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1. INTRODUCTION

The computational problems, arising from the theory of particle
motion inside an accelerator are very complicated because of their
ronlinear character. These problems are related to big requirements of
accuracy of computation and a complicated structure of magnetic fields
in a real installations.One of the most actual problems in this fleld
is the problem of investigating beam charged particle trajectories in
cyclic accelerators., The perspective of solving this problem 1is
related to developing and using the highly precise mathematical and
computational methods, and the realization of these methods on the
powerful computers, including special parallel processors (1].

Nowadays there is a rapid growth of developing computer algebra
methods and systems ({2,3). The computer algebra is a powerful method
of computing with cumbersome algebraic manipulations and there are new
possibilities of solving the complicated applied problems of the beam
dynamics in accelerators. For example, in [4] the REDUCE realization
of the Bogolubov-Krylov method of averaging is given.In this paper the
precise investigation of influence of nonlinear resonances on the
stability of charged particle motion is also proposed. We want to
mention that this investigation is impossible when we use other
methods. Another useful application of computer algebrs REDUCE is
given in [5). In this paper the so called "betatron" integrals which
appear in the perturbation theory of a partiole motion are calculated.
The authors also showed that the total computer accuracy is in a much
shorter time by using analytical formulae than by resorting to a
numerical integration. .

Certainly, the analytical analysis of the motion of charged
particles in cyclic accelerators is possible only in terms of
perturbation theory. In these methods the computation of corrections
of the linear approximation is possible. We also want to mention the
practical usage of these formulas s related to the numeric
computational problems. This means that we need the analytic-numerical
interface.

In the present paper we study the problem of modeling a beanm
charged particle in the bending magnetic field of accelerator. There
are many works devoted to this complicated problem (for example, see




[1,4-17)).In the section we give the mathematical formulation of our
model.This model describes the betatron oscillations of a particle in
a median plane of accelerator. We obtain and exactly solve the
nonlinear ordinary differential equation which describes this motion
of charged particle. Next we give the method of solution which is
based on our proposition of existing the Laurent series. The
realization of our algorithm on the REDUCE 3.2 computer algebra uses
the known computer algebra procedures proposed by [13}.The series
which we obtain was investigated by using standard Fortran code. We
also take into account that the problem is exactly solvable to
estimate the numerical errors in the computation. The comparison with
standard numerical methods is given.

2. THE MATHEMATICAL PRELIMINARIES

As a starting point we consider the motion of a single particle
> -
with impulse 3=m3 and charge in a Lorentz field F=g/c (3 x B]

d mv _ 2
'éE'l = F. (1)

In a Cartesian coordinate system (X,y,s=z), when we study the
horizontal plane of particle motion s oscillations of a particle in
a median plane the initial equation (1) may be given in the following

form (nonlinear ordinary differential equation)

1 ,2,3/2
Xie= ppl~(1¥Xxg7) 1 By(x,y,s) (2)

with the initial conditions

x(so) =X, . x’(so) = X

o (3)
where Bp is the particle rigidity (Bp = éﬁ ), and
B (X,y,8) = B.(1 + b, x2 + b_ x*+ b, x5%+...) (4)
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In the last expression of the variables bn (the relative amplitudes)

n-th field oscillation related to the base dipole field B,. Further

we use the following relation

» (5)

where p is the radius of a bend of a particle in the homogeneous
magnetic field |(bn=0 for each n>1).

The particle motion in the median plane (x,s) of the accelerator is
described as follows. The single (alone) particle input in a magnetic
aperture with angle 61 to the axes s, turn out on the curve with
radius p (for all bn= 0) and output with angle 8,. The particle
dynamics is the union of the all possible trajectories of initial
phase set (xo,xo’). The problem of finding these sets (xk,xk') in the
direction s is the basic gnal of the present paper. The solution
of equation (2) gives us the solution of problem stated above,

In this case, when the magnetic field in aperture of homogeneous
field (in (4) all bn =0), the equation (2), using (4) and (5) has the
form

1 2 3/2

Xze™ T 5 (L4 %) (6)

It is well known that (6) has the following solution

X(s)= V p2+(s—c )2 + C (7)
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3. THE METHOD OF SOLUTION

Let us introduce the standard substitution o(x)=x’, which allows

one to solve the problem (2) in a general case

w0 2j )
B_(x)=B (1+ [ b, x°7) (8
Y 1 j=1 27+1
of the form
o do L] zj]d (9)
p ———-=— = - [1+ ¥ . X X .
(1+02)3/2 521 23+1

Integrating (9) we obtain the standard problem of inversion

£
S+ f —— dx - ¢, =0, (10)
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where b
C © .
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f= ~- - - (Xt [ == ). (11)
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cy and C2 are constants of integration which are fixed by the initial
conditions (3):
«

=1
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and C1 we will be obtained next (see (19) ). Next we want to
investigate the problem (10} j = 3 which has the clear physical
meaning. The reason is the following: the magnets which we study are
optically pure enough. This fact is in a good comparison with
experimental data.

