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1. Introduction

The purpose of this paper is the numerical study of the blow-up of
solutions of the semilinear heat equation

(1.1) u, = Bu + (1+u)1nf(1+u),

where u = u(x,t) is nonnegative and g8>1 is a fixed constant. This
equation was first introduced in ([10). Different results concerning
the asymptotic behaviour of solutions to(1l.1) near finite blow-up time
t = T, are given in (4],(8],(10],(12], [14],[19],(20],(22,p.272],[23].
In particular, results of numerical investigation for one apace
dimension are presented in [10],([14]). There is a good qualitative
understanding of unusual asymptotic behaviour of solutions as t—T,,

but many principle mathematical problems of blowing-up behaviour are
open now.

our EE{F ;gig_ is to characterize by numerical experiment the
asymptotic b‘ewramviour of u(x,t) near t = 'I"J in two and three space
dimensions. We show that the qualitative results (10,23] hold for
radial symmetric solutions u(r.t), r = |x| in many-dimensional case,
and the asymptotic behaviour of u(r,t) as t—T, is described by the
selt:limilur golution vw(r,t) (see [12],([22)) of the (first order
nonlinear equation of Hamilton-Jacobi type

2
= [:]
(1.2) Ve v * (1+v)In"(1+v) .

Note that (1.1) doesn’t admit any nontrivial self-similar or invariant
solution with blowing-up properties for fixed g>1 [9). But nonlinear
Hamilton-Jacobi equation (1.2) has the following simple self-similar
solution for arbitrary g>1:

(1.3) v(r.t) = exp (1, - ¢y B Vg (g)) -1,

(1.4) far(r,-)", ma= =2,

where T, is finite blow-up time and function 8,20 satisfies nonlinear
ordinary differential equation

(1.5) (9% - mezg - gLy, + 68 = 0,

The function (1.3) satisfying (1.2) is not exact solution of the
initial equation (1.1), but it describes the asymptotic properties of
u(r,t). Therefore v(r,t) is said to be approximate self-similar
solution (a.s.-s.s.) of (1.1). One can see from (1.4) that the main

asymptotic properties of v depend on the of the parameter m.




There exist three types of blow-up behaviour:

(1) 1<B<2 (m<0) - total blow-up (HS-evolution) ;
(ii) B = 2 (m=0) - regional blow-up (S-evolution);
(iii) B > 2 (m>0) - single point blow-up (LS-evolution),

see [22, p. 274]. We show by numerical experiment that the same
classification of blow-up behaviour holds for equation (1.1) for N=2
and N=3. We obtain "numerical proof" of convergence in specific norm
of u(r,t) to a.s.-s.s. (1.3) as t—aTb. It is important to note that
the asymptotic behaviour near t=To doesn‘t depend on N, see equation
(1.5) which doesn’t contain space dimension. In general, the problem
of convergence of u(r,t) to a.s.-s.s. v(r,t) as t—»To, i.e. the
specific degeneracy of nonlinear parabolic equation (1.1) into
Hamilton-Jacobi equation.(l.z) near a finite blow-up time, is open
now. An exception is the case N = 1 and 8 = 2, when equation (1.1) has
the following explicit noninvariant solution [8],[16]:

(1.6) u(x,t) = exp {p(t) [y(t) + cosx]} -1,
Functions ¢(t), y(t) satisfy the system of nonlinear ordinary
differential equations

’

o= -p+ 205, W =u+ - P tso.

It was proved in (8] that blow-up solution (1.6) describes convergence
to a.s.-s.s. (1.3). For Nz1 and B8>2 an exact upper estimate of u(r,t)
near t = To with space-time structure of the a.s.-s.s. v(r,t) was
obtained in [14]. Different results on degeneracy of quasilinear
parabolic equations into first order equations of Hamilton-Jacobi type
were proved for equations without source under blowing-up boundary
functions [22,p.346] and for global solutions growing to infinity as
t—w [12].

