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1. INTRODUCTION 

In our previous paper [1] we have analyzed the electric 

charge transfer in one-dimensional arrays of very-small-area 

tunnel junctions. The statics and dynamics of the charge has 

been shown to be most adequately described in terms of 

single-electron (±e-charged} topological solitons which can be 

injected into the array and driven along it by the external 

electric field. Under certain conditions, the soliton motion 

can be virtually periodic in time with the frequency fs=Ije, 

where I is the average (de} current flowing along the array 

due to the soliton motion. (Such 11Single-Electron-TUnnelingll 

(SET) oscillations had been predicted earlier to take place in 

single current-biased junctions - see Ref. [2] for a recent 

review) . This prediction has been confirmed in recent 

experiments [3] with one-dimensional arrays of Al/Al-oxidejAl 

tunnel junctions of area below 0.01 ~2 at millikelvin 

temperatures. 

Present-day nanolithographic technologies enable one to 

fabricate not only one-dimensional, but also two-dimensional 

quasi-uniform arrays of the ultrasmall junctions [4-6]. This 

is why an extension of the concept of the single-electron 

solitons to the two-dimensional case is Of a considerable 

interest for both theory and experiment. Such an extension is 

a subject of the present work. Our results for measurable 

properties of the arrays are compared with those of the recent 

Ref. (?)where the concept was not employed explicitly. 
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2. ARRAY MODEL AND BASIC RELATIONS 

Consider a uniform rectangular two-dimensional array of 

NxM+ (N-1) x (M-1) tunnel junctions formed between Ntot"" (N-1) xM 

normal-metal 11 islands" (Fig. 1a). Just as in Ref, l~. we will 

take into account the junction capacitances C as well as 

intrinsic ("stray") capacitances c 0 of the electrodes, but 

will neglect mutual capacitances Cij between non-adjacent 

islands (Fig. 1b). Strictly speaking, such a model is only 

valid for tl:le arrays placed close to a common "ground plane11 

conductor; it can nevertheless serve as a reasonable 

approximation to real experimental structures [3-6]. 

An external electric voltage V=V+-V- across the array is 

fixed by potentials of two edge electrodes (Fig. 1a); note 

that the independent combination of the potentials, 

u~(V++V_)/2, is of an importance as well, because it fixes the 

average potential of the array (referred to the common ground) 

[1]. 

As an evident generalization of the one-dimensional 

structure [ 1], the two-dimensional array is described by the 

following free (Gibbs) energy 

~ 

N-1 
+ E 

n=l 

N-1 
E 
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(1) 

Here Qn,m and <~~n,m are electric charges and potentials of the 

metallic islands (for numeration, see Fig. 1), while 

(2) 

where k-,m (k+,m) are numbers of electrons injected into 

islands of the left (right) row from the edge electrodes. 
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Fig. 1. Two-dimensional array of tunnel junctions: (a) 

general scheme of the array and our way of numeration of its 

metallic islands and (b) equivalent circuit of an internal 

island accepted in this work (islands of the lateral rows 

(m=l,M) lack one of the junction capacitances C). 

Continuity of the electric charge yields the following. 

equations relating the charges and potentials: 

for l~n~N-1, 1~~, (3) 

where ~o,msv_, ~N,m=V+. 

Provided the tunnel conductances G of the junctions are 

low enough, 

G << e 2;h, (4) 

the single electron tunneling rate through a junction can be 

calculated from a simple formula [2) 
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r 
G bY e F(- e->• F(x)= xj[l-exp(-exjk8T)], (5) 

where A~ is a change of the Gibbs energy § (1) in the result 

of the tunneling event. It is easy to check (8] that the 

change resulting from the tunneling of an electron from island 

{n,m} to island {n' ,m') can be presented in a simple form (cf. 

eq. (6) of Ref. 1) 
e 

(6) 

where (') denotes values after the tunneling event. In 

particular, 

(7) 

so that Eqs. (3), (5)-(7) form a complete system of 

'(stochastic) equations which allows one to analyze statics and 

dynamics of the array [1]. 

