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1. Introduction

In some physical experiments,e.g. for
superconductivity investigations,the samples to be tested
are placed in the magnetic field.The sample is magnetized
and the external field is distorted near the surface of the
sample,depending on the sample's shape and orientation of
the external field. In this case the demagnetization field
arises in every point of the sample and it is related ton
the magnetization as

EY

5
Hdem = NN, (1.1)

where ; is the magnetization,N is the proportionality
coefficient,also called the demagnetization factor.

The quantity N 1s determined by the shape of the
magnetic.Generically, for the anisotropic magnetic ¥ 1is a
tefsor .Exact analytical calculation of N is possible for
magnetics of the ellipsoid form only.Iﬁ this case the
internal field 1is constant.For arbitrary shapes of samples

the magnitude and direction'of the vector ; are functions of
the coordinates.In this article the cylindrical specimens
are considered in a homogeneous magnetic field.A sample in
the magnetic field is shown schematically in figure 1.
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We define the component of the magnetic field in the

N
direction of Hot in every point of the specimen 2 as the

difference of the projection of the external field and the
demagnetization fields:

> > - - -> ->
(H(E;),e)=(Hy,, ,€)-N(E;) (H(E,) &), (1.2)
>
Ed Hext
where ch Q, e = 5
|Hextl

It is known that, in the magnitostatics the magnitude
of the magnetic induction is defined in the following
way:

> > ->

B(Ej)=H(§i)+4nH(§j)- (1.3)

> >
Multiplying (1.3) by e and using (1.2) we obtain for B(Ei)

> E > B >
(BUE;) ,e)=(H, y,€) +(4m-N(E,)) (M(E,) o) - (1.4)

Using (1.4) the demagnetization factor may be defined as

>

> > >
(H ) —(B(E,;),e)

e
ext’

N(Ej)=4n( 1+ (1.5)

> >
am(M(E,),e)

To calculate N we used the ideal diamagnetic approximation
>
(B = 0 in the sample).In this case (1.5) becomes:

S

IHexJ

N(g; )=4m| 1- -5 : (1.6)

5
(H(E,),e)

> >

Evaluating the sum (H(gj),e) over the whole specimen or over A

its thin surface layer,we shall obtain the quantity
> -

I(H(giLe)dv, where Q' is the area of the whole sample or

o

its surface layer,respectively. Owing to the symmetry of the

specimen the direction of the total magnetic field
N

> >
Hsum=n{H(§i)dV will coincide with the direction of Hext.Thus

> >
we may define the average value of (H(Ei),e) in the sample
as

> > N
S(H(E;),e)av |H |
: Q' sum
S = = . (1.7)
. I av I av
Q' Q'

Now using eqs. (1.6) and (1.7) we define the mean value of
the demagnetization factor for the sample in the direction

N
of Hext as:

(1.8)

ext| ]

The demagnetization factor for the direction transverse to
N

H,ot is =zero.This fact ensues from eq.(1.2) and the

following observation:

> > > >
(o m)=0, T (H(E) =0,
1
where the symmetry of the sample has been taken into account
> > >
and n satisfies the conditions (e,n)=0.However,in order to

>

find N from (1.8),it is necessary to compute H For

sum’
calculating the magnetic fields in the specimen the boundary

integral equations method was used.
2.The method of boundary integral equations

In order to calculate the strength of the magnetic



field ,it is necessary to solve the three-dimensional
Maxwell equations for a sample placed in a homogeneous
magnetic field:

>
div B =0

>
rot H =0 (2.1)
5> >
B=uH 4

- -
Besides,at the phase boundary the vectors B and H
1d i i iti : = =
shou satisfy the following condltlons.Bln BZn'Hlt HZt'

The integral analog of (2.1) is

> 3 Vg > > > > > 1
H(a)=H, + { (B(x)-(H(x)),9_( a)dv}, (2.2)
4n ! a | iLa|

> .
where Hext is the external field ,a is the observation

point.