Note that degeneracy of parabolic equation into equation of first
order near finite blow-up time is common property of semilinear heat
equations with sources of different kinds. The degeneracy mentioned
above is the first example. Degeneracy of other kind exists for
semilinear equation with power nonlinearity

(1.7) u, = au + uf , g>1.

t
In this case Hamilton-Jacobi equation has the form

v, + (W-x) {2(T, - t)[In(T. - )|} = vB

t [ o ’

and its self-similar solution

veet) = (1, - eV ED g1 4 [g-1)?/apym? y Y ED)

n = [x|((T, - t)|1n(T, - t)]) /2,

2

describes the behaviour of u(x,t) as t—aTo, see different qualitative
and numerical results in [1],([13]),(14],([17],([(18]. The equation with

exponential nonlinearity

(1.8) u, = Au + &
degenerates as t—T, into Hamilton-Jacobi equation (see [2],[14])
-1
v, + (Wex) (2(T, - t)|In(T, - t)|} " =€,
which has blow-up self-similar solution
v(x,t) = - In(T, - t) - In(1 + n?/a),
where 7 is défined above. .
As for quasilinear equations
[
(1.9) u, = 8"t P and u, = 9v-(|vu|"vu) + P,

t t
where ¢>0, B>1 are fixed constants, in many cases the asymptotic
evolution of blow-up solutions is described by nontrivial self-similar
solutions, see different results [5]},[6},([9],[15], [22] for the first
equation (1.9) and [7],[11] for the second one.

The effect of degeneracy and convergence to a.s.-s.s. is well
defined when studying the Cauchy problem to (1.1). But for numerical
calculations we consider initial boundary value problem in BRx(O,T&,
where B, = {|x|{<R) is a ball in ®Y of radius R>0, with Dirichlet or
Neumann boundary conditions. The choice of boundary condition is not
essential (see Sections 3 and 4). In radial symmetric case this

problem has the form

1 N-1 B .
(1.10) u, = ;ﬁ:T_ (r ur)r + (l+u)ln"(1+u) in (O,R)x(O,ToL
(1.11) ur(O,t) =0 for t e [O,TOL
(1.12) u(R,t) =0 or u(Rt)=0 forte[0T),

(1.13) u(r,0) = u(r)=0 in [0,R], u € C([O,R]).
Now a.s.-s.s. v(r,t) satisfies nonlinear Hamilton-Jacobi equation
(v )? 8
(1.14) Ve =1+ v * (1+v )In" (1+v),
The qualitative theory of a.s.-s.s. is given in Section 2. Section
3 is devoted to numerical method used in this_ paper. In next sections
numerical results for the cases B = 2 (Section 4.1), 1<B<2 (Section

4.2) and B>2 (Section 4.3) are given.

2. Qualitative Method of Construction of Approximate
Self-Similar Solution N

Let 1ln(l+u(r,t)) = U(r,t). After this transformation we get the
following semilinear parabolic equation

3



(2.1) v, = —1 N-1

2 ‘
t -1 (r U + (U7 + v® in (0,R)x(0,T,).

Function U satisfies the same boundary conditions
(2.2) U.(0,t) = 0 for te[0,T ),

(2.3) U(R,t) = 0 or U(Rt) =0 for tef0,T),
and initial condition

(2.4) U(r,0) = U(r) = In(1+u (r)) in [O,R].

Equatjon (2.1) with power nonlinearities is more convenient for
studying and numerical calculations.

First we note that (2.1) has no nontrivial blowing-up self-similar
solution. Some preliminary results from [4,10,22,23] concerning the
construction of blow-up lower solutions to (2.1) show that the first
term (Laplacian) in the right of (2.1) is smaller in comparison with
two others as U—w«x. The problem of "degeneracy" of Laplacian for (2.1)
near a blow-up point is open now.

Full results of such kind were obtained for equation without
source Ut=Uxx+(Ux)2 in {x>0}x(0,T) with blow-up boundary function
Uu(o,t) = (T—t)n for te[0,T), where n<0 is constant, i.e. U(0,t)—w as
t—T <w, It is proved [22,p.348] that in this case there exists
convergence of U(x,t) to the exact self-similar solution of
Hamilton-Jacobi equation v, = (Vx)?