Before we start the analysis let us note that an 

arbitrary solution of Eq. (3) can be expressed explicitly as 

follows [8]: 

(8) 

Here functions K_ and K+ coincide with those for the 

one-dimensional case (M=l): 

n+N 
- ko J., K_(n) 

1 n 2N-n 

1-k2N [ko- ko J, 
0 

the traversal Green functions are very simple: 

(9) 

(10) 

while the longitudinal Green functions are similar to those 

for the one-dimensional case: 

N-n0 
n 0-N n n 0 

-n N-n 

1 1n-n0 1 [kk -kk Jkk + [kk -kk 
0

)kk 
MC'{kk -------- -----N~ ---- --},(ll) 

k kk-kk 
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but with a specific characteristic number kk and effective 

capacitance Ck for each traversal Fourier mode: 

COk COk c 
Ok 1/2 

kk - exp(-lk) 1 + [(-)2+ -) (12) 
2C 2C c 

c" 1/2 
pk 

C' COk- "o + 4C sin"- (13) k- ( Ok +4CCOk] 
2M 

The solution expressed by Eqs. (8)- (13) will be quite useful 

for some further calculations. 

3. TWO-DIMENSIONAL SINGLE-ELECTRON SOLITONS 

Consider a large array (M,N >> 1) with only one electron 

(or hole) injected into an island far enough of all the array 

edges: 

(14) 

According to Eq. (3), it produces a nearly axial-symmetric 

distribution of the potential (Fig. 2b) approaching zero far 

from the central point {n0 ,m0 }: 

r 
±e ~0 

----:::-(-CC_'_)-,1-;/,-2 vr 
0 

(15) 

(close to the center the symmetry is distorted by the array 

discreteness) . This is essentially the two-dimensional single-

electron topological soliton (or antisoliton) which forms as a 

result of a mutual polarization of the adjacent metallic 

islands (Fig. 2a, to be compared Fig. 2b of Ref.[.~). 

Energy E of the soliton is fundamentally related as 

to the electric potential value in its 

center, and can be readily found from the general Eqs. 

(8)-(13). Figure 3 shows E (and hence ~ 0 ) as a function of the 

only dimensionless parameter of the problem, the ratio c 0;c. 
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Fig. 2. Single-electron soliton placed into the 

two-dimensional array far enough of its edges: (a) schematic 

structure of the electric charge distribution and (b) 

map of the island potentials for c 0;C=O.l. 

10 

Fig. 3. Energy E (and hence the maximum potential 

I~Poi=2E/e) of the two-dimensional soliton, and the voltage 

threshold Vt for the soliton entrance into a large (N,M >> 

-1 
l,A 0 

) array as functions of the stray capacitance c 0 . Thin 

lines correspond to asymptotic expressions (16), (20). 
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The following asymptotic expressions are important: 

E = 
02 

X { 

~0 32C 

In<c>· for c
0

<<C, 4rrC 0 (16) 
zc0 1, for C0 >>C; 

note that in the former (most important) limit the energy is 

much less than that of the one-dimensional soliton (1], 

According to Eq. (6), energy of interaction of the 

soliton with any fixed external field ~(e) n,m (say, a field ¢ (s) 
n,m 

induced by another soliton) can be presented just as 

u<s-s)= ±e¢(s) 
"o•mo (17) 

According to Eq. (15), the soliton-soliton interaction scales 

as at medium distances r between their centers 
-1 -1 ( l<<r<<A0 ) and is cut off exponentially at r>>.\0 • sign of 

the interaction corresponds, as usual, to repulsion of the 

solitons of the same polarity and to attraction between a 

soliton and an antisoliton. 