As a solution of (10) we find S as a function of x. But our problem
is to find the betatron oscillations i.e. we try to find x as a
function of S

o
x(s) =g a, s", (13)
n=0
Next we obtain the series (13) step by step. Expanding the expression
(10} in a series in £ ' we have
N
! _ n
< Db = T AL % (14)
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In the right side of (14) in general we have N=o but in the
practical use we have the concrete N fixed by the accuracy which we

needed. The next step of our algorithm is to get the square of the
series (14), i.e.

1 N n 2. 2N n

= =(L A x)"=% A X

£? nso " nso 1en (15)
next we extract 1 from the series (15) , i.e.

2N 2N

1 n n

= =-1=% a x'= (A -1)+7% a x" .
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Finally we have

- -2 -1/2 M n
= ( £°- 1) =Y A x

where M = 2 N.

Then the expansion of (10) in the series in x included the following
operations: getting inverse of series (in the series which we obtain
we get N terms), then we sguare the result and extract from them 1 and
finally we get the minus square root of the result. After that we

obtain the coefficients A3 n in (17), we integrate the result
’

£ N M n M+1
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Eo.=-1_ A= . . :
where An+1_n+1A3,n for n>0 and A Cl' The last expression is fixed by
S=0

Mel o
c.=Y A_ x. . (19)
1 n=1 n "o

Then the equation (10} has the form

Mel
s-c; = -L Ryt (20)
The last step is the getting of inverse of (20) in terms of the
generalized variable § = s-¢; ¢

x= s", (21)
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o
Note, that from the last series (13) is easy to obtain.

Next we formulate the criteria of errors in the processes of
calculation.Differentiating the series (13) in the variable s we
obtain the exact result

2 n-1
x’=Yna_S . (22)
n=1 "
which after the substitution in the left side of the expression of x’,

i VAE . (23)

we have

In the right side of (23) we substitute the expression of x from (21).

Then we have
I X' - ==-=-- I <c . (24)
£

Note that in the process of calculation we get such a number of terms
which corresponds to the fixed error in x. We also want to note that
in comparison with standard numerical methods, for example with
Runge-Kutta such calculations are impossible. Then we have a good
reason of using the mixed methods i.e. analytic-numerical methods in
the study of complicated problems. In section 5 we shall give the
explicit comparison.

'

4. THE COMPUTER ALGEBRA PACKAGE

Our goal in this section is to describe the REDUCE 3.2/3.3 package
and FORTRAN code of numerical investigation of proton beam dynamics.

In our calculations we use the CERN package [13] for working with
generalized series.

Next we describe the computer algebra algorithm of solution of
problem (2). We have two different cases - linear and nonlinear.

NONLINEAR_CASE
Introduce the following notations
AS:= f; (see (11), when J=3)
AS1:= AS**(-2);
AS2:= AS1-1:
AS3:= AS2%%(-1/2);
8S1:= S-C1; (SS1 = -S+C1 = f AS3 dx , Cl1 see (19)).
SERIES ’
AS:= CM1~AAL1*X-AAZ*XkkI-AAS*N**S-AAT*XA%7;
where CM1,AAl1,AA3,AA5 and AA7 are constants.
OUTPUT. Inverse series.
XS:= f(s)
as a function of s. This series we compute in the explicit analytical
form. Next using the Fortran code we obtain the explicit numerical

INPUT.

results.
The REDUCE 3.2 code we give in the Appendix.

LINEAR CASE

INPUT. XL:= ~(RO**2+(S~C1)**2) %% (1/2)+C2; ,

where C1 and C2 are defined in (7), and the constant RO is given in
(6).
OUTPUT. XL is the Tailor series which we obtain
using REDUCE procedure of getting Tailor expansion.

Next using the Fortran codes we calculate the nonlinear and linear

The expression

cases.



THE_DESCRIPTION_OF THE_COMPUTER ALGEBRA_PACKAGE
The REDUCE procedures of operation on the generalized series (lines
1-164 of our program) are taken from [13],
The main procedures are given in the Appendix (line 165 ~ 239).

LINE_ .

165-176 the procedure ELRO1 give the realization of linear
case of Taylor series of solution (7) i.e. we obtain
the solution of the form (13).

177-206 procedure ELRO2 realizes the nonlinear case.

180 (see the expression (11)).

181-194 the useful operations on the series (11).

204 print of coefficients of the series (13).