Thus we consider now Hamilton-Jacobi equation

_ 2

(2.5) v, = (V)% VB,

For any fixed g>1 it has blowing-up self-similar solution
(2.6) vir,t) = (1-t)y Y (E Vg (g),

where £ 1is defined in (1.4), ea satisfies ordinary differential
equation (1.5) and symmetry candition

(2.7) 8,(0) = 0.
One can obtain that if the blow-up solution goes to infinity according
with the space-time structure of a.s.-s.s. (2.6), then
1
rN—l

N-1 2 . _t )1/ (8-1)
| (r UL l/(u,) (T,-t) —0 as t—T,

i.e. Laplacian in (2.1) is negligible with respect to the first-order
term (Ur)2 as t—T,. The existence of the solutionl of the problem
(1.5),(2.7) satisfying additional condition ea(m) = 0 is given below.

LEMMA (see [22,p.275],[14]). For any fixed B>1 there exists
solution eazo of (1.5), (2.7) such that

(2.8) ©,(6) = 8, - gra=yE (1 +o(1)) as £—0,
4

where 8 = (B—l)'l’(B‘l)

and
(i) for 1<B<2 this function is unique solution of (1.5), (2.7) and
ea=o for some E=Eo>0; wve let eas 0 for E>Eo; the following estimates

of £ hold

B T(sa—ry)
e (- . —£— TEED
2(28) 2B/ (2B ¢ Y2y TED)

B ’
Fzte1))
where I'(p) is Euler'’s Gamma-function;

(ii) for B=2 the unique solution has the form

(2.9) 6,(€) cos?(£/2) for Osg=m,

Ga(E) 0 for £>m;
(iii) for B8>2 the solution with asymptotic behaviour (2.8) is strictly
positive and

1]

(2.10) 8,(6) = ce 2/ B=2) (140(1)) as f—rtem,
where C = C(B8)>0 is a constant; there exists one-parametric set of
positive solutions with another behaviour near £=0:
. 2(8-1)
(2.11) 6,(£) =86, - c£ #7?  (1+0(1)) as £—0,

here c>0 is arbitrary constant.

For the first two cases 1<8<2 and B=2 we have unique function ea
and therefore unique a.s.-s.s. (2.6). For 8>2 the problem (1.5), (2.7)
has infinitely many solutions satisfying 6,(+»)=0, and there exist
many functions (2.6) which may be a.s.-s.s. of (2.1). We show by
numerical calculations that the asymptotic behaviour of blowing-up
solution U(r,t) is described by a.s.-s.s (2.6) with ea satisfying
(2.8) (for N=1 and B>2 such result was obtained in [14], where the
exact upper estimate of U(r,t) near t = T0 with structure
corresponding to (2.8) was proved). Hence we expect that function
(2.6) with A satisfying nénanalytic expansion (2.11) doesn’t appear
on asymptotic stage of blowing-up process.

Finally we state method of rescaling of solution U(r,t) in order
to show the convergence to a.s.-s.s. V(r,t) as t—aTo. By usual
approach the rescaled function has the form

1
(2.12) ocg,t) = (1, - ¥ lucg(r )", ¢,

which is defined by the space-time structure of a.s.-s.s. (2.6). The
asymptotic stability of a.s.-s.s. is equivalent to condition

(2.13) B(E,t)—eea(ﬁ) as t—T, N

where 8, is defined in the Lemma.
But for numerical calculations we use another method of rescaling.
Let ¥(t) = Syp U(r,t)/e0 and consider the function
S



(2.14) ocg,t) = Ue(a(t)) 2BV 2 ¢y qct).

In comparison with (2.12) T, doesn’t occur here. It is important,
since T, is defined after finishing numerical calculations. One can
see that (2.12) and (2.14) are equivalent if (2.13) holds.