Soliton interaction with a "passive" (unbiased} edge 

electrode can be described by its mirror reflection in the 

boundary plane (n=O or n=N in Fig. 1) 1 with change of polarity 

to the opposite one: 

lo~•l I, 
u<s-ee)= -e x{ no,mo 

(s) I lo2N-n m ' 
0' 0 

for left electrode, 

(18) 
for right electrode, 

so that the boundary attracts the soliton of any polarity. On 

the contrary, the lateral edge of the array repulses any 

soliton just as its mirror reflection in the planes m=1/2 or 

m=M+l/2, of the same polarity: 

I (s) I 

{ 

0n -m +1 
U(s-le)= O' 0 ' 

e x ( ) 
I on" 2M-m +11' o' o 

for upper edge, 
(19) 

for lower edge. 

(Note that it is essentially the latter reflection symmetry 

which makes the traversal Fourier expansion (8)-(10) possible; 
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the former (anti)symmetry (18) allows also an alternative 

(longitudinal) Fourier expansion of any potential 

distribution, with the basic functions sin(nk'n/N), where 

l:sk':sN.) 

Finally, the soliton interacts also with potentials ¢~e) 

induced by external voltages V±~ this interaction can be 

described by a formula similar to Eq. (17). Combining this 

formula with Eqs. (18), (19) one can readily calculate the 

threshold value Vt of the voltage necessary to inject the 

solitons into the array, and thus to overcome its "Coulomb 

blockade" state [1,2]. Due to the soliton repulsion from the 

lateral edges, the threshold is lowest for the middle rows 

(m~/2); for an array large enough (N,M >>1, A~1 ) one obtains 

2 co 1/2 
e { (1--)x(- ) 

vt""- x n c 
2c0 1, 

(20) 

Figure 3 shows Vt for intermediate values of the ratio c0;c. 

Formula (20) shows that in the most important case 

c 0;c<<l the Coulomb blockade threshold is a factor of -3 less 

than that in a similar one-dimensional array (see Eq. (16) of 

Ref.[~). This formula is in an order-of-magnitude accord with 

the value Vta!O.S mV observed [5,6] in high-ohmic arrays of 

190x60 Al/Al-oxide/Al junctions with estimated parameters 

although a more quantitative 

comparison would require an independent measurement of these 

parameters. 

4. STATICS 

If the external electrode potentials V± are close to each 

other, so that Va!O, their increase beyond the threshold v t 

leads to formation of a static pattern of the single-electron 

solitons in the array. Mutual repulsion of the solitons tries 
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to order them to form a regular lattice (the two-dimensional 

Wigner crystal), while intrinsic periodicity of the junction 

array (ll.N==l, ll.M=l) distorts the crystal until their periods 

are commensurate. Figure 4c shows an example of the 

consequence of the soliton configurations for a gradual 

increase of the external potential U. Note that at U:111Vt the 

solitons prefer the middle rows of the array due to their 

repulsion from its lateral edges, described by Eq. (19). 

Another important fact is that the consequent 

configurations differ (as a rule) by more than one soliton 

move. It means that the configurations are separated by 

intermediate ones, with larger energies. This is why each real 

configuration is (locally) stable and holds on within some 

range of U (one can speak about pinning of a particular 

soliton pattern by the array). 

As a result, the total number n of solitons is a 

hysteretic function of U, consisting of horizontal steps with 

ll.n=l (Fig. 4a). Comparison of this pattern for a wide array(M 

- N >> 1) with that (Fig. 4b) for the one-dimensional array 

(M=l) with the same total number of islands and the same ratio 

c
0
;c shows that the former pattern is somewhat less 

hysteretic. It means that in the two-dimensional case the 

Wigner crystal pinning is weaker, apparently because of a 

larger number of topological ways between the adjacent stable 

configurations. 