Assuming that the magnetic permeability p in @ is
constant,the eq.(2.2) is reduced to the boundary integral
equation:

> E IR >

»(-») 5 v3 J‘ (B(x)-H(x),dsg)

H(a)=H - . 2.3
et 4n [ | -3 | ] (23

> -
For the ideal diamagnetic B(a)=0 holds in Q. Therefore u=0
in this case,and (2.3) becomes:

- > - -
3> > > Vg (H(x),de)
H(a)=H _+ — _ (2.4)
ext’ 4n | %-3 |
de

> > >
Introducing the new variable o(x)=(H(x),n(x)),where n(x) is

>
the external normal to the boundary dQ@ at point x and
> >
multiplying (2.4) by n(a) we obtain
1 (x)a
I TS ] o(x)ds>
2.5
sla)=(ata),na)) + — [ — | ——*]- (&)
3 n» - 4n | -3 |
a
da

For the discretization of (2.5) the boundary dQ is divided
L

into boundary elements {Qi} so that do = U Q,.Adopting that
i=1
o(a) is constant within the element Q0 = ai,and choosing

the observation points a; in the center of Q;, we obtain the
system of equations

> > > L 8 1 EJ as
o, = (H# (a.),n.) + ¥ — - —— —_— (2.6)
! ext’ itrd j=1 08 n» 4n | 2-3 | 2 = 3’
Fy =
da I
where Hi is the external normal to ni,i=1,...,L.

Symbolically, expression (2.6) may be rewritten as

A A
cr=H+[A]o-, (2.7)

A T A > > >
were o =(oy,....,0 = (Hp(ay)ymny), oo (H  (ap),np)

> > > T
L) _[

and [ 2] is an L x L matrix.

For solving (2.7) the following iterative process was used:



A A A
o’k+l=H+[A]trk" o

=0., k=0,1,...,L. (2.8)

N
Since H(Ej) in the sample does not have an axial symmetry in
general case,the special method proposed in (Akishin.1988)
was used to discretize (2.6) and to solve the arising
equations.This method takes into account the axial symmetry
of the sample.

3. Results of the numerical computation

The numerical simulations were performed with the
EC-1061 computer ( 2 million operations per sec.) using a
package of FORTRAN programs.For the specimen placed in a

> >
homogeneous magnetic field the values of H and B were

calculated inside and outside of the sample.The simulation
>
was carried out under the assumption that Hextzl‘The

specimens with the transversal and longitudinal magnetic
field applied, are shown in figure 2
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Figure 2. The sample placed in (a) transversal magnetic
field. (b) 1longitudinal magnetic field.

Figure 3 shows the decomposition of the sample surface for
simulation by the method of boundary integral equations.
Besides, the symmetry or antisymmetry of the magnetic field

w.r.t. the (0Zy) plane was taken into account.
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Figure 3. The decomposition of the sample surface.

The humber of the decomposition elements along the X-axis
used in the simulation varies from 40 to 60. The dimension
of system equations changed from 768 to 1088 variables,
depending on the length of the sample.The vector o
calculated from (2.7) was used _to recount the field

strength at an arbitrary point.To find the average value
> o
(H,e) in the sample the integral was replaced by the sum

over the subspaces obtained by decomposition 2 into 6 equal
parts w.r.t the radius,40 parts w.r.t. the angle and into 20

to 40 parts w.r.t the axis of the sample. In computations
>
the value of H was considered constant in each

subspace and equal to the value in the center of the
subspace.Taking into account the symmetry of the sample,the

computation time was reduced by the factor of 8. The full
time required for the central processor to solve the system
of equations and calculate the average field,was changed
from 18’ to 46’ depending on the geometry of the sample .The
verification was made for the cylindrical specimen in the
longitudinal magnetic field. The calculated values of the
demagnetization factors N were compared with the
experimental data obtained in (Bozorth and Chapin 1942).The

calculated and experimental results are shown in table 1.