3. Numerical method

We solved numerically both - the original problem (1.10)- (1.13)
and the reduced one - (2.1)-(2.4). In spite of the fact, that the
first one has a selfadjoint elliptic operator, and hence, it has many
advantages in the algorithmic realization of the numerical method, we
chose the second. The reason is that the new unknown function
U(r,t)=Iln(1l+u(r,t)) grows slowly than u(r,t)when t—eTo, SO we can
approach closer the blow-up time TB. Thus, we describe below the
numerical method for solving the initial boundary value problem:

_ 1 ,N1 2 .
(o) U =AU = 2o, e ) v in (0,R)x(0,T,),
(3.2) U.(0,t) =0 for t € [0,T ),
(3.3) U(R,t) = 0 or Ur(R,t) =0 fort e [O,TOL
(3.4) U(r,0) = U(r) = 1In (l+u0(r)) in [0,R].

We choopse the radius R so as to avoid the influence of the boundary
condition (3.3) over the solution, i.e. in fact, we solve the Cauchy
problen.

We use the lumped mass finite element method (FEM) [24] with
quadratures.

The discretization is made on the basis of the problem (3.1)-(3.4)
in weak form:

(3.5) (U, x) = A(t;U,x), VaeHL(0,R), O<t<T,,
(3.6) uco,-) = U,

where (x,9) = Ir"'lz(r)¢(r)dr,

(3.7) A(t;x,¢) = I(—zr¢r + xi¢ + xPo)rlar,

Hi(O,R) = (xex, TN 17206 12(0,R), (1-a)x(R)=0},

a=0 corresponds to the condition U(R,t)=0, a=1 - to the condition
Ur(R,t) = 0.
For the spatial discretization of (3.5),(3.6) we consider standard

piecewise polynomial Lagrangian finite element spaces. Let

{0=r._<r,<...<r_=R,

1572 m R Ty Ti=h)

be a partition of the interval [0,R] into elements ei=[ri,ri+1]. Thus,

we denote by S h the space of continuous functions on [O,R] that
’

reduce to polynomials of degree = k-1 on each element

ei,i=1,2,...,m—1:

Sy p={¥(r) e C([O,R]); w(ri,ri+l)e Py i (1-a)W(R)=0}.

The approximation properties of S, p are well known [24]:

’

+ hIVI W-YWiI_ 2 = CthIWllHk ,

I, Ww-wi_ 2 L2(o,R) *

h L7(0,R) h

= CthIWIl 2

W, W-WI oo Wm[O,R]'

h L®[0,R]

Here I, is the interpolation operator:

: L) = : nodes
Ih : C([O,R])— sa,h’ (Ihw)(nj) w(nJ) for each of the nj,
j=1,2,...,M, that define the degrees of freedom of Sa he

Let Uh(r,t) denote the approximate solution in Sy ne We pose the
’
semidiscrete problem:

To find U, € S, for each t, such that

h ,h
.(3.?) (Uh,t’w) = Ah(t;Uh,W) for all W e sa,h’
(3.9) Uh(o) = Uoh'

Let {wi}?=1 be thg standard Lagrangian nodal basis of sa,h'
Representing U, (r,t) in the form
M

Uplr.t) =i£1Ui(t)¢i(r) € Sy n

and using the lumped mass methiod ‘our semidiscrete problem (3.8),(3.9)
may be written in matrix form:

(3.10) NU=K (U)U,

(3.11) ) U(0)=Uo.

Here U=U(t)=(U1(t),U2(t),...,UH(t))T, M is the lumped mass matrix,

M
L

M = dlag(mii}, m,, =

N-1 PR
. = L. =1,...,HM,
5 mij’ mij I r p;0 dr, 1i,j=1

1 J

K(U) =L k, = I (kgl)+ kgz) + x(?), ke(1)= (kgﬁ)}, 1=1,2,3,
e

e
(3.12) k{3 = - J; A k{3 = J; N a(uypuiar,
(3.13) : k}?’ = l N b dr, .



k

K -1
a(u) = L Uy b)) = (LU ¥, )" ~,
5 RS

wi’ i=1,...,k are the form functions of the element e.

Let us note, that the matrix K is nonsymmetric. When solving the
system of ODE (3.10),(3.11), we don’t calculate matrix K in explicit
form - we calculate only the product K(U)U, accumulating it by means
of the element matrices ke.

