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1. INTRODUCTION 

The computational problems, arising from the theory of particle 

motion inside an accelerator are very complicated becauee of their 

?onlinear character. Theme problems are related to big requirementm of 
accuracy of computation and a complicated mtructure of magnetic field. 

in a real inmtallationm.0ne of the moat actual problemm in thim field 
im the problem of inveetigating beam charged particle trajectoriem in 
cyclic acceleratorm. The per8pective of molving thim problem im 
related to developing and using the highly precime mathematical and 
computational methode, and the realization of theme methodm on the 

powerful computers, including special parallel proceemorm [I]. 
Nowadaym there im a rapid growth of developing comp4ter algebra 

methods and mymtemm [2,3]. The computer algebra im a powqrful method 

of computing with cumbersome algebraic manipulationm and there are nmw 
poemibilitiee of aolving the complicated applied problemm of the beam 
dynamic. in acceleratore. For example, in [4] the REDUCE realization 

of the Bogolubov-Krylov method of averaging is given.In thim paper the 
precise investigation of influence of nonlinear remonaocem on the 

stability of charged particle motion im also propomed. We want to 

mention that thim investigation is impommlble when we ume other 
methods. Another umeful application of aomputer algabrr REDUCE im 

given in [ 5 ] .  In thim paper the mo callad 14betatron11 integral. which 

appear in tha perturbation theory of a partiole motion are aalculated. 
The authors almo ehowed that the total computer accuracy im in a much 

mhorter time by wing analytical formulae than by remorting to a 

numeriaal integration. 
Certainly, the analytical analysim of the motion of aharged 

particlee in cyclic acceleratore im poemible only in termm of 

perturbation theory. In these methode the computation of correctionm 

of the linear approximation ie possible. We aleo want to mention the 
practical umage of theme formulam im related to the numeric 

computational probleme. Thin meanm that we need the analytic-numerical 
interface. 

In the prement paper we mtudy the problam of modeling a beam 
charged particle in the bending magnetic field of accelerator. There 
are many works devoted to thin complicated problem (for example, mee 



[1,4-171) .In the section we give the mathematical formulation of our 

model.This model describes the betatron oscillations of a particle in 

a median plane of accelerator. We obtain and exactly solve the 

nonlinear ordinary differential equation which describes this motion 

of charged particle. Next we give the method of solution which is 

based on our proposition of existing the Laurent series. The 

realization of our algorithm on the REDUCE 3.2 computer algebra uses 

the known computer algebra procedures proposed by [13].The series 

which we obtain was investigated by using standard Fortran code. We 

also take into account that the problem is exactly solvable to 

estimate the numerical errors in the computation. The comparison with 

standard numerical methods is given. 

2. THE MATHEMATICAL PRELIMINARIES 

As a starting point we consider the motion of a single particle 
+ + 

with impulse $=m3 and charge in a Lorentz field F=q/c 13 x B] 

In a Cartesian coordinate system (x,y,s=z), when we study the 

horizontal plane of particle motion s oscillations of a particle in 

a median plane the initial equation (1) may be given in the following 

form (nonlinear ordinary differential equation) 

with the initial conditions 

x(So) = xo , x' (so) = x; , (3) 
1 

where Bp is the particle rigidity (Bp = -- ) ,  and 
qm 

In the last expression of the variables bn (the relative amplitudes) 

n-th field oscillation related to the base dipole field B1. Further 

we use the following relation 

I where p is the radius of a bend of a particle in the homogeneous 
magnetic field I(bn=O for each mi). 

The particle motion in the median plane (x,s) of the accelerator is 

described as follows. The single (alone) particle input in a magnetic 

aperture with angle el to the axes s, turn out on the curve with 

radius p (for all bn= 0) and output with angle e2. The particle 

dynamics is the union of the all possible trajectories of initial 

phase set (x0,xOr). The problem of finding these sets (xk,xkl) in the 

direction s is the basic goal of the present paper. The solution 

of equation (2) gives us the solution of problem stated above, 

i The-linear-case-l~ll_bn-~-Ol~ 
i In this case, when the magnetic field in aperture of homogeneous 

i field (in (4) all bn =0), the equation ( 2 ) ,  using (4) and (5) has the 

I 
form 

I 
I r -  - L 3/2 

Xss- p (l+x;) . (6) 

It is well known that (6) has the following solution 



3. THE METHOD OF SOLUTION 

Let us introduce the standard substitution cr(x)=x', which allows 

one to solve the problem (2) in a general case 

of the form 

Integrating (9) we obtain the standard problem of inversion 

where 

C1 and C2 are constants of integration which are fixed by the initial 

conditions (3) : 

and C1 we will be obtained next (see (19) ) .  Next we want to 

investigate the problem (10) j 5 3 which has the clear physical 

meaning. The reason is the following: the magnets which we study are 

optically pure enough. This fact is in a good comparison with 

experimental data. 