Table 1. The demagnetization factors for the
cylindrical samples in the longitudinal field.

k 0.1 0.2 0.3 0.5 0.7 1.0 2.0 5.0

N 0.827 0.711 0.625 .0.522 0.431 0.352 0.221 0.182
N 0.758 0.603 0.526 0.404 0.345 0.271 0.165 0.070
Nexp — —_— —_— —_— — 0.27 0.14 0.04

k is the ratio of the length of the sample and its

*
diameter,N is the data of measurements,N and N are the

exp
numerical results.
The numerical values of the demagnetization factors ¥ and N*
are calculated by (1.8).To compute N (resp.N*) the field
values were chosen from the whole specimen {resp.from the
thin surface layer of the specimen). The better agreement
of N* and yexp is probably due to the fact that the
measurements were done by a winding applied to the
specimen.As a result,only the surface values of the magnetic
induction were registered

For the samples in the transversal magnetic field the
demagnetization factors were estimated for different Kk.The
behavior of the magnetic field in the sample and beyond it
illustrated in fig.4.All calculations were performed for the
ideal diamagnetic.Fig.4, shows the |Hy| as a function of
the coordinates for k=0.6 in the (ZOY) plane.
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Figure 4. The distribution |Hy| along the 0Z axis (a)
and along OY axis (b) in the sample and beyond it.

4

| ~ denotes the edge of the sample.

The calculated values of the demagnetization factors are
given in table 2.

Table 2. The values of the demagnetization
factors for cylinders in the transversal
field,obtained numerically

x s s b N/am | N /4n
m m
0.1 1.230 | 1.377 | 0.187 | 0.274
0.2 1.280 | 1.526 | 0.219 | 0.344
0.3 1.344 | 1.600 | 0.256 | 0.375
0.4 1.410 | 1.636 | 0.291 | 0.389
0.5 1.466 | 1.667 | 0.318 | 0.400
0.6 1.510 | 1.693 | 0.338 | 0.409
0.7 1.540 | 1.713 | 0.354 | 0.416
0.8 1.583 | 1.733 | 0.368 | 0.423
0.9 1.613 | 1.750 | 0.380 | 0.428
1.0 1.640 | 1.766 | 0.390 | 0.434
3.0 1.882 | 1.930 | 0.469 | 0.482
5.0 1.956 | 1.983 | 0.488 | 0.496

L
Here Smand s, are the average values of the Y component of

the magnetic field in the full volume of the specimen and in
a thin (1.5 mm) surface layer, respectively; ¥ and ; are the
demagnetization factors calculated by (1.8) for these
values.

It is straightforward to see that the demagnetization
factors obtained numerically for k» o are in a good
agreement with the analytical value of the demagnetization
factor for the infinite cylinder (Osborn.1945):N/4n=0.5.

The maximum value |Hy[ in the space is also
interesting.The maximum [Hy[ is attained near the surface of
the specimen.In table 3 the dependence of the maximum |Hﬂ
on k is given.The dynamics of the numerical values of
is in a good agreement with the asymptotic value of
=2 ,when k =km .

|4 I
y,max

y,maxI IHy,max




Table 3.The maximum values |H near the surface of

y,maxI
samples.These values are shown at the point A(0,0,R+5),where

R is the radius of the sample,s = 1lmm

k I Hy,maxl
0.1 1.214
0.2 1.302
0.3 1.380
0.4 1.441
0.5 1.496
0.6 1.543
0.7 1.584
0.8 1.621
0.9 1.653
1.0 1.682
1.5 1.783
2.5 1.893

The accuracy of the discretized model used for the
computation of the magnetic field is 0.5% for the
decomposition of the sample surface shown in figure 3.The
accuracy of the calculations depends on the decomposition of
the sample surface used in the simulations.When the number
of elements of decomposition increases,the accuracy grows as
well and as a result, the full time of the central processor
needed to solve the system of equations and calculate the
average field also increases.

4.Conclusion

The proposed numerical method allows one to find the
demagnetization factors,which could not be found from the
direct measurements for the cylindrical samples in the
transversal magnetic field .For the samples in a
longitudinal magnetic field a comparison of the theoretical
and experimental results has been made.Besides, this case
yields a number of the missing data for k=0+1.
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