To solve the system (3.10),(3.11) of ODE we use a modification of
the explicit Runge-Kutta method, which has second order of accuracy
and an extended region of stability [21]. Moreover, the time-step T is
chosen automatically so as to guarantee stability and a desired
accuracy £ at the end of the time-interval.

In computations we use linear (for N=1,2,3) and quadratic (for
N=1) finite elements on uniform and nonuniform grid. To approximate
the integrals in (3.12),(3.13) we use the trapezoidal rule (N=1) or
the two-points Gauss rule (N=2,3) in the case of linear elements, and
the three-points Gauss rule in the case of quadratic elements.

Optimal order error estimates of the standard Galerkin FEM for
linear singular initial boundary value problem are proved in [3]. The
effect of the lumped mass matrix for nonlinear nonsingular parabolic
problems is studied in {24],{25]. Our numerical experiments show that
the convergence rate of the procedure described above for solving the
singular nonlinear problem (3.1)-(3.4) probably remains optimal. We
are preparing a next paper dealing with the error analysis and the
algorithm of mesh refinement in the case of a single point blow-up of
the solution (B8>2).

To analyze numerically the accuracy of the realized method, we
observed the behaviour of the most sensitive characteristic of the
process described by the equation (3.1) - the blow-up time To. The
results for the case N=3, g=2, Ub(r)=2cosz(—g) for O=rs=m, Ub(r)=0 for
n=rs6, U(6,t)=0 are shown in the table:

h M € T
-3 o
0.2 31 10 0.8877025
0.1 61 1073 0.8832341
0.1 61 107> 0.8825855
0.05 121 1073 0.8817950
0.05 121 1072 0.8815855.

Note that in the case PB=2 the realized method gives a possibility
to compute sufficiently exactly the solution U(r,t) when its
amplitude is on the order of ~ 1011 on uniform grid and rmin=10'll. To
reach such amplitudes of U and such accuracy in the case of a single
point blow-up (LS-evolution), we use ‘cml.n=10—16 and special mesh
refinement. 8

4. Numerical results and interpretation
As it was told, the aim of the numerical experiments was:
- to analyze the space-time structure of the unbounded solutions
of the problem (3.1)-(3.4);
- to confirm the degeneracy of the parabolic equation when t—T,
by showing convergence of its solution U(r,t) to the a.s.-s.s. V(r,t)
in the sense of (2.13),(2.14):

(4.1) e(g,c)—aea(g) as HU(C)“C = sup U(r,t)—ow=;
r r
- to show that for B>2 in the asymptotic stage t—T, only the

function ea(g) with analytic expansion (2.8) is realizable;

- to investigate the interaction of structures, determined by the
solutions U(r,t) for B=2.

To confirm (4.1), we conmpute the solution ea(g) of_j;iﬁgffblem
(1.5) with initial condition from (2.8): Ga(0)=90= (B-1) . We
use the same method as for the solution of the system of ODE
(3.10)-(3.11). Note that under such initial condition for g>2 we get
not only the solution, satisfying (2.8), but also different solutions

from the family (2.11). In this case we use the expansion

0,(6) = 8- (4(B-1))"1€% + {B/[32(B+1) (B-1)

0

(B=2)/(B=1) | ¢4, ¢S,

in order to find some additional values of ea(g) near £=0, so to
choose the desired solution, satisfying (2.8). The graph of 8,(£) is
signed with gon Figures 1b-5b, 9b-12b.

We used the one-dimensional case and the exact results for p=2,
N=1 to test the numerical method and its program realization. So, we
explain here only the results for N=2,3 and B=2, 1<B8<2, f>2. They
show, there exist three types of blow-up solutions for equation (3.1)
(as well as for (1.10)). We’ll consider every one separately, but
first we determine the main characteristic of them - the effective
semi-width ref=ref(t) (it is signed with "x" on Figures la-15a) of the
solution. For monotone in r solution U(r,t) with unique maximum point

at the origin r=0 the semi-width re is defined from the equation:

f

(4.2) U(r_,,t) = U(O,t)/2.

er’
The semi-width has simple geometrical interpretation for arbitrary
non-monotone in r function U(r,t). As it is known ([22, Chapter 1V],

—» - HS-evolution

r_oconst>0 as t—T_characterizes S-evolution, r
ef 0 ef

and ref—ao - LS-evolution.