207-239 the generation of FORTRAN code.

215-227 the generation of input numerical constants.

228-232 print of coefficients and numerical expressions of
these (see (13)).

233-235 print of final results.

5. THE RESULTS

The main numerical results are given in the figure 1 where we show
the function

_ N __L
. A(xq) = X .xx o
of the initial coordinate Xy Further all xé are const = tg- and
2
L

e=7.5°, Xy is the solution x(s) in the linear case at the point s =
Sy~ 43.16 cnm. (i.e. at the end of the magnet) ; xz is the solution
x(s) for the nonlinear case in the same point £=5,. In Table 1 we show
the function A(xo) only in these cases when one of-bn is different
from zero and the others are zeros.

The results which we obtain are in a good agreement with [14-16]
where the Runge-Kutta (RK) method is wused. The precision, of
calculation of the function x(s) in term of RK method is 10712, The

precision of xk(s) in our method strongly depends on many
mathematical and physical parameters for example the length of
magnet ,the length of the series (21)and so on. In our study (see

the Fig. 2) the precision € depends on the length of the series (21).
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6. CONCLUSIONS

In our study of the charged particle dynamics in accelerators we
show that analytic-numerical interface is very useful. 1In these
calculations we have a profit in the comparison with the standard one.
This is very remarkable in the case of the multyturn accelerations
where the errors have a tendency of accumulation. Our results can be
used in the concrete calculations of the beam dynamics of the
nuclotron accelerator.The clear comparison of the methods of the
solution of the problem which we stated in our paper we give in the
future publication.

APPENDIX
165. PROCEDURE ELRO1 (NN) ;
166. BEGIN SCALAR P1,P2,I,H1,AA,H2;
167. ON DIV,RATIONAL; OFF ALLFAC,MCD;
168. XL:=- (RO**2+ (SS-C1) #%2) % (1/2)+C2;
169. WRITE "XL:=",XL;
170. XT:=TLOR (XL,SS,NN) ; WRITE “XT:=", XT:
171. P1:=COEFF {XT,SS,M2Z) ;
172. XP:=DF (XT,SS) ;
173. ON ALLFAC,MCD,GCD; OFF EXP,DIV,RATIONAL;
174. FOR 1:=0:P1 DO WRITE "MZ(",I,"):=",MZ(I);
175. RETURN P1
176. END;
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PROCEDURE ELRO2 (NN) ;

BEGIN SCAIAR I,I1,M,Y1,R1,N1,P3:

ON RATIONAL; OFF ALLFAC,MCD;
AS:=CM1-AA1*X-AA3*X**3-AAS*X+*¥5-AAT*X**7 ;
WRITE "AS:=",AS;

Y1:=COEFF (AS,X,B2) ;

IF NN<Y1 THEN ML:=NN ELSE ML:=Y1;
AS1:=POTPOW (ML,BZ,0,1-2,X) ;

AS2:=AS1-1; R1:=COEFF(AS2,X,DZ);

ON MCD,ALLFAC,GCD; OFF RATIONAL;

FOR I:=0:R1 DO WRITE "DZ(",I,"):=",DZ(I);:
OFF GCD,ALLFAC,MCD; ON DIV,RATIONAL;

IF NN<R1 THEN PP:=NN ELSE PP:=R1;

LET X**(PP+1)=0;
AS3:=POTPOW(PP,DZ,0,1,-1/2,X) ;

N:=COEFF (AS3,X,C2) ;

ON MCL,ALLFAC,GCD; OFF RATIONAL;

FOR I:=0:N DO WRITE "CZ(",I,"):=",CZ(I);

OFF GCD,ALLFAC,MCD; ON RATIONAL;
SS1:=-FOR I:=1:(N+1) SUM CZ(I-1)*X**I;
N1:=COEFF(SS1/X,X,EZ) ;

IF NN<N1 THEN PL:=NN-1 ELSE PL:=N1; .
XS:=REVPOW (PL,EZ,1,1,8S) ;
N2:=COEFF (XS, SS,PZ) ;

ON MCD,ALLFAC,GCD; OFF RATIONAL;
XX1:=DF (XS, SS) ;

WRITE "XX1:=",6XX1:

FOR I:=0:N2 DO WRITE "PZ(",I,"):=",PZ(I);
RETURN N2

END;

ARRAY BZ(50),M2(50),PZ(50),AF(50),D2(50),CZ(50),EZ(50) ;

ARRAY AL(50),SM1(50),SM2(50),PZ(50),BP(50);
$EXAMPLE 1;

VL2 :=ELRO2 (5) ;

OFF ECHO; ON FORT; OUT FORFIL;

WRITE " DIMENSION P2(5),SM2(5)";
WRITE " REAL PZ(5)";