As a solution of (lo) we find S as a function of x. ~ u t  our problem 

is to find the betatron oscillations i.e. we try to find X as a 

function of S 

Next we obtain the series (13) step by step. Expanding the expression 

(10) in a series in f - I  we have 
, N 

In the right side of (14) in general we have N=m but in the 

practical use we have the concrete N fixed by the accuracy which we 

needed. The next step of our algorithm is to get the square of the 

series (14), i.e. 

next we extract 1 from the series (15) , i.e. 

Finally we have 

where M s 2 N. 

Then the expansion of (10) in the series in x included the following 

operations: getting inverse of series (in the series which we obtain 

we get N terms), then we square the result and extract from them 1 and 

finally we get the minus square root of the result. After that we 

obtain the coefficients A3 in (17), we integrate the result 
,n 



1 where xn+l=n~iA3,n for n>O and i=C1. The last expression is fixed by 

s=o 

Then the equation (10) has the form I 

The last step is the getting of inverse of (20) in terms of the 

generalized variable 5 = S-C1: 

Note, that from the last series (13) is easy to obtain. 

Next we formulate the criteria of errors in the procesges of 

calculation.Differentiating the series (13) in the variable s we 

obtain the exact result 

X I =  n an sn-l , 
n= 1 

(22) 

which after the substitution in the left side of the expression of x8, 

we have 

As- XI= ------ 
f 

In the right side of (23) we substitute the expression of x from (21). 

Then we have 

Note that in the process of calculation we get such a number of terms 

which corresponds to the fixed error in x. We also want to note that 

in comparison with standard numerical methods, for example vith 

Runge-Kutta such calculations are impossible. Then we have a good 

reason of using the mixed methods i.e. analytic-numerical methods in 

the study of complicated problems. In section 5 we shall give the 

explicit comparison. 

4. THE COMPUTER ALGEBRA PACKAGE 

Our goal in this section is to describe the REDUCE 3.2/3.3 package 

and FORTRAN code of numerical investigation of proton beam dynamics. 

In our calculations we use the CERN package [13] for working with 

generalized series. 

Next we describe the computer algebra algorithm of solution of 

problem (2). We have two different cases - linear and nonlinear. 

NONLINEAR-CASE 

Introduce the following notations 

AS:= f; (see (ll), when j=3) 

ASl:= AS** (-2) ; 

AS2:= AS1-1: 

AS3:= AS2**(-1/2); 

:;s1:= s-C1; (SS1 = -s+C!l = f AS3 dx , C1 see (19) ) 
INPUT. SERIES ----- 

AS:= CMl-AAl*X-AA3*X+*S-AA5*X**5-AA7*X**7; 

where CMl,AAl,AA3,AA5 and AA7 are constants. 

pJTPUT. Inverse series. 

xs:= f(S) 

as a fun0:tion of s. This series we compute in the explicit analytical 

form. Next using the Fortran code we obtain the explicit numerical 

results. 

The REDUCE 3.2 code we give in the Appendix. 

INEFT. XL:= -(RO**2+(S-Cl) 442) **(1/2)+C2; , 
where C1 and C2 are defined in (7), and the constant' R0 is given in 

( 6 ) .  

gUT7gT. The expression XL is the Tailor series which we obtain 

using REDUCE procedure of getting Tailor expangion. 

Next using the Fortran codes we calculate the nonlinear and linear 

cases. 



The REDUCE procedures of operation on the generalized series (lines 

1-164 of our program) are taken from [13]. 

The main procedures are given in the Appendix (line 165 - 239). 
LINE- 

165-176 the procedure ELROl give the realization of linear 

case of Taylor series of solution (7) i.e. we obtain ' 

the solution of the form (13). 

177-206 procedure ELRO2 realizes the nonlinear case. 

180 (see the expression (11) ) . 
181-194 the useful operations on the series (11). 

2 04 print of coefficients of the series (13). 

207-239 the generation of FORTRAN code. 

215-227 the generation of input numerical constants. 

228-232 print of coefficients and numerical expressions of 

these (see (13) ) . 
233-235 print of final results. 

5. THE RESULTS 

The main numerical results are given in the figure 1 where we show 

the function 

of the initial coordinate xo. Further all x; are const = tg- and 
2 

e=7.5O, xi is the solution x(s) in the linear case at the point s = 

s = 43.16 cm. (i.e. at the end of the magnet) ; xf: is the solution k 
x(s) for the nonlinear case in the same point s=sk. In Table 1 we show 

the function A(xo) only in these cases when one of bn is different 

from zero and the others are zeros. 