5. DYNAMICS 

The last fact is very important for drift of the 

solitons, which can be induced by a sufficiently large 

"transport" voltage V=V_ -v+ [1]. Really, if the pinning is 

small, the Wigner crystal can move along the array without 
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Fig. 4. Filling of the 9xlO-island array (N=lO, M=lO) 

with c
0
;c=O.l by solitons at V_=V+=U: (c) several first 

successive configurations forming as U is increased (solitons 

are denoted by crosses) ; {a) total number "tot of the solitons 

in the array as a function of U for increasing and decreasing 

field; (b) the similar function for a one-dimensional array 

with the same C0/C ratio and total number of islands 

Ntot::e:Mx (N-1) =90 (N=91, M=l}. Each step of the pattern 

corresponds to ll.ntot=l; for further values of u, the pattern 

is reproduced translationally with periods bn=Ntot and 

ll.U,ejc
0

• Here and below, temperature has been supposed to be 

low enough (k8T<<e 2/2C). 
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melting, so that the space order (correlation) of the solitons 

gives rise to the time order (coherence) of the electrons 

entering and leaving the array through the external 

electrodes. If the coherence were complete, the process would 

be completely periodic in time, with the frequency [1,2} 

(21) 

where I is the average (de) current carried by the solitons. 

In practice, the coherence is never perfect, so that the "SET" 

oscillations (21) have a nonvanishing linewidth. 

In order to calculate dynamic characteristics of the 

two-dimensional arrays, we have used the same Monte-Carlo 

method as for the one-dimensional structures [1] (with some 

acceleration of the frequency spectrum calculation procedure, 

kindly suggested by A. Korotkov). Note that for this purpose 

we use in particular Eq. (5) with energy ~ of the whole array 

rather than some local part of it. This approach corresponds 

to what the authors of Ref. [7] call the global rule; in 

accordance with recent theoretical [9] and experimental [lOJ 

results we believe that this case alone is real for the 

present-day experimental structures. 

Figure 5 shows typical de I-V curves of relatively long 

arrays (N=21) of various widths, and frequency spectra of the 

charge 
M 

Q_ = E C(V -¢ ) 
m=l - l,m 

(22) 

of the left electrode (results for another electrode are 

similar) calculated for a one value of I [1~ .One can see that 

increase of the width leads to a gradual decrease of the 

coulomb blockade range (I=O, IVI<Vt), in accordance with Eq. 

(20). The general shape of the I-V curves is qualitatively 

close to that of the one- dimensional arrays. As the cu'rrent 

increases, the curve gradually approaches the linear asymptote 
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G 
I = NM.(v - v of x sign V) ; (23) 

magnitude of the "voltage offset" V0 f is discussed in 

Appendix. 

Figure Sb shows that linewidth of the SET oscillations 

grows with M. This qualitative conclusion is in accordance 

with that made by Geigenmllller and SchOn [7], despite a 

significant difference of the spectrum shapes (due to the 

different bias type, see Sec. 4). Nevertheless, longer arrays 

with smaller c 0;c do exhibit some reduction of the linewidth 

when their width is increased from one to few junctions, at 

very small oscillation frequencies. For example, linewidth of 

oscillations with f
5
=0.005 eGjC in a 32-junction-long array 

with c
0
;c=O.Ol is reduced from -60% to only 15% of t

5 
by 

increase of the array width M from 1 to 5 (a further increase 

again results in the line broadening). 

We believe that the reason of this behavior is as 

follows. If V is beyond but very close to Vt, the solitons 

enter and move along only one (central) row of the array, 

because of their repulsion from its lateral edges, so that 

the array dynamics is very close to that of the 

one-dimensional arrays. For the latter system of a fixed 

length N >> 1, there exists an optimum value of c
0
;c providing 

the smallest linewidth at a given frequency fs (this value 

provides an optimum size ;\~ 1 of the solitons and hence an 

optimum degree of their repulsion, so that the number of the 

solitons moving simultaneously along the array is close to the 

optimum value 2-3). According to Eqs. (8)-(13) the 

two-dimensionality of the array (M > 1) reduces the effective 

size of the solitons, and hence can bring it either closer to 

or farther from the optimum value. Note again that the former 

case is realized only for very low frequencies, large N, and 

small c 0;c. 
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Fig. 5. 