WRITE “ 1 FORMAT(G20,12)";
WRITE " RO=3299536./10000.";
WRITE " X0=0.";

WRITE " XX0=656./10000.";
WRITE " SK=4316./200.";
WRITE " A3=1./100.";

WRITE " A5=0."; -

WRITE " A7=0.";

WRITE " AAl=1./RO";

WRITE " AA3=A3/(3.*RO)";
WRITE " AAS=A5/ (5.%RO)";
WRITE * AA7=A7/(7.%*RO)";
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226. WRITE " CC1=AA1%XO0+AA3*XO**3+AAS*XO**S+ART*XO**7" ;
227. WRITE " CM1=CCl=-1./(1l.+XX0**2)**x(1/2)";
228. FOR I:=0:5 DO WRITE "PZ(",I,"):=",PZ(I);
229. WRITE " SM2(I)=PZ(1)";

230. WRITE " Do 7 I=1,5";

231. WRITE " SM2 (I)=SM2 (I-1)+PZ(I)*SK**I";
232. WRITE " 7 CONTINUEY;

233. WRITE " DO 5 I=1,5";

234. WRITE " PRINT 1,SM2(I)";

235. WRITE " 5 CONTINUE";

236. WRITE " END" ;

237. SHUT FORFIL;

238. OFF FORT;

239. END;
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Tepat B.N. v ap. E11-89-755
YncneHHO-aHaNMTUYe CKWe BLIMMCIEHUA TpaeKkTopuid NPoTOHOB
B MOBOPOTHbIX MarHUTaX YCKOPWTENA-CUHXPOTPOHA

AccnepgoBaHo peweHve HenvHeldHoTo auddepeHUWanbHOro ypaBHEHUS BTOPOro
NOpPAAKA, OMUCHIBAKIErO TPaeKTOPUM 3apAKEHHbIX 4aCTuy B CylleCTBEHHO HeOAHOPOA~
HOM NOMe YCKOPUTENA-CUMHXPOTPOHA. [pMBefeHa MaTeMaTUYeckas NOCTaHOBKA Npob-
nembl. Pa3zpaboTaH M peann3oBaH HAa A3bIKe aHaNUTWYecKux Boiducnenwidn REDUCE 3.2
anropuTM pelieHus MOCTAaBMEHHoW 3a4a4v. B ocHoBY anropvwTMa NONOMEHO Npeanono-
WeHWe 0 CYWeCTBOBAMWUM peluleHWMs B BUAE CTerneHHoro paga. Wcnonb3oeaHel REDUCE-
npoueaypel, peanu3ywiie onepaunun AefeHUs psja Ha pRa, BO3BeAEHWA pAja B Npo-
M3BONbHYI, B TOM 4vcne W 4pobHOo-OTpuuyaTenbHyl CTeNeHb, a TaKke onepauwio
obpalieHns psga. Mony4eHHeit CTeNeHHOW PAA WCMNOMNb30BaH B NPOrpaMMe Ha A3biKe
DOPTPAH aAna nocneAywllero Y4WCNeHHoOro aHanwsa, a Tak#e ANA UCcCcrnepoOBaHuA
NoCTaBNeHHOW w3undveckor 3apaun. MpuBeaeHbl pe3ynbTaTel MOAENUPOBAHWA NoBeje-
HWA Ny4Ka MPOTOHOB B MOBOPOTHHIX MarHUTax yCKOPWTeNA-CUHXPOTPOHA.

PaboTa BeinonHeHa B NabopaTopuu BLIYACNUTENBHOW TEXHUKW U aBTOMAaTh3auvu
onsn.

MpenpruT O6BEAMHEHHOrO HHCTHTY TA ANEPHEIX Mccienosatmit. [ly6Ha 1989

Gerdt V.P. et al. £11-89-755
Algebraic-Numeric Calculations of Proton Trajectories
in Bending Magnets of Synchrotron Accelerator

We study a solution of nonlinear differential equation of the second
degree which describes the trajectories of the charged particles in the
fully inhomogeneous field of cyclic accelerator. We give the clear mathe-
matical statement of the problem and algorithm of solving it. We realize
this aigorithm on the Computer Algebra System REDUCE 3.2. Our algorithm
is based both on the existence of exact solution in terms of hyperellip-
tic integral and on the existence of power series solution of specific
inversion problem. We use the known REDUCE procedures of operation on ge-
neralized power series. Using the FORTRAN code we give the numerical ana-
lysis of these series in the close relation to the concrete physical situa-
tion. We apply our results to the beam dynamics modeling of the protons
in the bending magnets in synchrotron accelerator.

The investigation has been performed at the Laboratory of Computing
Technigues and Automation, JINR.
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