4.1. Regional blow-up (S-evolution)

It corresponds to B=2. All our computations confirm (4.1) with

9
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BETA N

BETA N i 2.000 3 ’ ea(g), given by (2.9), for arbitrary Uo(r) when N=1, and for Uo(r)
0¥y 2.000 3 : o with sufficiently "large" energy IIUOII1 when N=2,3 (see [14],[22]). It
— can be easily seen from Figures 1b-5b, where the rescaled function
8(€,t) is shown. In all the cases the last three or four profiles of
o 8(&,t) and the graph of Ga(E) (shifted or not on the £-axes) coincide
CS to within plotting resolution. It takes place not only for central
initial functions Uo(r) (Figures 1,2), but for any noncentral as well
T 0 ; (Figures 3-5). So, function (2.9) represents an universal (for every
t E O . 8.6213903 N) function of the medium, described by the equation (3.1) for g=2. In
e v 8.6213303 addition
8.6213884 + B.62136884
8.6213378 ~ « B8.6213378 reg — n/2 as t—)To.
ggggiggé O : ggggiggé ) Note, that the measure of the support of U0 on Figure 1 (Figure 2) is
8.2166118 » B.2166118 smaller (greater) than 2m, but the solution U(r,t) is effectively
?ggsgg?g (\'l : ?ggg;g?g localized in a region of diameter 2m.
0.0000000 o + 0,0000000 Figures 3-7 show the evolution of noncentral initial data. Some
of them (Figures 3,4) are self-similar for the degenerate equation
B @) KSI (2.5) and they have sufficiently "large" energy. It is seen, that they
O B T T 20 55 S0 T kb k. . & b . . . . . .
v @)} ] A &) 8 10 grow almost standing still, in difference with the nonself-similar
Fig. 5a Fig. 5b data with small energy in Figure 5. So, the almost resonance
Yo't vir,b) ) 10" Ui, ) ’ excitation of the medium depends on the self-similarity of the initial
BeTA N BETR N v data and on their energy (see Figure 6, where the initial data are not
w0’y 20003 Wy 20003 self-similar, but they have large energy). The interaction of
0] different initial data in the process of their evolution is illustrated
1 ' in Figures 6,7. It is seen that the interaction of the structures
10° 1 depends on the distance d between their maxima: if this distance
0 ) remains greater than or equal to 2m, the structures grow independently
t {(Figure 6), while one of them "die"™ in comparison with the other (with
04 : 8-%83?233 smaller T ). On the contrary, if d is (or becomes) less then 2m, the
s 0.3025584 structures merge and degenerate into one (Figure 7).
oy 0.3025550
el 0.30219223 g:ggggégg 4.2. Total blow-up (HS-evolution)
ol gggggff; v ggggggg? It corresponds to 1<B<2. Here
i ¢ | e s oot
w02l 0. 0600878 © 0.0375115 Thus, all initial perturbations merge in the process of evolution
0.0000000 0.0000000 (Figure 8) and degenerate into one wave, which propagates through the
o'y m\\ whole space as t—T, (Figures 9,10). In all cases (4.1) holds where
10°° 2 m\s‘ W \lk LI

+ i ea(g) is the unique solution of (1.5) (Figures 9b,10b). When t:-—»TO, an

effective wave front re (U(rt_,t:) %~ 0) [22, Chapter IV] occurs and
moves in consistence with the self-similar low:

v

re = £ (a(t)) 2B/2 a5 ¢ T,-

12
13
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4.3. Single point blow-up (LS-evolution)

It corresponds to B>2. Here

r ,—0 as t—T_,

ef [

and there is an effective localization of the process [14],[22]. Our
calculations for different values of g8 confirm (4.1) with ea(e) from
(1.5),(2.7),(2.8) (Figures 11,12). Figures 13-15 show the evolution of
some noncentral initial perturbations. Depending on their distance
from the origin and on their energy they move to the origin or don’'t.
our efforts to find some conditions, under which the initial
perturbation moves to the origin, fell. Figures 13,14 show one "limit"
case - one and the same U, reaches the origin (Figure 14, d=1.6), and
doesn’t reach it (Figure 13, d =1.7). Figure 15 shows the interaction
of two initial perturbations - they merge and degenerate into one
central structure.