The results which we obtain are in a good agreement with [14-161 

where the Runge-Kutta (RK) method is used. The precision, of 

calculation of the function x(s) in term of RK method is 10-12. The 

precision of xk(s) in our method strongly depends on many 

mathematical and physical parameters for example the length of 

magnet,the length of the series (2l)and so on. In our study (see 

the Fig. 2) the precision c depends on the length of the series (21). 
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Fig.1 

6. CONCLUSIONS 

In our study of the charged particle dynamics in accelerators we 

show that analytic-numerical interface is very useful. In these 

calculations we have a profit in the comparison with the standard one. 

This is very remarkable in the case of the multyturn accelerations 

where the errors have a tendency of accumulation. Our results can be 

used in the concrete calculations of the beam dynamics of the 

nuclotron accelerator.The clear comparison of the methods of the 

solution of the problem which we stated in our paper we give in the 

future publication. 

APPENDIX 

165. PROCEDURE ELRO1 (NN) ; 
166. BEGIN SCALAR Pl,P2,I,Hl,AA,HZ: 
167. ON DIV,RATIONAL: OFF ALLFAC, MCD: 
168. XL:=-(RO**~+ (SS-C1) **2) ** (1/2)+C2; 

WRITE "XL: =" , XL: 
XT: = T M R  (XL, SS, NN) ; WRITE "XT: =" , XT; 
Pl :=COEFF (XT, SS ,MZ) ; 
XP:=DF(XT,SS) ; 
ON ALLFAC,MCD,GCD: OFF EXP,DIV,RATIONAL; 
FOR I:=O:Pl DO WRITE "HZ(",I,") :=",HZ(I); 
RETURN P1 
END : 



PROCEDURE ELRO2 (NN) : 
BEGIN SCALAR I,Il,M,Y1,R1,Nl,P3; 
ON RATIONAL; OFF ALLFAC,MCD; 
AS:=CMl-AAl*X-AA3*X**3-AA5*X**5-AA7*X**7; 
WRITE "AS : = I 1 ,  AS ; 
Yl:=COEFF(AS,X,BZ) ; 
IF NN<Yl THEN ML:=NN ELSE HL:=Yl; 
ASl:=POTPOW(ML,BZ,O,l-2,X) ; 
AS2:=AS1-1; Rl:=COEFF(ASZ,X,DZ); 
ON MCD,ALLFAC,GCD; OFF RATIONAL; 
FOR I:=O:Rl DO WRITE ItDZ(", I,") :=",DZ (I) ; 
OFF GCD,ALLFAC,MCD; ON DIV,RATIONAL; 
IF NN<R1 THEN PP:=NN ELSE PP:=Rl; 
LET X**(PP+l)=O; 
AS3:=POTPOW(PP,DZ8 O,1, -1/2,X) ; 
N:=COEFF(AS3,X,CZ) ; 
ON MCL, ALLFAC, GCD; OFF RATIONAL; 
FOR I:=O: N DO WRITE "CZ ( ' I ,  I, 'I) : =" , CZ (I) ; 

OFF GCD,ALLFAC,MCD; ON RATIONAL; 
SSl:=-FOR I:=l:(N+l) SUM CZ(1-l)*X**I; 
Nl:=COEFF(SSl/X, X, EZ) ; 
IF NN<Nl THEN PL:=NN-1 ELSE PL:=Nl; 
XS:=REVPOW(PL,EZ,l,l,SS); 
N2:=COEFF(XS,SS,PZ); 
ON MCD, ALLFAC, GCD; OFF RATIONAL; 
XXl:=DF(XS, SS) ; 
WRITE "XX1 :='I, xx1; 
FOR I:=O:N2 DO WRITE "PZ(",I,") :=",PZ(I).; 
RETURN N2 
END ; 

ARRAY BZ(50) ,MZ(50) ,PZ(50) ,AF(50) ,DZ(50) ,CZ(50) ,EZ(50) ; 
ARRAY AL(50) ,SM1(50) ,SM2 (50) ,PZ (50) ,BP(50) ; 
%EXAMPLE 1; 
VL2 : =ELRO2 (5) : 
OFF ECHO; ON FORT; OUT FORFIL; 
WRITE 'I DIMENSION PZ (5) ,SM2 (5) "; 
WRITE Il REAL PZ (5)"; 
WRITE " 1 FORMAT (G20,12) 11 ; 
WRITE " RO=3299536./10000."; 

WRITE " 
WRITE " 
WRITE " 
WRITE " 
WRITE ' 
WRITE " 
WRITE ' 
WRITE " 
WRITE " 
WRITE " 

