the type mvs one can use
fast methods of computing the residual operator mvsv {the
Poincare-Steklov operator) on the circle, sphere or on the
cylinder surface. For example, in the two-dimensionral case for
converting the operator A_,. (4N unknowns on every circle 8G,)
only a double FFT transformation is needed (i.e. C.8Nlog 4N ope-
rations, where C}e[2,3}) to compute the residual ocperator on the
boundary of one subdomain 4G, by direct method, whereas for the
similar grid quadrangle CSSNlog;N operations are required (by
the method proposed in /37/} with sufficiently large constant Cs.
Apparently, the operator A is the most effective precondi-
tioner in solving the equations by the domain decomposition
methed with the checkerboard subdivision for not very
"stretched" subdomains.

Note that for conversion of the operators mvs the
preconditioners Bhvs must be used in which the block-diagonal

part of the operator mvS is substituted by the spectral
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equivalent one (as in /18/) of the type (“x”:+ B}u})(—AI’Z H

on every adjacent pair of arcs of the subdomains G, and G},
where A is the Laplace operator /33/ defined on the part ¥ of
the surface 3G, (or of the circle) in spaces of the type ﬁ“z(zJ.
Now let us consider some particular cases of partitioning.
For subdivisions of the "strips" type, i.e. at my: mz=1 the con-
dition number x(B;IAu), k=1,...,4 doesn’t depend on the quantity
d/h  (due to disconnectedness of the components R;,: of the
space X%, ) and is defined only by the form of subdomains @ .

£

Here X = X~ o. For the "quasi-two-dimensional" subdivision,
i.e. at m = 1 we have =2, while K(B;Iﬂo) doesn’t depend
on dsh. Apparently for this type of decomposition the operator
af the type Acy: will be the most gffective preconditiener.
If we have d=0(h), then assuming K2= M3= 2 we come to fimnite-
difference system of equations for the_family of the'"serendipity
type "elements (with constant coefficients K, inside elements Q).
The problem is reduced te a single solution of the equation (2.4)
using, for example, iteration methods for difference elliptic
egquations with highly varying coefficients /11,40-42/.

The greater flexibility of the considered family of
algorithms may be achieved using the technigue of the lecal grid
refinement /28-31/. Besides the partitioning into substruc-
tures Q: by* a “rough" grid can be used not only for the globkal
data transform, but alsoc for approximating the nonlinearity in
the framework of the incomplete-nonlinear formulation for the
guasi-linear elliptic equations/1,2/.

In some problems we can put X.= @2 with al} consequent

simplifications. This case takes place, for example, for finite-

difference schemes with the shift h/2.
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