3 

0 

20 

o·L---~~-L-~2~----L_--~ 

. V/(e/C) 

(c) 

.005 .01 
w/(2nG/C) 

(a) Global shape of the de I-V curves, (b) 

blow-up of their low-current parts and (c) frequency spectra 

of the electrode charge for three arrays with equal length 

(N=21), parameter c
0 

(C
0
/C=O.l), de current (1=0.005 eG/C), 

and similar boundary conditions (v =V - ' 
but various 

widths (M=l, 3, and 8). Thin lines in Fig. Sa show the 

asymptotes (23). Error bars in Fig. 5c show the accuracy 

provided by our numerical simulation of the array ~ynamics; 

thin lines are only guides for the eye. 
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At larger v-vt (and hence larger I and fs), the solitons 

enter other rows of the array as well, so that the Wigner 

crystal formed by them becomes two-dimensional itself, and all 

its rows give their own contributions to the SET oscillation 

waveform. Now, even small pinning leads to random phase shifts 

between the soliton lines in far rows (i.e., to destruction of 

the long range order of the Wigner crystal) and as a 

consequence to suppression of the coherence of the SET 

oscillations. 

6. CONCLUSION 

We have found that the concept of the single-electron 

solitons, developed earlier for one-dimensional arrays of 

ultrasmall tunnel junctions, is equally useful for description 

of the correlated tunneling in two-dimensional arrays. In 

particular, the concept allows a ready calculation of the 

threshold of the Coulomb blockade and of the de voltage offset 

of the I-V curve asymptotes, and provides a visual 

interpretation of all the basic static and dynamic properties 

of the arrays revealed by the numerical calculations. 
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APPENDIX 

Voltaq~ Offset in 1-D and 2-D Arrays 

Consider a uniform array biased with a large voltage: 

2 eV/N >> e /C, k8T. (A.l) 
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This condition allows one to neglect the backward tunneling of 

the electron. Then according to Eq. (5) the average current 

between n-th and (n+l)-th islands of some row can be expressed 

as 

Im = -er = (G/e) ~§. (A.2) 

Let us denote the matrix reciprocal to that of the linear 

system of equations (3) as ~c- 1 1. Then Eq. (6) yields 

(A.3) 

where we have omitted indices rn=m'. Now, let uS' neglect the 

electron transfer between the rows of the array (numerical 

simulations show that this process is really vanishing at 

v~). Then Im does not depend on n, and summation of Eq. (A.J) 

over this index yields an expression similar to Eq. (23) with 

N-1 
E 

n=l 

(the second term is in fact vanishing for n=N-1). 

(A.4) 

Equations (A.J) and (A.4) are very similar in structure 

to Eq. (B) of Ref. [7), but nevertheless do differ from it. We 

believe that the main origin of this difference is that the 

authors of Ref. [71 have neglected a dependence of the voltage 

drop Vn=¢n+l-¢n on the junction number in the row (according 

to Eq. (A.J), this dependence is quite substantial). They have 

also implicitly averaged V
0

f over the rows. Equation (A.4) 

shows, however, that in a genuinely two-dimensional array 

(N,M>>1, A-l) the offset can be dependent of the row number: 0 

v ~ of 

for m~M/2,} 

m=l,M, for 

for all m, 
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This dependence (confirmed reliably by our numerical 

simulations) means that even in the limit v~"" the current is 

not distributed uniformly across the array width, but is 

suppressed slightly in its edge rows (m~l,M), due to the 

soliton repulsion by the lateral edges. The offset averaged 

over the rows is nevertheless close to that calculated (for 

the limit c0~o) in Ref.[~· 

Equation (A.4) is of course valid for one-dimensional 

arrays as well, and for a long array 

yields 

N 'o 

-1 
(N>>1,?. 0 ) it 

vof= ec x{ 2 ( 1 -2 ) ' 
c 

(N-1 )c +3C 
0 

(A.6) 

Note a difference between the first of these equations and Eq. 

(2) of Ref. \1.21; this difference is, however, negligible for 

the practical arrays discussed in the cited work. 
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