Ut gerg N

2.500 3

t
0.4243696
0.4243257
0.4217298
0.2573039
0.0232708
0.0000000

1+

Summary

The numerical work was undertaken in order to analyze the
asymptotic behaviour near the finite blow-up time T of the solutions
of (1.10) for different N and B>1 and to confirm the degeneracy of

(1.10) into (1.14) as t—T . It was shown that the asymptotic|behaviour

17



doesn’t depend oﬁ the initial data (if they have sufficiently large
energy) and on the space dimension N. It depends on the parameter B
only. The most exhiting case is B=2, when the solution blows up in a
region with diameter 2m. ’

The realized numerical method gives a possibility to analyze the

semilinear equations mentioned above and we intend to do it.
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Bmmosa C.H., lanaktnoHos B.A., Meanosma f.4.
YncneHHu% aHanmM3a pexmMoB ¢ 0BOCTpeHMeM M .BHPOKAEHWUA
ANA OAHOrO NONYIMHEWHOrO ypaBHEHWA TEeNNONPOBOAHOCTH

E11-89-785 -

BHUMCIMTENbHLIM 3KCNEPUMEHTOM MCCNEAOBAHO acMMNTOTMUYECKOE noBegeHue BGNM-
3n momeHTa oBocTpeHnA T, peweHWA ypaBHEHWA

u = __1_ (rN_l

PNt ), + @ ewy L0 (m

AnA paanmuHeix N u 8> 1 n nogTeepxaeHO BuPOMZEHWE ypaBHEHWs (1) 8 HenuneiHoe
ypasHeHue Ttuna lammnbToHa-Akobun

) P

Vv, = ———+(1+v) 0" (1 +v)

1+ v
npu t » Ty . fokasano, UTO acMMNTOTWUECKOE noseAeHWe OBOCTPAKIYMXCA peweHui
He 3aBMCUT OT HauanbHWX AAHHHX M OT pa3smepHocTm npocTpaHcTBa N. OHO 3aencnT
TONbKO OT napameTpa B. Camuii MHTepecHWM cnyuaid - 3To B8=2, Korga peweHuwe
ofocTpreTcA B OBnacTu anameTpa 2r . AnA pewenna ypasHenwna {1) wcnonssosan Me-
TOA KOHEUHLIX 3NeMEHTOB.

PaBoTa swnonneHa B flaGOpaTopun BUMCAMTENBHOR TEXHMKM W aBTOMAaTH3aunn
OuAK.

MpenpuHT O6bENUHEHHOrO HHCTHTYTA ANePHRIX Keenenopamuiy. lyGa 1989

Dimova S.N., Galaktionov V.A., lvanova D.I. E11-89-785
Numerical Analysis of Blow-up and Degeneracy
of a Semilinear Heat Equation

Computational experiment was undertaken in order to analyze the asym-
ptotic behaviour near the finite blow-up time Ty of the solutions of

u, =
t
rN-—\

el +@wfd ) 0

for different N and 8>1 and to confirm the degeneracy of (1) Into the non-
linear equation of Hamilton-Jacobi type

Ak

+(1+ V)]nB(l +V)
1s+v

t

as t- Ty . It was shown that the asymptotic behaviour of the blow-up solu-
tions doesn't depend on the initial data and on the space dimension N. It
depends on the parameter 8 only, The most exciting case is 8=2, when the
solution blows up in a reglon with diameter 2z . The finite element method
was used for solving equation (1).

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.
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