226. WRITE " CCl=AAl*XO+AA3*XO**3+AA5*X0**5+AA7*XO**7"; 
227. WRITE I' CMl=CCl-l./(l.+XX0**2)**(1/2)"; 
228. FOR I:=0:5 DO WRITE "PZ(l',I,") :=",PZ(I); 
229. WRITE " SM2(I)=PZ(l)"; 
230. WRITE " DO 7 I=1,5": 
231. WRITE " SM2 (I)=SM2 (I-l)+PZ(I) *SK**IV; 
232. WRITE 'I 7 CONTINUE"; 
233. WRITE " DO 5 1=1,5"; 
234. WRITE " PRINT 1, SM2 (I) " ; 
235. WRITE 5 CONTINUE"; 
236. WRITE " END" ; 
237. SHUT FORFIL; 
238. OFF FORT; 
239. END; 
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Hccnenosa~o pewewe ~ e n ~ ~ e R ~ o r o  p~$@epenq#anbnoro ypasHenm ssoporo  
nOpRAKa, OllUCblBaloulerO TpaeKTOpUU 3aPnffleHHblX 'raCTUq B Cyl4eCTBeHHO HeOAHOPOA- 
HOM none y c ~ o p u r e n n - c n ~ x p o ~ p o ~ a .  f l p ~ s e ~ e ~ a  MaTeMarwiecKan nocraHoeKa npo6- 
neMbl. P a s p a 6 o ~ a ~  n p e a n ~ s o e a r ~  Ha n s b ~ ~ e  ananuT#.recK#x sb lwcne~nA  REDUCE 3 .2  
anropHrM pewetim n o c ~ a s n e ~ ~ o R  3 a ~ a ~ .  B octioay anropnTMa nonomeno npefinono- 
metiue o cyqecssosatiuu peweHun B BnAe CseneHHoro pnba. Mcnonbsoea~u REDUCE- 
npoqenypbl, pean~sylou(t12 onepaunu fienetivln pnoa Ha p n ~ ,  ~ o s s e ~ e n ~ n  pRAa B npo- 
U3BOnbHyh3, B TOM WCne U ~ p 0 6 ~ 0 - 0 ~ p ~ ~ a ~ e n b H y h 3  CTeneHb, a TaKffle OnepaL(Llh3 
o6paqe~nn  pUAa. nony'ieti~blfi C T ~ ~ ~ H H O A  p9A UCnOnb30BaH B npOrpaMMe Ha R3t4Ke 
QOPTPAH Ann nocneoyloulero wcne t i no ro  a ~ a n u s a ,  a TaKme Ann nccneaosaHnR 
~ O C T ~ B ~ ~ H H O A  I $ M ~ # ' ~ ~ c K o ~  3aAa'iU. ~ P U B ~ A ~ H ~ I  Pe3ynbTaTbl MOAellUpOBaHYIR nOBeAe- 
HUR nyL(Ka npOTOHOB B nOB0pOTHblX MarHHTaX yCKOpUTenR-CUHXpOTpOHa. 

Ge rd t  V.P. e t  a l .  E l l - 89 -755  
A lgebra ic -Numer ic  C a l c u l a t i o n s  o f  P ro ton  T r a j e c t o r i e s  
i n  Bending Magnets o f  Synchro t ron A c c e l e r a t o r  

We s tudy  a s o l u t i o n  o f  n o n l i n e a r  d i f f e r e n t i a l  equa t i on  o f  t h e  second 
degree wh ich  desc r i bes  t h e  t r a j e c t o r i e s  o f  t h e  charged p a r t i c l e s  i n  t h e  
f u l l y  inhomogeneous f i e l d  o f  c y c l i c  a c c e l e r a t o r .  We g i v e  t h e  c l e a r  mathe- 
m a t i c a l  s t a temen t  o f  t he  prob lem and a l g o r i t h m  o f  s o l v i n g  it. We r e a l i z e  
t h i s  a l g o r i t h m  on t h e  Computer A lgeb ra  System REDUCE 3 .2 .  Our a l g o r i t h m  
i s  based b o t h  on t h e  ex i s t ence  o f  e x a c t  s o l u t i o n  i n  te rms o f  h y p e r e l l i p -  
t i c  i n t e g r a l  and on t h e  e x i s t e n c e  of pcwer s e r i e s  s o l u t i o n  o f  s p e c i f i c  
i n v e r s i o n  prob lem.  We use t h e  known REDUCE procedures  o f  o p e r a t i o n  on ge- 
n e r a l i z e d  po;;er s e r i e s .  Us ing  t h e  FORTRAN code we g i v e  t h e  numer i ca l  ana- 
l y s i s  o f  these s e r i e s  i n  t h e  c l o s e  r e l a t i o n  t o  t h e  conc re te  p h y s i c a l  s i t u a -  
t i o n .  We app l y  ou r  r e s u l t s  t o  t h e  beam dynamics model ing  o f  t h e  p r o t o n s  
i n  t h e  bend ing magnets i n  synch ro t ron  a c c e l e r a t o r .  

The i n v e s t i g a t i o n  has been per formed a t  t h e  Labo ra to r y  o f  C o m ~ u t i n g  
Techn iques and Automation, JINR. 
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